JPH1089051A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH1089051A
JPH1089051A JP8245290A JP24529096A JPH1089051A JP H1089051 A JPH1089051 A JP H1089051A JP 8245290 A JP8245290 A JP 8245290A JP 24529096 A JP24529096 A JP 24529096A JP H1089051 A JPH1089051 A JP H1089051A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
hydrocarbon
nitrogen oxides
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8245290A
Other languages
Japanese (ja)
Other versions
JP3787913B2 (en
Inventor
Kanehito Nakamura
兼仁 中村
Koichi Ohata
耕一 大畑
Hajime Suguro
肇 勝呂
Tsukasa Kuboshima
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24529096A priority Critical patent/JP3787913B2/en
Priority to DE19739751A priority patent/DE19739751B4/en
Priority to FR9711436A priority patent/FR2753485B1/en
Publication of JPH1089051A publication Critical patent/JPH1089051A/en
Application granted granted Critical
Publication of JP3787913B2 publication Critical patent/JP3787913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the purifying factor of NOx by always supplying the suitable amounts of hydrocarbon to a NOx catalyst to be used in various temperature distributions under various operating conditions. SOLUTION: A NOx discharging amount from a diesel engine 11 is calculated (step 102) on the basis of signals of an accelerator sensor 27 and an engine speed sensor 28, and the upstream side temperature TA, the center temperature TB and the downstream side temperature TC of a catalyst are detected (step 103). The hydrocarbon supplying amount HA equivalent to the catalyst upstream side temperature TA, the hydrocarbon supplying amount HB equivalent to the catalyst center temperature TB and the hydrocarbon supplying amount HC equivalent to the catalyst downstream side temperature TC are calculated (step 104) from a hydrocarbon supplying amount map in the reference NOx discharging amount. These hydrocarbon supplying amounts HA, HB, HC are multiplied by the coefficient of weight and summed, the summed value is multiplied by the ratio of the NOx discharging amount to the reference NOx discharging, and the final hydrocarbon supplying amount is found (step 105).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排ガス
中に含まれる窒素酸化物を低減する内燃機関の排ガス浄
化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine which reduces nitrogen oxides contained in the exhaust gas of the internal combustion engine.

【0002】[0002]

【従来の技術】ディーゼルエンジン等の酸素過剰下で燃
料の燃焼が行われる内燃機関から排出される窒素酸化物
(NOx)を浄化するために、排気管内に触媒を設置
し、炭化水素(一般に燃料)を還元剤として触媒に供給
して窒素酸化物を浄化する技術がある。この触媒の浄化
特性は、図2に示すように、炭化水素の浄化率は触媒温
度が高くなるに従って高くなるが、窒素酸化物の浄化率
は所定の活性温度範囲(例えばPt触媒では200℃か
ら300℃)においてのみ高いことが知られている。こ
の窒素酸化物の浄化率を高くするには、触媒に還元剤で
ある炭化水素(燃料)を供給すれば良いが、触媒温度が
低い場合には、供給した炭化水素が未反応のまま排出さ
れて、却ってエミッションが悪化したり、反対に、触媒
温度が高い場合には、炭化水素の反応熱によって触媒温
度が活性温度範囲を越えて上昇してしまい、却って窒素
酸化物の浄化率が低下してしまう場合がある。
2. Description of the Related Art In order to purify nitrogen oxides (NOx) emitted from an internal combustion engine in which fuel is burned under an excessive amount of oxygen such as a diesel engine, a catalyst is installed in an exhaust pipe to form a hydrocarbon (generally, a fuel). ) Is supplied to a catalyst as a reducing agent to purify nitrogen oxides. As shown in FIG. 2, the purification rate of the catalyst is such that the purification rate of hydrocarbons increases as the catalyst temperature increases, but the purification rate of nitrogen oxides falls within a predetermined activation temperature range (for example, 200 ° C. for a Pt catalyst). (300 ° C.) only. The purification rate of nitrogen oxides can be increased by supplying hydrocarbons (fuel) as a reducing agent to the catalyst. However, when the catalyst temperature is low, the supplied hydrocarbons are discharged without reacting. On the contrary, if the emission deteriorates, or if the catalyst temperature is high, on the contrary, the catalyst temperature rises beyond the activation temperature range due to the reaction heat of the hydrocarbons, and on the contrary, the purification rate of nitrogen oxides decreases. In some cases.

【0003】この問題に対して、特開平5−26362
4号公報では、エンジン毎に実験的に適合された炭化水
素供給量マップと触媒入口の排ガス温度とから炭化水素
供給量を算出する方法が提案されている。
To solve this problem, Japanese Patent Application Laid-Open No. 5-26362 discloses
In Japanese Patent Application Publication No. 4 (JP-A) No. 4 (1998), a method for calculating a hydrocarbon supply amount from a hydrocarbon supply amount map experimentally adapted for each engine and an exhaust gas temperature at a catalyst inlet is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際には、内
燃機関は様々な条件で運転されるため、触媒は様々な温
度分布、活性状態で使用されることになり、触媒入口の
排ガス温度が同じでも触媒の温度分布や活性状態は運転
状態によって変化する。従って、上記公報のように、触
媒入口の排ガス温度から一律に炭化水素供給量を算出し
たのでは、実際の触媒の温度分布、活性状態に対して、
炭化水素供給量が多すぎたり、少なすぎたりする状態が
起こりやすく、安定した窒素酸化物の浄化率が得られな
い。しかも、触媒に供給する炭化水素は燃料を使用する
ため、炭化水素供給量が多すぎれば、燃費が悪化するこ
とにもなる。
However, in practice, since the internal combustion engine is operated under various conditions, the catalyst is used in various temperature distributions and active states, and the exhaust gas temperature at the catalyst inlet is reduced. Even in the same case, the temperature distribution and the active state of the catalyst change depending on the operating state. Therefore, as described in the above publication, if the hydrocarbon supply amount is calculated uniformly from the exhaust gas temperature at the catalyst inlet, the actual catalyst temperature distribution and active state are
A state in which the hydrocarbon supply amount is too large or too small is likely to occur, and a stable nitrogen oxide purification rate cannot be obtained. In addition, since the fuel supplied to the catalyst uses fuel, if the amount of supplied hydrocarbon is too large, the fuel efficiency will be deteriorated.

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、様々な運転条件下
で、様々な温度分布、活性状態で使用される触媒に対し
て、常に適正量の炭化水素を供給することができて、窒
素酸化物の浄化率を向上させることができると共に、未
反応のまま排出される炭化水素を低減して燃費を向上す
ることができる内燃機関の排ガス浄化装置を提供するこ
とにある。
[0005] The present invention has been made in view of such circumstances, and therefore has an object to always provide a catalyst which is used under various operating conditions and under various temperature distributions and active conditions. An exhaust gas of an internal combustion engine that can supply a large amount of hydrocarbons, improve the purification rate of nitrogen oxides, and reduce the amount of unreacted hydrocarbons and improve fuel efficiency. It is to provide a purification device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の排ガス浄化装置は、
触媒に対して窒素酸化物の還元剤として炭化水素を供給
する炭化水素供給手段を備え、触媒の複数位置の温度を
触媒温度判定手段により検出または推定すると共に、内
燃機関の運転状態を運転状態検出手段により検出する。
そして、炭化水素供給手段を制御する制御手段は、触媒
の複数位置の温度と内燃機関の運転状態とから、触媒の
複数位置の窒素酸化物の還元浄化能力を推定し、上流側
位置の窒素酸化物の還元浄化能力の寄与度を大きくする
ように重み付けを行って触媒全体の窒素酸化物の還元浄
化能力を推定し、その推定値から触媒に供給すべき炭化
水素供給量を求める。
To achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to claim 1 of the present invention is provided.
A hydrocarbon supply means for supplying hydrocarbons as a reducing agent for nitrogen oxides to the catalyst is provided. The temperature of a plurality of positions of the catalyst is detected or estimated by the catalyst temperature determination means, and the operation state of the internal combustion engine is detected. Detect by means.
Then, the control means for controlling the hydrocarbon supply means estimates the reduction and purification capacity of the nitrogen oxides at the plurality of positions of the catalyst from the temperatures at the plurality of positions of the catalyst and the operating state of the internal combustion engine, and determines the nitrogen oxides at the upstream position. Weighting is performed so as to increase the contribution of the reduction and purification ability of the product, and the reduction and purification ability of nitrogen oxides of the entire catalyst is estimated, and the hydrocarbon supply amount to be supplied to the catalyst is obtained from the estimated value.

【0007】ここで、上流側位置の窒素酸化物の還元浄
化能力の寄与度を大きくするように重み付けを行う理由
は、触媒内部の炭化水素の濃度が上流側ほど高くなり、
窒素酸化物の選択還元性が高くなるためである。本発明
のように、上流側位置の窒素酸化物の還元浄化能力の寄
与度を大きくするように重み付けして触媒全体の窒素酸
化物の還元浄化能力を推定すれば、触媒全体の窒素酸化
物の還元浄化能力を精度良く推定することができる。従
って、この推定値から炭化水素供給量を求めれば、様々
な運転条件下で、様々な温度分布、活性状態で使用され
る触媒に対して、常に適正量の炭化水素を供給すること
ができ、窒素酸化物の浄化率を向上させることができる
と共に、未反応のまま排出される炭化水素を低減して燃
費を向上することができる。
Here, the reason why weighting is performed so as to increase the contribution of the reduction and purification ability of nitrogen oxides at the upstream position is that the concentration of hydrocarbons inside the catalyst becomes higher toward the upstream side,
This is because the selective reduction of nitrogen oxides is increased. As in the present invention, if the weight of the reduction and purification ability of the nitrogen oxides at the upstream side is weighted so as to increase the contribution, the reduction and purification capacity of the nitrogen oxides of the entire catalyst is estimated. The reduction purification ability can be accurately estimated. Therefore, if the amount of hydrocarbon supply is determined from the estimated value, it is possible to always supply an appropriate amount of hydrocarbon to the catalyst used in various temperature distributions and active states under various operating conditions, The purification rate of nitrogen oxides can be improved, and hydrocarbons discharged without being reacted can be reduced to improve fuel efficiency.

【0008】この場合、請求項2では、前記触媒全体の
窒素酸化物の還元浄化能力を推定する際に、上流側位置
の窒素酸化物の還元浄化能力の寄与度を大きくするよう
に重み付けを行った複数位置の窒素酸化物の還元浄化能
力を合計して触媒全体の窒素酸化物の還元浄化能力を求
める。このようにすれば、複数位置の窒素酸化物の還元
浄化能力を合計するという簡単な処理で、触媒全体の窒
素酸化物の還元浄化能力を精度良く推定することができ
る。
In this case, in the second aspect, when estimating the reduction and purification ability of nitrogen oxides of the entire catalyst, weighting is performed so as to increase the contribution of the reduction and purification ability of nitrogen oxides at the upstream position. The reduction and purification abilities of the nitrogen oxides at the plurality of positions are summed to determine the reduction and purification abilities of the nitrogen oxides of the entire catalyst. This makes it possible to accurately estimate the nitrogen oxide reduction / purification capacity of the entire catalyst by a simple process of summing the nitrogen oxide reduction / purification abilities at a plurality of positions.

