JPH0893458A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JPH0893458A
JPH0893458A JP7194269A JP19426995A JPH0893458A JP H0893458 A JPH0893458 A JP H0893458A JP 7194269 A JP7194269 A JP 7194269A JP 19426995 A JP19426995 A JP 19426995A JP H0893458 A JPH0893458 A JP H0893458A
Authority
JP
Japan
Prior art keywords
flow path
adsorption
exhaust
exhaust gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7194269A
Other languages
Japanese (ja)
Other versions
JP3648792B2 (en
Inventor
Masaichi Tanaka
政一 田中
Mamoru Mabuchi
衛 馬渕
Yuji Mori
裕司 森
Hiroyuki Usami
宏行 宇佐美
Kinji Takarahira
欣二 宝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19426995A priority Critical patent/JP3648792B2/en
Publication of JPH0893458A publication Critical patent/JPH0893458A/en
Application granted granted Critical
Publication of JP3648792B2 publication Critical patent/JP3648792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Testing Of Engines (AREA)

Abstract

PURPOSE: To provide a self-diagnostic function excellent in the failure of a device by providing a failure diagnosing device to make a judgement that the device is failured when the temperature rise speed of an adsorption device in the gas adsorption process is below the set value, and the temperature rise speed in the gas elimination process is above the upper limit value or below the lower limit value. CONSTITUTION: An exhaust emission control device is provided with a first main flow passage 31 provided with a catalytic device 21 to control the exhaust gas of an automobile, an adsorption flow passage 33 provided with an adsorbing device 22 to adsorb the harmful gas, and a second main flow passage 32 to form a flow passage parallel to this flow passage 33. A return flow passage 35 to form a flow passage leading to the upstream side of the catalytic device 21 is provided, and flow passage opening/closing means 23, 24 to open/close the respective flow passages 32, 33, 35 are provided. In a failure diagnosing device 10, the temperature of the adsorbing device 22 is measured, and a judgement of the failure is made when the temperature rise speed is below the set value in closing the return flow passage 35, and a judgement of the failure is made when the temperature rise speed is above the upper limit value or below the lower limit value in opening the return flow passage 35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明はエンジンの排気浄化装置に関する
ものである。
TECHNICAL FIELD The present invention relates to an exhaust emission control device for an engine.

【0002】[0002]

【従来技術】自動車の排気ガスを浄化する一つの方法と
して貴金属(白金,ロジウム等)などを触媒として担持
した触媒装置を用いる排気ガス浄化方法がある。この方
法でのHCの浄化には,一般に触媒活性化温度350℃
以上を必要とする。しかしながら,エンジンの始動直後
においては,上記触媒が触媒活性温度に達していないた
め,HC浄化がほとんど行われないと言う問題がある。
2. Description of the Related Art As one method for purifying exhaust gas from an automobile, there is an exhaust gas purifying method using a catalyst device carrying a precious metal (platinum, rhodium, etc.) as a catalyst. For purification of HC by this method, the catalyst activation temperature is generally 350 ° C.
You need more than that. However, immediately after the engine is started, the catalyst has not reached the catalyst activation temperature, so that there is a problem that HC purification is hardly performed.

【0003】そこで上記の問題を解決するため,エンジ
ンの排気系に触媒装置を配備すると共に,その上流側ま
たは下流側にエンジン冷間時に排出されたHC(以下コ
ールドHCと呼ぶ)を吸着するための吸着剤を収めたH
Cトラッパーを配備した浄化装置が提案されている(特
開平4−17710号公報,特開平4−311618号
公報,特開平5−149130号公報,特開平5−25
6124号公報,特開平6−101452号公報等)。
In order to solve the above problems, a catalyst device is provided in the exhaust system of the engine, and HC discharged during cold engine (hereinafter referred to as cold HC) is adsorbed on the upstream side or the downstream side thereof. H containing the adsorbent
Purification devices equipped with a C trapper have been proposed (JP-A-4-17710, JP-A-4-311618, JP-A-5-149130, and JP-A-5-25).
6124, JP-A-6-101452, etc.).

【0004】特開平4−17710号公報,特開平4−
311618号公報にかかる排気浄化装置は,吸着剤を
含むHCトラッパーを触媒装置の下流側に,メイン流路
と並列に配置するとともに,HCトラッパーを含む吸着
流路とメイン流路にはそれぞれ流路切換弁を設けてい
る。そして,エンジン始動直後から所定時間の間,上記
流路切換弁を操作し,排気ガスを吸着流路へ流し,その
間コールドHCはHCトラッパーに吸着される。
Japanese Unexamined Patent Publication No. 4-17710 and Japanese Unexamined Patent Publication No. 4-17710
In the exhaust gas purification device according to Japanese Patent No. 311618, an HC trapper containing an adsorbent is arranged downstream of the catalyst device in parallel with the main flow passage, and an adsorption flow passage containing the HC trapper and a main flow passage are respectively provided. A switching valve is provided. Then, the flow passage switching valve is operated for a predetermined time immediately after the engine is started to flow the exhaust gas into the adsorption flow passage, during which cold HC is adsorbed by the HC trapper.

【0005】一方,吸着剤からコールドHCが脱離する
高温時には,上記流路切換弁はメイン流路に排気ガスを
流すように操作され,この時,HCトラッパー下流側と
エンジン吸気管とをつなぐHCの脱離用配管にエンジン
の吸気管の負圧が加わり,脱離したHCは上記吸気管へ
吸い込