【0009】また、請求項3では、窒素酸化物の還元浄
化能力を炭化水素供給量で表して演算する。このように
すれば、演算処理の途中で還元浄化能力を炭化水素供給
量に変換する処理が不要となり、演算処理を簡略化でき
る。
According to a third aspect of the present invention, the capability of reducing and purifying nitrogen oxides is calculated by representing the amount of hydrocarbon supplied. This eliminates the need to convert the reduction / purification capacity to the amount of hydrocarbon supply in the middle of the arithmetic processing, thereby simplifying the arithmetic processing.

【0010】また、請求項4では、窒素酸化物の還元浄
化能力を触媒温度で表して演算し、上流側位置の触媒温
度の寄与度を大きくするように重み付けを行って触媒全
体を代表する温度(以下「触媒代表温度」という)を推
定し、この触媒代表温度と運転状態検出手段の検出結果
とに基づいて触媒に供給すべき炭化水素供給量を求め
る。この場合、重み付けを行って推定した触媒代表温度
は、単に、触媒の熱エネルギ的な平均温度ではなく、触
媒全体の窒素酸化物浄化特性を代表する温度となり、触
媒全体の窒素酸化物の還元浄化能力を表す指標となる。
従って、この触媒代表温度を用いても、上記の場合と同
じく、触媒への炭化水素供給量を精度良く求めることが
できる。
According to a fourth aspect of the present invention, the reduction and purification ability of nitrogen oxides is calculated and expressed by a catalyst temperature, and weighting is performed so as to increase the contribution of the catalyst temperature at the upstream position, so that the temperature representing the entire catalyst is calculated. (Hereinafter, referred to as “catalyst representative temperature”), and the supply amount of hydrocarbons to be supplied to the catalyst is obtained based on the catalyst representative temperature and the detection result of the operating state detecting means. In this case, the catalyst representative temperature estimated by weighting is not simply the average thermal energy temperature of the catalyst but a temperature representative of the nitrogen oxide purification characteristics of the entire catalyst. It is an indicator of ability.
Therefore, even when this catalyst representative temperature is used, the amount of hydrocarbon supply to the catalyst can be accurately obtained, as in the above case.

【0011】ところで、排ガスの一部を吸気系へ還流さ
せる排ガス還流装置(以下「EGR装置」と略記する)
を設けた内燃機関では、図15に示すように、定常運転
中は、EGR率が大きくなり、それによって燃焼時の温
度が低下して排ガス中の窒素酸化物が低減される。しか
し、加速時には、定常運転状態から求まる目標EGR率
に対して、実際のEGR率が低くなり、窒素酸化物排出
濃度は目標の濃度よりも実際の濃度が高い値になる。こ
のように、加速時に目標EGR率より実際のEGR率が
低くなる原因は、EGR装置のメカ的な作動応答遅れ
と、EGR配管を通過するEGRガスの流れの遅れと、
EGR制御安定性を保つための制御面での遅れによるも
のと考えられる。
By the way, an exhaust gas recirculation device for recirculating a part of the exhaust gas to the intake system (hereinafter abbreviated as "EGR device").
As shown in FIG. 15, in the internal combustion engine provided with EGR, the EGR rate increases during steady operation, whereby the temperature at the time of combustion decreases and nitrogen oxides in exhaust gas are reduced. However, at the time of acceleration, the actual EGR rate becomes lower than the target EGR rate obtained from the steady operation state, and the actual nitrogen oxide emission concentration becomes higher than the target concentration. As described above, the causes of the actual EGR rate being lower than the target EGR rate at the time of acceleration include the mechanical operation response delay of the EGR device, the delay of the flow of the EGR gas passing through the EGR pipe, and the like.
This is considered to be due to a delay in control for maintaining EGR control stability.

【0012】そこで、請求項5では、炭化水素供給手段
を制御する制御手段は、内燃機関を加速運転する時に触
媒への炭化水素供給量を増量補正する。これにより、加
速時に排ガス中の窒素酸化物の濃度が増加しても、触媒
での窒素酸化物浄化性能を向上することができ、窒素酸
化物の排出量を低減できる。
Therefore, in claim 5, the control means for controlling the hydrocarbon supply means corrects the amount of supply of hydrocarbons to the catalyst when the internal combustion engine is accelerated. Thereby, even if the concentration of nitrogen oxides in the exhaust gas increases at the time of acceleration, the nitrogen oxide purification performance of the catalyst can be improved, and the emission amount of nitrogen oxides can be reduced.

【0013】更に、請求項6では、加速運転時に触媒へ
の炭化水素供給量を増量補正する際に、加速開始時には
増量割合を大きくし、加速開始から時間が経過するに従
って増量割合を減少させるように補正する。つまり、加
速開始から時間が経過するに従って、EGR制御の遅れ
が少なくなって、実際の窒素酸化物排出濃度が低下す
る。従って、加速開始から時間が経過するに従って、炭
化水素供給量の増量割合を減少させるように補正するこ
とで、加速開始後の時間経過による窒素酸化物の排出濃
度の低下に対応して炭化水素供給量を適正に補正するこ
とができ、窒素酸化物の浄化率を向上させながら、未反
応のまま排出される炭化水素を低減して燃費を向上する
ことができる。
Further, when increasing the amount of hydrocarbon supply to the catalyst during the acceleration operation, the increase ratio is increased at the start of acceleration, and the increase ratio is reduced as time elapses from the start of acceleration. To be corrected. That is, as the time elapses from the start of acceleration, the delay of the EGR control decreases, and the actual nitrogen oxide emission concentration decreases. Therefore, by correcting the increase rate of the hydrocarbon supply amount as the time elapses from the start of acceleration, the hydrocarbon supply amount is reduced in response to the decrease in the nitrogen oxide emission concentration due to the elapse of time after the acceleration start. The amount can be appropriately corrected, and the hydrocarbons discharged without being reacted can be reduced to improve fuel efficiency while improving the purification rate of nitrogen oxides.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施形態(1)]以下、本発明の実施形態(1)を図
1乃至図9に基づいて説明する。内燃機関であるディー
ゼルエンジン11の排気管12(排ガス通路)の途中に
は、排ガス中の窒素酸化物(以下「NOx」と表記す
る)を還元浄化する触媒13(いわゆるNOx触媒)が
設けられ、この触媒13の上流側と中央と下流側には、
それぞれ排ガス温度センサ14,15,16が設置さ
れ、各排ガス温度センサ14,15,16で検出した排
ガス温度から触媒13の複数位置の温度が判定される。
従って、各排ガス温度センサ14,15,16は、特許
請求の範囲でいう触媒温度判定手段として用いられる。
[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS. A catalyst 13 (so-called NOx catalyst) for reducing and purifying nitrogen oxides (hereinafter referred to as “NOx”) in exhaust gas is provided in the exhaust pipe 12 (exhaust gas passage) of the diesel engine 11 which is an internal combustion engine. On the upstream side, center and downstream side of the catalyst 13,
Exhaust gas temperature sensors 14, 15, 16 are provided, respectively, and the temperatures at a plurality of positions of the catalyst 13 are determined from the exhaust gas temperatures detected by the exhaust gas temperature sensors 14, 15, 16 respectively.
Therefore, each of the exhaust gas temperature sensors 14, 15, 16 is used as a catalyst temperature determining means described in the claims.

【0015】上記触媒13の上流には、触媒13に還元
剤として炭化水素(軽油等の燃料)を供給する炭化水素
供給装置17(炭化水素供給手段)が設けられている。
この炭化水素供給装置17には、燃料噴射ポンプ18か
ら中圧燃料配管19を介して燃料が供給される。燃料噴
射ポンプ18は、ディーゼルエンジン11の動力を駆動
源とし、燃料タンク(図示せず)から吸い込んだ燃料を
高圧化して高圧燃料配管20を介してディーゼルエンジ
ン11の各気筒の燃料噴射ノズル21に供給し、各燃料
噴射ノズル21から燃料を各気筒内に噴射して燃焼させ
る。
A hydrocarbon supply device 17 (hydrocarbon supply means) for supplying hydrocarbons (fuel such as light oil) as a reducing agent to the catalyst 13 is provided upstream of the catalyst 13.
Fuel is supplied to the hydrocarbon supply device 17 from a fuel injection pump 18 via a medium-pressure fuel pipe 19. The fuel injection pump 18 uses the power of the diesel engine 11 as a drive source, increases the pressure of fuel sucked from a fuel tank (not shown), and supplies the fuel to a fuel injection nozzle 21 of each cylinder of the diesel engine 11 via a high-pressure fuel pipe 20. The fuel is supplied, and fuel is injected from each fuel injection nozzle 21 into each cylinder and burned.

【0016】また、ディーゼルエンジン11の排気管1
2と吸気管22との間には、排ガスの一部を吸気管22
に還流させるEGR配管23が接続され、このEGR配
管23の途中にEGRバルブ24が設けられている。こ
のEGRバルブ24は、制御バルブ25によりバルブ開
度が可変され、その開度調整によりEGR配管23を通
過するEGRガス量を制御する。制御バルブ25はエン
ジン運転状態に応じて制御回路26により制御される。
これらEGR配管23、EGRバルブ24及び制御バル
ブ25からEGR装置(排ガス還流装置)30が構成さ
れている。
The exhaust pipe 1 of the diesel engine 11
A part of the exhaust gas is transferred between the intake pipe 22 and the intake pipe 22.
An EGR pipe 23 is connected to the EGR pipe 23, and an EGR valve 24 is provided in the middle of the EGR pipe 23. The opening of the EGR valve 24 is varied by a control valve 25, and the amount of EGR gas passing through the EGR pipe 23 is controlled by adjusting the opening. The control valve 25 is controlled by a control circuit 26 in accordance with the operating state of the engine.
The EGR pipe (23), the EGR valve (24) and the control valve (25) constitute an EGR device (exhaust gas recirculation device) (30).

【0017】制御回路26は、マイクロコンピュータを
主体として構成され、アクセルセンサ27、エンジン回
転数センサ28、車速センサ29等の運転状態検出手段
から出力されるエンジン運転状態の情報と排ガス温度セ
ンサ14、15、16から出力される触媒13の温度
(分布)の情報を読み込み、これらの情報に基づいて後
述する図7の炭化水素供給量演算ルーチンによって炭化
水素供給量を算出し、それに応じて炭化水素供給装置1
7を駆動して触媒13への炭化水素供給量を制御する。
The control circuit 26 is mainly composed of a microcomputer. The control circuit 26 includes information on the engine operating state output from operating state detecting means such as an accelerator sensor 27, an engine speed sensor 28, a vehicle speed sensor 29, etc., and the exhaust gas temperature sensor 14, Information on the temperature (distribution) of the catalyst 13 output from the catalysts 15 and 16 is read, and based on the information, a hydrocarbon supply amount is calculated by a hydrocarbon supply amount calculation routine shown in FIG. 7 described later. Supply device 1
7 is driven to control the amount of hydrocarbon supply to the catalyst 13.

【0018】この場合、炭化水素供給量の算出方法は、
触媒13の複数位置の温度とエンジン運転状態から触媒
13の複数位置のNOxの還元浄化能力を推定し、上流
側位置のNOxの還元浄化能力の寄与度を大きくするよ
うに重み付けを行って触媒13全体のNOxの還元浄化
能力を推定し、その推定値から触媒13に供給すべき炭
化水素供給量を算出するものである。以下、この算出方
法について考察する。
In this case, the method of calculating the hydrocarbon supply amount is as follows:
The catalyst 13 estimates the NOx reduction / purification capacity at a plurality of positions of the catalyst 13 from the temperatures at the plurality of positions of the catalyst 13 and the engine operating state, and weights the catalyst 13 to increase the contribution of the NOx reduction / purification ability at an upstream position. The entire NOx reduction and purification capacity is estimated, and the hydrocarbon supply amount to be supplied to the catalyst 13 is calculated from the estimated value. Hereinafter, this calculation method will be considered.

【0019】まず、触媒13の温度分布とNOxの浄化
率との関係を詳細に調べた。代表例について図3から図
6で説明する。図3は、NOx浄化率を評価した3種類
の温度分布a,b,cを示すグラフであり、いずれの場
合も、触媒内の最高温度がNOx浄化率が最高になる2
50℃となる。図3において、aは触媒入口から触媒出
口まで250℃で一定となる温度分布であり、bは触媒
入口が200℃で触媒出口が250℃となる温度分布、
cは触媒入口が250℃で触媒出口が200℃となる温
度分布である。これら3種類の温度分布a,b,cに対
して炭化水素供給濃度を変えた時のNOx浄化率の測定
結果を図4に示す。この図4において、炭化水素供給濃
度が1000ppmcの時は、b、a、cの順でNOx
浄化率が高く、炭化水素浄化率は、a、c、bの順で高
くなるが、いずれも90%以上であった。
First, the relationship between the temperature distribution of the catalyst 13 and the NOx purification rate was examined in detail. Representative examples will be described with reference to FIGS. FIG. 3 is a graph showing three types of temperature distributions a, b, and c in which the NOx purification rate is evaluated. In each case, the highest temperature in the catalyst is such that the NOx purification rate is the highest.
It will be 50 ° C. In FIG. 3, a is a temperature distribution that is constant at 250 ° C. from the catalyst inlet to the catalyst outlet, b is a temperature distribution where the catalyst inlet is 200 ° C. and the catalyst outlet is 250 ° C.
c is the temperature distribution where the catalyst inlet is 250 ° C. and the catalyst outlet is 200 ° C. FIG. 4 shows the measurement results of the NOx purification rate when the hydrocarbon supply concentration was changed for these three types of temperature distributions a, b, and c. In FIG. 4, when the hydrocarbon supply concentration is 1000 ppmc, NOx is sequentially set in the order of b, a, and c.
The purification rate was high, and the hydrocarbon purification rates increased in the order of a, c, and b, all of which were 90% or more.

【0020】次に、炭化水素供給濃度が1000ppm
cの時に、触媒入口側よりも触媒出口側の温度が高くな
る温度分布bのNOx浄化率が高い理由を説明する。炭
化水素の反応活性化エネルギはNOxの反応活性化エネ
ルギより大きいため、低温ほど炭化水素によるNOxの
選択還元性が高い。従って、炭化水素の反応量一定(炭
化水素浄化率は90%以上でほぼ一定)のもとでは、触
媒温度が低いほどNOx浄化率が高いことになる。一
方、触媒に供給する炭化水素は、触媒を通過する過程で
消費されるため、触媒内部の炭化水素の濃度分布は、触
媒上流側ほど高く、下流側ほど低くなる。bは触媒上流
側の温度が低く、且つ、炭化水素濃度が高いため、触媒
上流側でのNOxの選択還元性か高くなる。cは触媒下
流側の温度が低いが、炭化水素濃度も低いため、bより
もNOx浄化率が低くなると考えられる。以上の試験結
果から、触媒上流側のNOx浄化特性が触媒全体のNO
x浄化特性に影響を及ぼす寄与度が大きいことが見い出
せる。
Next, when the hydrocarbon feed concentration is 1000 ppm
The reason why the NOx purification rate of the temperature distribution b in which the temperature at the catalyst outlet side is higher than the temperature at the catalyst inlet side at the time of c is high will be described. Since the reaction activation energy of hydrocarbons is larger than the reaction activation energy of NOx, the lower the temperature, the higher the selective reduction of NOx by hydrocarbons. Therefore, under a constant hydrocarbon reaction amount (the hydrocarbon purification rate is substantially constant at 90% or more), the lower the catalyst temperature, the higher the NOx purification rate. On the other hand, hydrocarbons supplied to the catalyst are consumed in the process of passing through the catalyst, so that the concentration distribution of hydrocarbons inside the catalyst is higher on the upstream side of the catalyst and lower on the downstream side. Since b has a low temperature on the upstream side of the catalyst and a high hydrocarbon concentration, the selective reduction of NOx on the upstream side of the catalyst is high. It is considered that c has a lower temperature on the downstream side of the catalyst, but also has a lower hydrocarbon concentration, so that the NOx purification rate is lower than b. From the above test results, the NOx purification characteristic on the upstream side of the catalyst is
It can be found that the contribution to x purification characteristics is large.

【0021】一方、炭化水素供給濃度が3000ppm
cの時は、a、c、bの順でNOx浄化率が高く、炭化
水素浄化率はa、cに比較してbは低い。bのNOx浄
化率が低い理由は、低温ほど炭化水素によるNOxの選
択還元性が高くなるのであるが、それ以上に、炭化水素
浄化率が低い分、炭化水素反応量が少なくなり、NOx
反応量が少なくなったためと考えられる。cは触媒下流
側が低温であるが、触媒上流側の温度が高く、且つ、炭
化水素濃度も高いため、触媒上流側のNOx浄化特性が
触媒全体のNOx浄化特性に影響を及ぼす寄与度が大き
くなり、bよりNOx浄化率が高くなると考えられる。
On the other hand, when the hydrocarbon feed concentration is 3000 ppm
At the time of c, the NOx purification rate is higher in the order of a, c, and b, and the hydrocarbon purification rate is lower at b than at a and c. The reason why the NOx purification rate of b is low is that the lower the temperature, the higher the selective reduction of NOx by hydrocarbons. However, the lower the hydrocarbon purification rate, the lower the hydrocarbon reaction rate, and the lower the NOx purification rate.
It is considered that the reaction amount was reduced. In the case of c, although the temperature on the downstream side of the catalyst is low, the temperature on the upstream side of the catalyst is high and the hydrocarbon concentration is high, so that the degree of contribution of the NOx purification characteristics on the upstream side of the catalyst to the NOx purification characteristics of the entire catalyst increases. , B, the NOx purification rate is considered to be higher.

【0022】また、炭化水素供給濃度が5000ppm
cの時は、a、c、bの順でNOx浄化率が高く、特
に、bはNOx浄化率が低い。炭化水素浄化率はa、c
に比較してbは低い。ここで、bのNOx浄化率が低い
理由は、触媒上流側の温度が低温であるため、供給した
炭化水素(軽油)が触媒表面上を覆う、いわゆる触媒の
低温被毒が発生し、触媒反応が阻害されてNOxを還元
浄化できなくなるためと考えられる。cは触媒下流側が
低温であるが、触媒上流側の温度が高く、上流側での反
応熱で温度上昇した排ガスが触媒下流に流れるため、触
媒の低温被毒は起こりにくい。いずれにしても、触媒上
流側のNOx浄化特性が触媒全体のNOx浄化特性に影
響を及ぼす寄与度が大きいと考えられる。
The hydrocarbon feed concentration is 5000 ppm
At the time of c, the NOx purification rate is higher in the order of a, c, and b, and particularly, the b has a lower NOx purification rate. The hydrocarbon purification rate is a, c
Is lower than b. Here, the reason why the NOx purification rate b is low is that the so-called low-temperature poisoning of the catalyst occurs because the supplied hydrocarbon (light oil) covers the surface of the catalyst because the temperature on the upstream side of the catalyst is low. It is considered that NOx is inhibited and NOx cannot be reduced and purified. In the case of c, although the temperature is low on the downstream side of the catalyst, the temperature on the upstream side of the catalyst is high, and the exhaust gas whose temperature has increased due to the heat of reaction on the upstream side flows downstream of the catalyst. In any case, it is considered that the NOx purification characteristics on the upstream side of the catalyst greatly contribute to the NOx purification characteristics of the entire catalyst.

【0023】次に、触媒内の最高温度がNOx浄化率が
ピークから低下する275℃になる温度分布で上述と同
様の評価を行うために、図5に示した3種類の温度分布
d,e,fを作り出した。dは触媒入口から触媒出口ま
で275℃で一定の温度分布であり、eは触媒入口が2
25℃、触媒中央がNOx浄化率が最高になる250
℃、触媒出口が275℃となる温度分布であり、fは触
媒入口が275℃、触媒中央がNOx浄化率が最高にな
る250℃、触媒出口が225℃の温度分布である。そ
れぞれの温度分布d,e,fに対して炭化水素供給濃度
を変えた時のNOx浄化率を図6に示す。
Next, three types of temperature distributions d and e shown in FIG. 5 are used in order to perform the same evaluation as described above with a temperature distribution where the maximum temperature in the catalyst becomes 275 ° C. at which the NOx purification rate decreases from the peak. , F. d is a constant temperature distribution at 275 ° C. from the catalyst inlet to the catalyst outlet.
25 ° C, the center of the catalyst has the highest NOx purification rate of 250
° C, the temperature distribution at the catalyst outlet is 275 ° C, and f is the temperature distribution at the catalyst inlet at 275 ° C, the center of the catalyst at 250 ° C at which the NOx purification rate is the highest, and the catalyst outlet at 225 ° C. FIG. 6 shows the NOx purification rates when the hydrocarbon supply concentration was changed for each of the temperature distributions d, e, and f.

【0024】この図6において、炭化水素供給濃度が1
000ppmcの時は、e、d、fの順でNOx浄化率
が高く、炭化水素浄化率は、いずれも90%以上であっ
た。ここで、d、fのNOx浄化率が低い理由は、触媒
上流側が高温であるため、NOxの選択還元性が低いこ
とと、fは触媒下流側が低温にも拘らず、高温の触媒上
流側で炭化水素の反応が促進されてしまい、触媒下流側
には少量の炭化水素しか供給されないためである。
In FIG. 6, the hydrocarbon feed concentration is 1
At 000 ppmc, the NOx purification rates were higher in the order of e, d, and f, and the hydrocarbon purification rates were all 90% or more. Here, the reason why the NOx purification rates of d and f are low is that the selective reduction of NOx is low because the upstream side of the catalyst is at a high temperature, and that f is high at the upstream side of the catalyst despite the low temperature of the downstream side of the catalyst. This is because the reaction of hydrocarbons is promoted and only a small amount of hydrocarbons is supplied to the downstream side of the catalyst.

【0025】一方、炭化水素供給濃度が3000ppm
cの時は、e、d、fの順でNOx浄化率が高い。図4
では、bは炭化水素浄化率が低下(炭化水素反応量が低
下)して、NOx浄化率が低下したが、図6では、触媒
温度が全体的に上昇しているので、炭化水素反応量の大
きな低下がないためである。
On the other hand, when the hydrocarbon feed concentration is 3000 ppm
At the time of c, the NOx purification rate is higher in the order of e, d, and f. FIG.
In FIG. 6, b indicates that the hydrocarbon purification rate has decreased (the hydrocarbon reaction amount has decreased) and the NOx purification rate has decreased. However, in FIG. 6, since the catalyst temperature has increased as a whole, in FIG. This is because there is no significant decrease.

【0026】また、炭化水素供給濃度が5000ppm
cの時は、d、e、fの順でNOx浄化率が高い。図4
では、bは供給した炭化水素(軽油)が触媒表面上を覆
う、いわゆる触媒の低温被毒が発生し、触媒反応が阻害
されてNOxが還元浄化できなくなるため、NOx浄化
率が大幅に低下したが、図6では、触媒温度が全体的に
上昇しているので、NOx浄化率の低下はない。fの浄
化率がdより高くなったのは、高温の触媒上流側で大量
の炭化水素が反応し、その反応熱で温度上昇した排ガス
が触媒下流に流れるが、fの方がdより触媒下流の温度
が低いため、NOxの選択還元性が高いからである。
The hydrocarbon supply concentration is 5000 ppm
At the time of c, the NOx purification rate is higher in the order of d, e, and f. FIG.
In b, the supplied hydrocarbon (light oil) covers the surface of the catalyst, so-called low-temperature poisoning of the catalyst occurs, and the catalytic reaction is inhibited, so that NOx cannot be reduced and purified. However, in FIG. 6, since the catalyst temperature has risen as a whole, there is no decrease in the NOx purification rate. The reason why the purification rate of f became higher than d was that a large amount of hydrocarbons reacted on the upstream side of the high-temperature catalyst, and the exhaust gas whose temperature increased due to the reaction heat flowed downstream of the catalyst. Is low, so that the selective reduction of NOx is high.

【0027】以上の評価試験から見て、触媒に温度分布
がある場合は、触媒内の1点の温度を触媒全体の代表温
度として触媒全体のNOx浄化性能を推定すると、炭化
水素供給量に過不足が生じる。従って、触媒の複数位置
の温度から触媒全体のNOx浄化性能を推定する必要が
ある。更に、触媒上流側の触媒活性状態、特に、触媒上
流側のNOx浄化特性が触媒全体のNOx浄化特性に影
響を及ぼす寄与度が大きいため、触媒の複数位置でのN
Oxの浄化能力から炭化水素供給量を算出する場合は、
触媒上流側の位置でのNOxの浄化能力の寄与度を大き
くするよう重み付けを行い、複数位置でのNOxの浄化
能力から炭化水素供給量を算出すれば、様々な運転条
件、様々な触媒の温度分布に対して炭化水素供給量を精
度良く算出できることが判明した。
In view of the above evaluation test, if the catalyst has a temperature distribution, the NOx purification performance of the entire catalyst is estimated using the temperature at one point in the catalyst as the representative temperature of the entire catalyst. Shortage occurs. Therefore, it is necessary to estimate the NOx purification performance of the entire catalyst from the temperatures at a plurality of positions of the catalyst. Furthermore, since the catalyst activation state on the upstream side of the catalyst, in particular, the NOx purification characteristic on the upstream side of the catalyst greatly contributes to the NOx purification characteristic of the entire catalyst, N
When calculating the amount of hydrocarbon supply from the purification capacity of Ox,
Weighting is performed so as to increase the contribution of the NOx purification ability at the upstream position of the catalyst, and the hydrocarbon supply amount is calculated from the NOx purification ability at a plurality of positions. It has been found that the amount of hydrocarbon feed can be accurately calculated for the distribution.

【0028】このような炭化水素供給量の算出は、制御
回路26によって図7の炭化水素供給量演算ルーチンに
従って行われる。本ルーチンは、所定時間毎または所定
クランク角度毎に起動される。本ルーチンが起動される
と、まず、ステップ101で排ガス温度センサ14,1
5,16とアクセルセンサ27とエンジン回転数センサ
28から出力される信号を読み込む。そして、次のステ
ップ102で、アクセルセンサ27とエンジン回転数セ
ンサ28の出力信号、すなわちアクセル開度とエンジン
回転数に基づいて、マップ(図示せず)等からディーゼ
ルエンジン11からのNOx排出量を算出する。
The calculation of the hydrocarbon supply amount is performed by the control circuit 26 in accordance with the hydrocarbon supply amount calculation routine shown in FIG. This routine is started every predetermined time or every predetermined crank angle. When this routine is started, first, in step 101, the exhaust gas temperature sensors 14, 1
5 and 16, the accelerator sensor 27, and the signal output from the engine speed sensor 28 are read. Then, in the next step 102, based on the output signals of the accelerator sensor 27 and the engine speed sensor 28, that is, the accelerator opening and the engine speed, the NOx emission amount from the diesel engine 11 is determined from a map (not shown) or the like. calculate.

【0029】この後、ステップ103で、排ガス温度セ
ンサ14,15,16の出力信号から触媒13の上流側
温度TAと中央温度TBと下流側温度TCを検出する。
次のステップ104で、図8に示す基準NOx排出量時
(例えば10グラム/時間)の炭化水素供給量マップか
ら、触媒上流側温度TAに相当する炭化水素供給量H
A、触媒中央温度TBに相当する炭化水素供給量HB、
触媒下流側温度TCに相当する炭化水素供給量HCを算
出する。このようにして求めたHA、HB、HCが触媒
13の各位置のNOxの還元浄化能力を表す指標とな
る。ここで、図8に示す基準NOx排出量時の炭化水素
供給量マップは、触媒温度に対するNOx浄化特性が考
慮され、NOx浄化率が高い温度では炭化水素供給量を
大きく設定し、NOx浄化率が低い温度では炭化水素供
給量を小さく設定されている。
Thereafter, in step 103, the upstream temperature TA, the center temperature TB, and the downstream temperature TC of the catalyst 13 are detected from the output signals of the exhaust gas temperature sensors 14, 15, and 16.
In the next step 104, the hydrocarbon supply amount H corresponding to the catalyst upstream side temperature TA is obtained from the hydrocarbon supply amount map at the time of the reference NOx emission amount (for example, 10 grams / hour) shown in FIG.
A, hydrocarbon supply amount HB corresponding to catalyst center temperature TB,
A hydrocarbon supply amount HC corresponding to the catalyst downstream temperature TC is calculated. The HA, HB, and HC obtained in this manner serve as indices indicating the NOx reduction and purification ability at each position of the catalyst 13. Here, the hydrocarbon supply amount map at the time of the reference NOx emission amount shown in FIG. 8 takes into consideration the NOx purification characteristics with respect to the catalyst temperature, and when the NOx purification ratio is high, the hydrocarbon supply amount is set to be large, and the NOx purification ratio is reduced. At low temperatures, the hydrocarbon feed rate is set small.

【0030】そして、次のステップ105では、前記ス
テップ102で求めたNOx排出量とステップ104で
求めた炭化水素供給量HA、HB、HCから次のように
して最終炭化水素供給量HCTOTALを算出する。ま
ず、触媒上流側に相当する炭化水素供給量HAに重み係
数k1を乗じ、触媒中央に相当する炭化水素供給量HB
に重み係数k2を乗じ、触媒下流に相当する炭化水素供
給量HCに重み係数k3を乗じて合計する(k1×HA
+k2×HB+k3×HC)。この合計値が触媒13全
体のNOxの還元浄化能力を表す指標となる。ここで、
例えば、k1=0.5、k2=0.33、k3=0.1
7(但し、k1+k2+k3=1)というように触媒上
流側の重み係数ほど大きくする(k1>k2>k3)。
この理由は、前述したように、触媒上流側ほどのNOx
浄化能力の寄与度が大きいためである。
Then, in the next step 105, the final hydrocarbon supply amount HCTOTAL is calculated from the NOx emission amount obtained in step 102 and the hydrocarbon supply amounts HA, HB, HC obtained in step 104 as follows. . First, a hydrocarbon supply amount HA corresponding to the catalyst upstream is multiplied by a weight coefficient k1 to obtain a hydrocarbon supply amount HB corresponding to the center of the catalyst.
Is multiplied by a weighting factor k2, and the hydrocarbon supply amount HC corresponding to the downstream of the catalyst is multiplied by a weighting factor k3 to obtain a total (k1 × HA).
+ K2 x HB + k3 x HC). This total value is an index indicating the NOx reduction and purification ability of the entire catalyst 13. here,
For example, k1 = 0.5, k2 = 0.33, k3 = 0.1
7 (where k1 + k2 + k3 = 1), the larger the weight coefficient on the upstream side of the catalyst (k1>k2> k3).
The reason for this is that, as described above, NOx
This is because the contribution of the purification ability is large.

【0031】このようにして重み係数を乗じて加算した
値(k1×HA+k2×HB+k3×HC)に、ステッ
プ102で求めたNOx排出量と基準NOx排出量との
比を乗ずる。これは、基準NOx排出量よりもNOx排
出量が大きい時は、その比率に応じて最終炭化水素供給
量を増量補正し、基準NOx排出量よりもNOx排出量
が小さい時は、その比率に応じて最終炭化水素供給量を
減量補正するためである。
The value (k1.times.HA + k2.times.HB + k3.times.HC) obtained by multiplying by the weight coefficient in this manner is multiplied by the ratio of the NOx emission amount obtained in step 102 to the reference NOx emission amount. This is because when the NOx emission amount is larger than the reference NOx emission amount, the final hydrocarbon supply amount is increased and corrected according to the ratio, and when the NOx emission amount is smaller than the reference NOx emission amount, the final hydrocarbon supply amount is adjusted according to the ratio. This is to correct the final hydrocarbon supply amount by weight reduction.

【0032】以上のようにして、ステップ105で算出
された最終炭化水素供給量HCTOTALに基づいて制
御回路26によって炭化水素供給装置17を制御し、触
媒13に適量の炭化水素を供給する。これにより、様々
な運転条件下で、様々な温度分布、活性状態で使用され
る触媒13に対して、常に適正量の炭化水素を供給する
ことができる。
As described above, the control circuit 26 controls the hydrocarbon supply device 17 based on the final hydrocarbon supply amount HCTOTAL calculated in step 105, and supplies an appropriate amount of hydrocarbon to the catalyst 13. Thereby, it is possible to always supply an appropriate amount of hydrocarbon to the catalyst 13 used under various operating conditions and various temperature distributions.

【0033】次に、触媒13に温度分布が生じる車両の
加速、減速時に本制御を適用した場合の制御例を図9の
タイムチャートを用いて説明する。車両がアイドル運転
(車速ゼロ)から加速を始めると、触媒上流側温度TA
はすぐに昇温するが、触媒中央温度TBは触媒13の熱
容量によりゆっくりと昇温し、触媒下流側温度TCは更
にゆっくりとしか昇温しないため、触媒13は上流側が
下流側よりも高温になる。図8に示す基準NOx排出量
時の炭化水素供給量マップにより算出した、各時刻のT
A、TB、TCに対応する炭化水素供給量HA、HB、
HCは、加速の前半でHAがピーク値をとり、加速の中
頃でHBがピーク値をとり、加速の後半でHCがピーク
値をとる。最終炭化水素供給量は、HA、HB、HCに
触媒上流側ほど大きな重み係数を乗じて求められるた
め、HAがピーク値をとる加速の前半では、最終炭化水
素供給量が大きな値となる。HBがピーク値をとる加速
の中頃では、HAがやや減少するため最終炭化水素供給
量も減少する。HCがピーク値をとる加速の後半では、
HAが更に減少するため最終炭化水素供給量も更に減少
する。
Next, a control example in which the present control is applied during acceleration and deceleration of a vehicle in which a temperature distribution occurs in the catalyst 13 will be described with reference to a time chart of FIG. When the vehicle starts accelerating from idle operation (vehicle speed is zero), the catalyst upstream side temperature TA
Immediately rises, but the catalyst center temperature TB rises slowly due to the heat capacity of the catalyst 13 and the catalyst downstream temperature TC rises more slowly, so that the catalyst 13 has a higher temperature on the upstream side than on the downstream side. Become. The T at each time calculated using the hydrocarbon supply amount map at the time of the reference NOx emission amount shown in FIG.
A, TB, TC, the hydrocarbon supply amounts HA, HB,
As for HC, HA takes a peak value in the first half of acceleration, HB takes a peak value in the middle of acceleration, and HC takes a peak value in the latter half of acceleration. Since the final hydrocarbon supply amount is obtained by multiplying HA, HB, and HC by a larger weighting factor toward the upstream side of the catalyst, the final hydrocarbon supply amount becomes large in the first half of the acceleration at which HA takes a peak value. In the middle of the acceleration where HB has a peak value, the final hydrocarbon feed rate also decreases due to a slight decrease in HA. In the latter half of the acceleration where HC takes a peak value,
As the HA is further reduced, the final hydrocarbon feed is further reduced.

【0034】車両が定速走行から減速を始めると、触媒
上流側温度TAはすぐに降温するが、触媒中央温度TB
は触媒13の熱容量によりゆっくりと降温し、触媒下流
側温度TCは更にゆっくりとしか降温しないため、触媒
13は上流側が下流側より低温になる。図8に示す基準
NOx排出量時の炭化水素供給量マップより算出した、
各時刻のTA、TB、TCに対応する炭化水素供給量H
A、HB、HCは、減速の前半でHAがピーク値をと
り、減速の中頃でHBがピーク値をとり、減速の後半で
HCがピーク値をとる。最終炭化水素供給量は、HA、
HB、HCに触媒上流側ほど大きな重み係数を乗じて求
められるため、HAがピーク値をとる減速の前半では、
最終炭化水素供給量が大きな値となる。HBがピーク値
をとる減速の中頃では、HAがやや減少するため最終炭
化水素供給量も減少する。HCがピーク値をとる減速の
後半では、HAはほぼゼロであるため最終炭化水素供給
量も更に減少する。
When the vehicle starts to decelerate from constant speed running, the catalyst upstream side temperature TA immediately drops, but the catalyst center temperature TB
The temperature of the catalyst 13 gradually decreases due to the heat capacity of the catalyst 13, and the temperature TC on the downstream side of the catalyst only lowers more slowly. Therefore, the catalyst 13 has a lower temperature on the upstream side than on the downstream side. Calculated from the hydrocarbon supply amount map at the time of the reference NOx emission amount shown in FIG. 8,
Hydrocarbon supply amount H corresponding to TA, TB, TC at each time
As for A, HB, and HC, HA takes a peak value in the first half of deceleration, HB takes a peak value in the middle of deceleration, and HC takes a peak value in the second half of deceleration. The final hydrocarbon feed is HA,
Since HB and HC are obtained by multiplying HB and HC by a larger weight coefficient toward the upstream side of the catalyst, in the first half of deceleration at which HA takes a peak value,
The final hydrocarbon feed rate has a large value. In the middle of the deceleration in which HB has a peak value, the final hydrocarbon supply amount also decreases because HA slightly decreases. In the latter half of the deceleration in which HC takes a peak value, the final hydrocarbon supply amount further decreases because HA is almost zero.

【0035】このように、触媒13の各位置の温度T
A、TB、TCに対応する炭化水素供給量HA、HB、
HCに触媒上流側ほど大きな重み係数を乗じて、最終炭
化水素供給量を求めることで、様々な運転条件下で、様
々な温度分布、活性状態で使用される触媒13に対し
て、常に適正量の炭化水素を供給することができ、NO
xの浄化率を向上させることができると共に、未反応の
まま排出される炭化水素を低減して燃費を向上すること
ができる。
As described above, the temperature T at each position of the catalyst 13
A, TB, TC, the hydrocarbon supply amounts HA, HB,
By calculating the final hydrocarbon supply amount by multiplying the HC by a larger weighting factor on the upstream side of the catalyst, an appropriate amount is always obtained for the catalyst 13 used in various operating conditions and various temperature distributions under various operating conditions. Can be supplied, NO
The purification rate of x can be improved, and the hydrocarbons discharged unreacted can be reduced to improve fuel efficiency.

【0036】[実施形態(2)]図7の炭化水素供給量
演算ルーチンでは、ステップ104で図8に示す基準N
Ox排出量時の炭化水素供給量マップより炭化水素供給
量HA、HB、HCを求め、ステップ105で重み係数
を乗じて加算して最終炭化水素供給量を求めるようにし
ているが、図10に示す実施形態(2)では、予め炭化
水素供給量に重み係数を乗じて設定された触媒上流側、
触媒中央、触媒下流側の炭化水素供給量マップからH
A、HB、HCを求め、次式により最終炭化水素供給量
を求める。 最終炭化水素供給量=(HA+HB+HC)×(NOx
排出量/基準NOx排出量) このようにしても、前記実施形態(1)と同じ効果を得
ることができる。
[Embodiment (2)] In the hydrocarbon supply amount calculation routine shown in FIG. 7, the reference N shown in FIG.
The hydrocarbon supply amounts HA, HB, and HC are obtained from the hydrocarbon supply amount map at the time of the Ox emission amount, and the final hydrocarbon supply amount is obtained by multiplying by a weighting coefficient in step 105 and adding them. In the illustrated embodiment (2), the catalyst upstream side is set in advance by multiplying the hydrocarbon supply amount by a weight coefficient,
From the hydrocarbon supply map at the center of the catalyst and downstream of the catalyst, H
A, HB, and HC are determined, and the final hydrocarbon supply amount is determined by the following equation. Final hydrocarbon supply amount = (HA + HB + HC) x (NOx
(Emission amount / reference NOx emission amount) Even in this case, the same effect as in the first embodiment can be obtained.

【0037】[実施形態(3)]上記実施形態(1),
(2)では、触媒13の各位置のNOxの還元浄化能力
を炭化水素供給量で表して演算したが、図11及び図1
2に示す実施形態(3)では、触媒13の各位置のNO
xの還元浄化能力を触媒温度TA、TB、TCで表して
演算し、上流側の位置の触媒温度の寄与度を大きくする
ように重み付けを行って触媒13全体を代表する温度
(以下「触媒代表温度」という)を推定し、この触媒代
表温度とエンジン運転状態とに基づいて最終炭化水素供
給量を算出する。
[Embodiment (3)] The embodiment (1),
In (2), the NOx reduction / purification capacity at each position of the catalyst 13 was calculated and represented by the hydrocarbon supply amount.
In the embodiment (3) shown in FIG. 2, NO at each position of the catalyst 13
The reduction purification capability of x is expressed by the catalyst temperatures TA, TB, and TC, and weighted so as to increase the contribution of the catalyst temperature at the upstream position, and the temperature representing the entire catalyst 13 (hereinafter referred to as “catalyst representative”). The temperature is referred to as “temperature,” and the final hydrocarbon supply amount is calculated based on the catalyst representative temperature and the engine operating state.

【0038】このような最終炭化水素供給量の算出は、
図11の炭化水素供給量演算ルーチンに従って行われ
る。本ルーチンのステップ201からステップ203ま
での処理は実施形態(1)と同じであり、これらの処理
によって、アクセル開度とエンジン回転数に基づいてデ
ィーゼルエンジン11からのNOx排出量を算出すると
共に、触媒13の上流側温度TAと中央温度TBと下流
側温度TCを検出する。そして、次のステップ204
で、触媒13の各位置の温度TA、TB、TCから触媒
代表温度を次のようにして算出する。
The calculation of the final hydrocarbon supply amount is as follows.
This is performed according to the hydrocarbon supply amount calculation routine of FIG. The processing from step 201 to step 203 of this routine is the same as that of the embodiment (1). With these processing, the NOx emission amount from the diesel engine 11 is calculated based on the accelerator opening and the engine speed. The upstream temperature TA, the center temperature TB, and the downstream temperature TC of the catalyst 13 are detected. Then, the next step 204
Then, the representative catalyst temperature is calculated from the temperatures TA, TB, TC at the respective positions of the catalyst 13 as follows.

【0039】まず、触媒上流側温度TAに重み係数k1
を乗じ、触媒中央温度TBに重み係数k2を乗じ、触媒
下流温度軽油供給量TCに重み係数k3を乗じ、これら
を合計して触媒代表温度を算出する。 触媒代表温度=k1×TA+k2×TB+k3×TC ここで、例えばk1=0.5、k2=0.33、k3=
0.17(但し、k1+k2+k3=1)というように
触媒上流側の重み係数ほど大きく設定する。この触媒代
表温度が触媒13全体のNOxの還元浄化能力を表す指
標となる。
First, the weight coefficient k1 is added to the catalyst upstream temperature TA.
, The catalyst center temperature TB is multiplied by a weight coefficient k2, the catalyst downstream temperature light oil supply amount TC is multiplied by a weight coefficient k3, and these are summed to calculate a catalyst representative temperature. Catalyst representative temperature = k1 × TA + k2 × TB + k3 × TC Here, for example, k1 = 0.5, k2 = 0.33, k3 =
The weighting factor is set to be larger for the catalyst upstream side such as 0.17 (however, k1 + k2 + k3 = 1). The representative catalyst temperature serves as an index indicating the NOx reduction and purification ability of the entire catalyst 13.

【0040】そして、次のステップ205では、図8に
示す基準NOx排出量時の炭化水素供給量マップから、
触媒代表温度に相当する炭化水素供給量HCo算出す
る。この後、ステップ206で、炭化水素供給量HCo
にステップ202で求めたNOx排出量と基準NOx排
出量の比を乗じて最終炭化水素供給量HCTOTALを
算出する。 HCTOTAL=HCo×(NOx排出量/基準NOx
排出量)
Then, in the next step 205, the hydrocarbon supply amount map at the time of the reference NOx emission amount shown in FIG.
A hydrocarbon supply amount HCo corresponding to the catalyst representative temperature is calculated. Thereafter, at step 206, the hydrocarbon supply amount HCo
Is multiplied by the ratio of the NOx emission amount obtained in step 202 to the reference NOx emission amount to calculate the final hydrocarbon supply amount HCTOTAL. HCTOTAL = HCo × (NOx emission amount / reference NOx
Emissions)

【0041】次に、触媒13に温度分布が生じる車両の
加速、減速時に本実施形態(3)の制御を適用した場合
の制御例を図12のタイムチャートを用いて説明する。
車両がアイドル運転(車速ゼロ)から加速を始めると、
触媒上流側温度TAはすぐに昇温するが、触媒中央温度
TBは触媒の熱容量によりゆっくりと昇温し、触媒下流
側温度TCは更にゆっくりとしか昇温しないため、触媒
13は上流側が下流側より高温になる。触媒代表温度
は、比較的速やかに昇温し、最終炭化水素供給量も速や
かに増加していく。
Next, an example of control when the control of this embodiment (3) is applied during acceleration and deceleration of a vehicle in which a temperature distribution occurs in the catalyst 13 will be described with reference to a time chart of FIG.
When the vehicle starts accelerating from idling (zero speed),
The catalyst upstream temperature TA immediately rises, but the catalyst center temperature TB rises slowly due to the heat capacity of the catalyst, and the catalyst downstream temperature TC rises only more slowly. It gets hotter. The catalyst representative temperature rises relatively quickly, and the final hydrocarbon feed rate also increases rapidly.

【0042】車両が定速走行から減速を始めると、触媒
上流側温度TAはすぐに降温するが、触媒中央温度TB
は触媒13の熱容量によりゆっくりと降温し、触媒下流
側温度TCは更にゆっくりとしか降温しないため、触媒
13は上流側が下流側より低温になる。触媒上流側温度
TAが低温になっても、触媒中央温度TBや触媒下流側
温度TCはまだ温度が高いため、触媒代表温度は、触媒
上流側温度TAよりもゆっくりと降温し、最終炭化水素
供給量もゆっくりと減少していく。
When the vehicle starts to decelerate from constant speed running, the catalyst upstream side temperature TA immediately drops, but the catalyst center temperature TB
The temperature of the catalyst 13 gradually decreases due to the heat capacity of the catalyst 13, and the temperature TC on the downstream side of the catalyst only lowers more slowly. Therefore, the catalyst 13 has a lower temperature on the upstream side than on the downstream side. Even if the catalyst upstream-side temperature TA becomes low, the catalyst center temperature TB and the catalyst downstream-side temperature TC are still high, so that the catalyst representative temperature drops more slowly than the catalyst upstream-side temperature TA, and the final hydrocarbon supply The amount also decreases slowly.

【0043】以上説明した実施形態(3)によれば、上
流側位置での触媒温度の寄与度を大きくするよう重み付
けを行うことで触媒代表温度を算出する。これにより、
単に熱エネルギ的な平均触媒温度ではなく、触媒13全
体のNOx浄化特性を代表する温度を算出することがで
き、この触媒代表温度とエンジン運転状態から最終炭化
水素供給量を決定することで、前記実施形態(1),
(2)の場合と同じく、様々な運転条件下で、様々な温
度分布、活性状態で使用される触媒13に対して、常に
適正量の炭化水素を供給することができ、NOxの浄化
率を向上させることができると共に、未反応のまま排出
される炭化水素を低減して燃費を向上することができ
る。
According to the embodiment (3) described above, the representative catalyst temperature is calculated by performing weighting so as to increase the contribution of the catalyst temperature at the upstream position. This allows
The temperature representative of the NOx purification characteristics of the entire catalyst 13 can be calculated, not simply the average catalyst temperature in terms of thermal energy. By determining the final hydrocarbon supply amount from the catalyst representative temperature and the engine operating state, Embodiment (1),
As in the case of (2), an appropriate amount of hydrocarbons can always be supplied to the catalyst 13 used under various operating conditions and various temperature distributions under various operating conditions, and the NOx purification rate can be improved. The fuel efficiency can be improved by reducing the hydrocarbons discharged without being reacted while improving the fuel efficiency.

【0044】[実施形態(4)]上記各実施形態(1)
〜(3)は、触媒温度分布に応じて炭化水素供給量を適
正化したものであるが、図13及び図14に示す実施形
態(4)は、加速時のEGR制御(排ガス還流制御)の
遅れによるNOx排出量の増加に応じて炭化水素供給量
を適正化したものである。
[Embodiment (4)] Each of the above embodiments (1)
13 to 14 show the case where the hydrocarbon supply amount is optimized in accordance with the catalyst temperature distribution. The embodiment (4) shown in FIGS. 13 and 14 employs the EGR control (exhaust gas recirculation control) during acceleration. The amount of hydrocarbon supply is optimized in accordance with the increase in NOx emission due to the delay.

【0045】まず、図15を用いてエンジン過渡運転時
のECR制御について説明する。車両がアイドル運転
(車速ゼロ)から加速を始めると、定常運転状態から求
まる目標EGR率に対して、実際のEGR率は低くなる
ため、NOx排出濃度は目標の濃度よりも実際の濃度が
高い値になる。このように、加速時に目標EGR率より
実際のEGR率が低くなる原因は、図1に示したEGR
装置30の制御バルブ25とEGRバルブ24の作動応
答遅れや、EGR配管23を通過するEGRガスの流れ
の遅れとEGR制御安定性を保つための制御面での遅れ
によるものと考えられる。一方、減速時には実際のEG
R率はやや遅れるもののほぼ目標EGR率であるゼロに
制御されている。これは、ECRバルブ24を遮断する
応答遅れだけであるためと考えられる。従って、減速時
にはEGR制御の遅れによるNOx排出量増加はほとん
どなく、加速時のEGR制御の遅れによるNOx排出量
増加が問題になる。
First, ECR control during transient engine operation will be described with reference to FIG. When the vehicle starts accelerating from idle operation (vehicle speed is zero), the actual EGR rate becomes lower than the target EGR rate obtained from the steady operation state, so that the NOx emission concentration is a value that is higher than the target concentration. become. As described above, the cause of the actual EGR rate being lower than the target EGR rate during acceleration is the EGR rate shown in FIG.
This is considered to be due to a delay in the operation response of the control valve 25 and the EGR valve 24 of the device 30, a delay in the flow of the EGR gas passing through the EGR pipe 23, and a delay in control for maintaining the stability of the EGR control. On the other hand, during deceleration, the actual EG
Although the R rate is slightly delayed, it is controlled to be almost the target EGR rate of zero. This is considered to be due to only a response delay for shutting off the ECR valve 24. Therefore, there is almost no increase in NOx emission due to delay in EGR control during deceleration, and there is a problem in that increase in NOx emission due to delay in EGR control during acceleration.

【0046】そこで、実施形態(4)では、図13に示
す炭化水素供給量演算ルーチンによって、加速時に炭化
水素供給量を増量補正するものであり、更に、増量補正
の精度を向上させるために、加速開始時には増量割合を
大きくし、加速開始から時間が経過するに従って増量割
合を減少させるように補正する。これは、加速開始から
時間が経過するに従って、EGR制御の遅れが少なくな
って、実際のNOx排出濃度が低下することを考慮した
ものである。
Therefore, in the embodiment (4), the hydrocarbon supply amount is increased and corrected during acceleration by the hydrocarbon supply amount calculation routine shown in FIG. 13. In order to further improve the accuracy of the increase correction, At the start of acceleration, the increase rate is increased, and correction is made so that the increase rate decreases as time elapses from the start of acceleration. This takes into account that as the time elapses from the start of acceleration, the delay of the EGR control decreases, and the actual NOx emission concentration decreases.

【0047】以下、この増量補正を行う図13の炭化水
素供給量演算ルーチンの処理内容を説明する。本ルーチ
ンも、所定時間毎または所定クランク角度毎に起動され
る。本ルーチンが起動されると、まずステップ300
で、図7又は図11のルーチンを実行し、触媒13の複
数位置のNOxの還元浄化能力を推定し、上流側位置の
NOxの還元浄化能力の寄与度を大きくするように重み
付けを行って触媒13全体のNOxの還元浄化能力を推
定し、その推定値から触媒13に供給すべき炭化水素供
給量(最終炭化水素供給量HCTOTAL)を算出す
る。尚、前記実施形態(2)の方法によって最終炭化水
素供給量を算出しても良い。
The details of the hydrocarbon supply amount calculation routine of FIG. 13 for performing the increase correction will be described below. This routine is also started every predetermined time or every predetermined crank angle. When this routine is started, first, at step 300
Then, the routine of FIG. 7 or FIG. 11 is executed to estimate the NOx reduction / purification ability at a plurality of positions of the catalyst 13 and to weight the catalyst 13 so as to increase the contribution of the NOx reduction / purification ability at the upstream position. The NOx reduction / purification capacity of the entire 13 is estimated, and a hydrocarbon supply amount (final hydrocarbon supply amount HCTOTAL) to be supplied to the catalyst 13 is calculated from the estimated value. Note that the final hydrocarbon supply amount may be calculated by the method of the embodiment (2).

【0048】そして、次のステップ301では、エンジ
ン回転数センサ28の信号の変化率から回転数上昇率W
を算出し、続くステップ302で、加速状態にあるか否
かを判定するために回転数上昇率Wを所定の回転数上昇
率Wo と比較し、W≦Wo であれば、加速状態でないと
判断し、以降の処理を行うことなく、本ルーチンを終了
する。もし、ステップ302で、W>Wo であれば、加
速状態にあると判断してステップ303に進み、後述す
る増量補正時間計測用のタイマーが作動中か否かを判定
し、作動中ならば、ステップ305に進み、作動中でな
ければ、ステップ304でW1 =Wとした上で、ステッ
プ305に進む。
In the next step 301, the rotational speed increase rate W is calculated based on the change rate of the signal of the engine rotational speed sensor 28.
In the next step 302, the rotational speed increase rate W is compared with a predetermined rotational speed increase rate Wo in order to determine whether or not the vehicle is in an acceleration state. If W ≦ Wo, it is determined that the vehicle is not in an acceleration state. Then, this routine ends without performing the subsequent processing. If it is determined in step 302 that W> Wo, it is determined that the vehicle is accelerating, and the process proceeds to step 303. In step 302, it is determined whether a timer for measuring an increase correction time described later is operating. In step 305, if not in operation, W1 = W is set in step 304, and then the process proceeds to step 305.

【0049】このステップ305では、加速開始による
炭化水素供給量の増量補正開始後に、より急な加速が行
われているか否かを判定するため、回転数上昇率WをW
1 と比較し、W≦W1 ならば、より急な加速が行われて
いないと判断してステップ306に進み、増量補正時間
計測用のタイマーをスタートしまたは既にタイマーがス
タートしていれば、その計時動作を継続し、ステップ3
09に進む。もし、ステップ305で、W>W1 なら
ば、より急な加速が行われていると判定して、ステップ
307でW1 =Wとセットした上で、ステップ308で
タイマーをリセットし、再スタートさせてステップ30
9に進む。これにより、増量補正開始後に、より急な加
速が行われた場合には、その加速が開始された時点から
増量補正時間を計測する。
In this step 305, after the start of the increase correction of the hydrocarbon supply amount due to the start of acceleration, the rotation speed increase rate W is set to W to determine whether or not a more rapid acceleration is being performed.
Compared to 1, if W ≦ W1, it is determined that no more rapid acceleration has been performed, and the process proceeds to step 306, where a timer for measuring the increase correction time is started, or if the timer has already been started, Continue the timing operation, and go to Step 3.
Go to 09. If W> W1 in step 305, it is determined that a more rapid acceleration is being performed. In step 307, W1 = W is set, and in step 308, the timer is reset and restarted. Step 30
Go to 9. Accordingly, when a more rapid acceleration is performed after the start of the increase correction, the increase correction time is measured from the time when the acceleration is started.

【0050】上記ステップ309では、加速時の増量補
正が必要な時間を経過したか否かを判定するため、増量
補正時間計測用のタイマーが所定時間を経過したか否か
を判定し、所定時間を経過していれば、最終炭化水素供
給量の増量補正は不要と判断してステップ310に進
み、増量補正時間計測用のタイマーをストップして本ル
ーチンを終了する。
In step 309, in order to determine whether or not the time required for the increase correction during acceleration has elapsed, it is determined whether or not a timer for measuring the increase correction time has elapsed a predetermined time. If the time has elapsed, it is determined that the increase correction of the final hydrocarbon supply amount is unnecessary, and the routine proceeds to step 310, where the timer for measuring the increase correction time is stopped, and this routine ends.

【0051】一方、ステップ309で、増量補正時間計
測用のタイマーが所定時間を経過していない場合(つま
りタイマー作動中の場合)には、ステップ311に進
み、前記ステップ300で求められた最終炭化水素供給
量HCTOTALに補正係数k5を乗じて、最終炭化水
素供給量HCTOTALを増量補正する。ここで、増量
補正係数k5は、例えば図14に示すように増量補正時
間が経過するに従って減少していき、約3秒後には1.
0(つまり補正なし)になる特性に設定されている。こ
の理由は、EGR制御の遅れは、加速開始直後が一番大
きく、その後減少していくからである。上記ステップ3
11で最終炭化水素供給量の補正を行った後は、本ルー
チンを終了する。
On the other hand, if it is determined in step 309 that the timer for measuring the increase correction time has not elapsed the predetermined time (that is, if the timer is in operation), the process proceeds to step 311 and the final carbonization calculated in step 300 is determined. By multiplying the hydrogen supply amount HCTOTAL by the correction coefficient k5, the final hydrocarbon supply amount HCTOTAL is increased and corrected. Here, the increase correction coefficient k5 decreases as the increase correction time elapses, for example, as shown in FIG.
The characteristic is set to 0 (that is, no correction). The reason for this is that the delay of the EGR control is greatest immediately after the start of acceleration, and then decreases. Step 3 above
After the correction of the final hydrocarbon supply amount is performed in step 11, this routine ends.

【0052】以上説明した実施形態(4)によれば、デ
ィーゼルエンジン11が低回転から高回転に加速される
運転状態では、触媒13への炭化水素供給量を増量側に
補正する。これにより、エンジン加速時にEGR制御の
遅れによりディーゼルエンジン11からのNOx排出濃
度が増加しても、触媒13でのNOx浄化性能を向上で
き、排出されるNOxを低減できる。しかも、加速開始
から時間が経過するに従って、炭化水素供給量の増量割
合を減少させるように補正するので、加速開始後の時間
経過によるNOxの排出濃度の低下に対応して炭化水素
供給量を適正に補正することができ、NOxの浄化率を
向上させながら、未反応のまま排出される炭化水素を低
減して燃費を向上することができる。
According to the embodiment (4) described above, the amount of hydrocarbon supply to the catalyst 13 is corrected to the increasing side in the operating state in which the diesel engine 11 is accelerated from low rotation to high rotation. As a result, even if the NOx emission concentration from the diesel engine 11 increases due to a delay in the EGR control during engine acceleration, the NOx purification performance of the catalyst 13 can be improved, and the emitted NOx can be reduced. In addition, the amount of increase in the amount of hydrocarbon supply is corrected so as to decrease as the time elapses from the start of acceleration, so that the amount of hydrocarbon supply is adjusted appropriately in response to the decrease in NOx emission concentration due to the elapse of time after the start of acceleration. Thus, while improving the NOx purification rate, it is possible to reduce the hydrocarbons discharged without being reacted and improve the fuel efficiency.

【0053】尚、図13の制御では、ステップ300
で、実施形態(1)〜(3)のいずれかの算出方法で触
媒温度分布に応じた炭化水素供給量を算出するようにし
たが、例えば、触媒13の入口温度または出口温度等、
いずれか1点の触媒温度に基づいて炭化水素供給量を算
出するようにしても良い。この場合でも、加速時に発生
するEGR制御の遅れによるNOx排出濃度の増加に対
して、炭化水素供給量の増量補正で有効に対処でき、加
速時に排出されるNOxを従来より低減することができ
る。
In the control shown in FIG.
Then, the hydrocarbon supply amount according to the catalyst temperature distribution is calculated by any one of the calculation methods of the embodiments (1) to (3).
The hydrocarbon supply amount may be calculated based on any one of the catalyst temperatures. Even in this case, it is possible to effectively cope with the increase in the NOx emission concentration due to the delay of the EGR control that occurs during acceleration by increasing the amount of supply of hydrocarbons, and to reduce the NOx that is emitted during acceleration compared to the conventional case.

【0054】[その他の実施形態]前記各実施形態で
は、触媒13の上流側と中央と下流側の3箇所で触媒温
度を検出するようにしたが、上流側と下流側の2箇所の
み、或は4箇所以上で触媒温度を検出するようにしても
良い。また、前記各実施形態では、アクセル開度とエン
ジン回転数に基づいて、ディーゼルエンジン11からの
NOx排出量を算出するようにしたが、アクセル開度と
エンジン回転数の他に、吸気量や吸気管圧力、燃料噴射
量等のエンジン運転状態パラメータを用いてNOx排出
量を算出するようにしても良い。また、前記各実施形態
では、触媒13に供給する炭化水素として燃料(軽油)
を用いたが、灯油等の液状の炭化水素や、プロパン等の
ガス状の炭化水素を用いるようにしても良い。
[Other Embodiments] In each of the above embodiments, the catalyst temperature is detected at three points on the upstream side, the center, and the downstream side of the catalyst 13. However, only two points on the upstream side and the downstream side are detected. May be used to detect the catalyst temperature at four or more locations. Further, in each of the above embodiments, the NOx emission from the diesel engine 11 is calculated based on the accelerator opening and the engine speed. The NOx emission amount may be calculated using engine operating state parameters such as pipe pressure and fuel injection amount. In each of the above embodiments, fuel (light oil) is used as the hydrocarbon supplied to the catalyst 13.
However, a liquid hydrocarbon such as kerosene or a gaseous hydrocarbon such as propane may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示す排ガス浄化シス
テム全体の構成図
FIG. 1 is a configuration diagram of an entire exhaust gas purification system showing an embodiment (1) of the present invention.

【図2】触媒温度と炭化水素浄化率及び窒素酸化物浄化
率との関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between a catalyst temperature and a hydrocarbon purification rate and a nitrogen oxide purification rate.

【図3】試験に用いた触媒a,b,cの温度分布を示す
FIG. 3 is a diagram showing a temperature distribution of catalysts a, b, and c used in the test.

【図4】試験に用いた触媒a,b,cについて、炭化水
素供給濃度とNOx浄化率との関係を測定したグラフ
FIG. 4 is a graph showing the relationship between the hydrocarbon supply concentration and the NOx purification rate for catalysts a, b, and c used in the test.

【図5】試験に用いた触媒d,e,fの温度分布を示す
FIG. 5 is a diagram showing a temperature distribution of catalysts d, e, and f used in the test.

【図6】試験に用いた触媒d,e,fについて、炭化水
素供給濃度とNOx浄化率との関係を測定したグラフ
FIG. 6 is a graph showing the relationship between the hydrocarbon supply concentration and the NOx purification rate for catalysts d, e, and f used in the test.

【図7】実施形態(1)の炭化水素供給量演算ルーチン
の処理の流れを示すフローチャート
FIG. 7 is a flowchart showing a processing flow of a hydrocarbon supply amount calculation routine according to the embodiment (1).

【図8】実施形態(1)の基準NOx排出量時の触媒温
度と炭化水素供給量との関係を規定するマップの概念図
FIG. 8 is a conceptual diagram of a map that defines a relationship between a catalyst temperature and a hydrocarbon supply amount at the time of a reference NOx emission amount according to the embodiment (1).

【図9】実施形態(1)の制御例を示すタイムチャートFIG. 9 is a time chart showing a control example of the embodiment (1).

【図10】実施形態(2)の基準NOx排出量時の触媒
温度と炭化水素供給量との関係を規定するマップの概念
FIG. 10 is a conceptual diagram of a map defining a relationship between a catalyst temperature and a hydrocarbon supply amount at the time of a reference NOx emission amount according to the embodiment (2).

【図11】実施形態(3)の炭化水素供給量演算ルーチ
ンの処理の流れを示すフローチャート
FIG. 11 is a flowchart showing a processing flow of a hydrocarbon supply amount calculation routine according to the embodiment (3).

【図12】実施形態(3)の制御例を示すタイムチャー
FIG. 12 is a time chart showing a control example of the embodiment (3).

【図13】実施形態(4)の炭化水素供給量演算ルーチ
ンの処理の流れを示すフローチャート
FIG. 13 is a flowchart showing the flow of a hydrocarbon supply amount calculation routine according to the embodiment (4).

【図14】増量補正係数k5の経時的変化を示す図FIG. 14 is a diagram showing a change over time of an increase correction coefficient k5.

【図15】エンジン過渡運転時のEGR制御の挙動を示
すタイムチャート
FIG. 15 is a time chart showing the behavior of EGR control during engine transient operation.

【符号の説明】[Explanation of symbols]

11…ディーゼルエンジン(内燃機関)、12…排気管
(排ガス通路)、13…触媒、14,15,16…排ガ
ス温度センサ(触媒温度判定手段)、17…炭化水素供
給装置(炭化水素供給手段)、18…燃料噴射ポンプ、
21…燃料噴射ノズル、22…吸気管、23…EGR配
管、24…EGRバルブ、25…制御バルブ、26…制
御回路(制御手段)、27…アクセルセンサ(運転状態
検出手段)、28…エンジン回転数センサ(運転状態検
出手段)、29…車速センサ(運転状態検出手段)、3
0…EGR装置(排ガス還流装置)。
11 ... Diesel engine (internal combustion engine), 12 ... Exhaust pipe (exhaust gas passage), 13 ... Catalyst, 14, 15, 16 ... Exhaust gas temperature sensor (catalyst temperature judgment means), 17 ... Hydrocarbon supply device (hydrocarbon supply means) , 18 ... fuel injection pump,
21 ... fuel injection nozzle, 22 ... intake pipe, 23 ... EGR pipe, 24 ... EGR valve, 25 ... control valve, 26 ... control circuit (control means), 27 ... accelerator sensor (operating state detecting means), 28 ... engine rotation Number sensor (driving state detecting means), 29 ... vehicle speed sensor (driving state detecting means), 3
0: EGR device (exhaust gas recirculation device)

フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 45/00 360 F02D 45/00 360C (72)発明者 窪島 司 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Continuation of the front page (51) Int.Cl. 6 Identification code FI F02D 45/00 360 F02D 45/00 360C (72) Inventor Tsukasa Kuboshima 1-1-1 Showa-cho, Kariya-shi, Aichi Prefecture Nippon Denso Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排ガス通路に配設され、排ガ
ス中の窒素酸化物を還元浄化する触媒と、 前記触媒の複数位置の温度を検出または推定する触媒温
度判定手段と、 前記内燃機関の運転状態を検出する運転状態検出手段
と、 前記触媒に対して窒素酸化物の還元剤として炭化水素を
供給する炭化水素供給手段と、 前記触媒温度判定手段と前記運転状態検出手段とから得
られる情報に基づいて前記触媒の複数位置の窒素酸化物
の還元浄化能力を推定し、上流側位置の窒素酸化物の還
元浄化能力の寄与度を大きくするように重み付けを行っ
て触媒全体の窒素酸化物の還元浄化能力を推定し、その
推定値から前記触媒に供給すべき炭化水素供給量を求め
て前記炭化水素供給手段を制御する制御手段とを備えて
いることを特徴とする内燃機関の排ガス浄化装置。
1. A catalyst disposed in an exhaust gas passage of an internal combustion engine for reducing and purifying nitrogen oxides in exhaust gas, catalyst temperature determining means for detecting or estimating temperatures at a plurality of positions of the catalyst, Operating state detecting means for detecting an operating state; hydrocarbon supplying means for supplying a hydrocarbon as a reducing agent for nitrogen oxides to the catalyst; information obtained from the catalyst temperature determining means and the operating state detecting means Estimating the reduction and purification capacity of the nitrogen oxides at a plurality of positions of the catalyst based on the above, weighting so as to increase the contribution of the reduction and purification capacity of the nitrogen oxides at the upstream side position, And control means for controlling the hydrocarbon supply means by estimating the reduction purification ability, obtaining the supply amount of hydrocarbons to be supplied to the catalyst from the estimated value, and controlling the hydrocarbon supply means. It is purified apparatus.
【請求項2】 前記制御手段は、前記触媒全体の窒素酸
化物の還元浄化能力を推定する際に、上流側位置の窒素
酸化物の還元浄化能力の寄与度を大きくするように重み
付けを行った複数位置の窒素酸化物の還元浄化能力を合
計して前記触媒全体の窒素酸化物の還元浄化能力を求め
ることを特徴とする請求項1に記載の内燃機関の排ガス
浄化装置。
2. The control means, when estimating the reduction and purification ability of nitrogen oxides of the entire catalyst, performs weighting so as to increase the contribution of the reduction and purification ability of nitrogen oxides at an upstream position. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the reducing and purifying ability of the nitrogen oxides at a plurality of positions is summed to obtain the reducing and purifying ability of the nitrogen oxides of the entire catalyst.
【請求項3】 前記制御手段は、前記窒素酸化物の還元
浄化能力を炭化水素供給量で表して演算することを特徴
とする請求項1または2に記載の内燃機関の排ガス浄化
装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the control means calculates the reduction and purification capacity of the nitrogen oxides by representing the amount of hydrocarbon supply.
【請求項4】 前記制御手段は、前記窒素酸化物の還元
浄化能力を触媒温度で表して演算し、上流側位置の触媒
温度の寄与度を大きくするように重み付けを行って前記
触媒全体を代表する温度(以下「触媒代表温度」とい
う)を推定し、この触媒代表温度と前記運転状態検出手
段の検出結果とに基づいて前記触媒に供給すべき炭化水
素供給量を求めることを特徴とする請求項1に記載の内
燃機関の排ガス浄化装置。
4. The control means calculates a reduction / purification ability of the nitrogen oxides by expressing the reduction / purification ability in terms of a catalyst temperature, and performs weighting so as to increase the contribution of the catalyst temperature at an upstream position to represent the entire catalyst. A catalyst supply temperature to be supplied to the catalyst based on the catalyst representative temperature and a detection result of the operating state detecting means. Item 2. An exhaust gas purifying apparatus for an internal combustion engine according to item 1.
【請求項5】 内燃機関の排ガスの一部を吸気系へ還流
させる排ガス還流装置と、 前記内燃機関の排ガス通路に配設され、排ガス中の窒素
酸化物を還元浄化する触媒と、 前記触媒に対して窒素酸化物の還元剤として炭化水素を
供給する炭化水素供給手段と、 前記内燃機関を加速運転する時に前記触媒への炭化水素
供給量を増量補正して前記炭化水素供給手段を制御する
制御手段とを備えていることを特徴とする内燃機関の排
ガス浄化装置。
5. An exhaust gas recirculation device for recirculating a part of exhaust gas from an internal combustion engine to an intake system, a catalyst disposed in an exhaust gas passage of the internal combustion engine, for reducing and purifying nitrogen oxides in the exhaust gas, A hydrocarbon supply unit for supplying hydrocarbons as a reducing agent for nitrogen oxides, and a control for controlling the hydrocarbon supply unit by increasing and correcting the hydrocarbon supply amount to the catalyst when the internal combustion engine is accelerated. And an exhaust gas purifying apparatus for an internal combustion engine.
【請求項6】 前記制御手段は、加速運転時に前記触媒
への炭化水素供給量を増量補正する際に、加速開始時に
は増量割合を大きくし、加速開始から時間が経過するに
従って増量割合を減少させるように補正することを特徴
とする請求項5に記載の内燃機関の排ガス浄化装置。
6. The control means increases the rate of increase at the start of acceleration and decreases the rate of increase as time elapses from the start of acceleration when correcting the amount of hydrocarbon supply to the catalyst during the acceleration operation. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the correction is performed in the following manner.
JP24529096A 1996-09-17 1996-09-17 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3787913B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24529096A JP3787913B2 (en) 1996-09-17 1996-09-17 Exhaust gas purification device for internal combustion engine
DE19739751A DE19739751B4 (en) 1996-09-17 1997-09-10 Exhaust gas purification device for an internal combustion engine
FR9711436A FR2753485B1 (en) 1996-09-17 1997-09-15 EXHAUST PURIFICATION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24529096A JP3787913B2 (en) 1996-09-17 1996-09-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1089051A true JPH1089051A (en) 1998-04-07
JP3787913B2 JP3787913B2 (en) 2006-06-21

Family

ID=17131473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24529096A Expired - Fee Related JP3787913B2 (en) 1996-09-17 1996-09-17 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP3787913B2 (en)
DE (1) DE19739751B4 (en)
FR (1) FR2753485B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327475A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Catalyst typical temperature acquiring device of internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835748A1 (en) * 1998-08-07 2000-02-10 Daimler Chrysler Ag Process for the simulated formation of a signal representing the current catalyst temperature
DE19836955A1 (en) * 1998-08-14 2000-03-09 Siemens Ag Method for detecting and maintaining the operational readiness of a NO¶x¶ storage catalytic converter
DE19907382A1 (en) * 1999-02-20 2000-08-24 Bayerische Motoren Werke Ag Engine catalyser temperture estimation method uses temperature model for calculating catalyst temperature in dependence on measured or calculated exhaust gas temperature
DE19952526A1 (en) * 1999-10-30 2001-05-10 Bosch Gmbh Robert Method for operating an internal combustion engine
JP2002195071A (en) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp Internal combustion engine control device
JP4428974B2 (en) 2003-09-11 2010-03-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2785471B2 (en) * 1990-08-10 1998-08-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US5201802A (en) * 1991-02-04 1993-04-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
JP2887933B2 (en) * 1991-03-13 1999-05-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE69326217T3 (en) * 1992-06-12 2009-11-12 Toyota Jidosha Kabushiki Kaisha, Toyota-shi EXHAUST EMISSION CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINES
DE4338883B4 (en) * 1992-11-24 2005-03-03 Volkswagen Ag Catalyst arrangement for reducing nitrogen oxides contained in oxygen-containing exhaust gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327475A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Catalyst typical temperature acquiring device of internal combustion engine

Also Published As

Publication number Publication date
JP3787913B2 (en) 2006-06-21
DE19739751B4 (en) 2007-10-18
FR2753485B1 (en) 2000-06-16
FR2753485A1 (en) 1998-03-20
DE19739751A1 (en) 1998-03-19

Similar Documents

Publication Publication Date Title
US6990800B2 (en) Diesel aftertreatment systems
JP4821905B2 (en) Air-fuel ratio control device for internal combustion engine
JP5552488B2 (en) Method for operating an exhaust gas purification device comprising an SCR catalytic converter and an exhaust gas purification component with oxidation catalytic action mounted upstream thereof
EP1866529B1 (en) Device for detecting state of thermal degradation of exhaust purifying catalyst
US6990854B2 (en) Active lean NOx catalyst diagnostics
EP1672195B1 (en) Catalytic converter degradation determining system
GB2402088A (en) Diesel aftertreatment systems
US10859018B1 (en) Exhaust gas purification system using three-way catalyst and method of controlling the same
US7275363B2 (en) Exhaust gas purifying apparatus and method for internal combustion engine
US20090000274A1 (en) Control oriented model for lnt regeneration
JPH09236569A (en) Function diagnosing device of exhaust gas purifying apparatus of internal combustion engine
US11125177B2 (en) System for controlling air-fuel ratio for flex fuel vehicle using oxygen storage amount of catalyst and method thereof
JP3787913B2 (en) Exhaust gas purification device for internal combustion engine
US8448504B2 (en) Exhaust catalyst temperature estimating apparatus and exhaust catalyst temperature estimation method for internal combustion engine
JP4341456B2 (en) Method and apparatus for determining deterioration of exhaust gas purification catalyst for internal combustion engine
JPH10259714A (en) Exhaust emission control device for internal combustion engine
JP3712314B2 (en) Hydrocarbon adsorption detector for exhaust gas purification catalyst
JP3750766B2 (en) Exhaust gas purification device for internal combustion engine
JP2003176714A (en) Function diagnosis device for exhaust emission control device in internal combustion engine
JP2010180735A (en) Catalyst deterioration diagnostic system
JP2007077997A (en) Air/fuel ratio control device for internal combustion engine
JPH09125938A (en) Engine control device
US11384674B2 (en) Reuse evaluation system for catalyst
JP4275046B2 (en) Engine control device
WO2023238361A1 (en) Control method and control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees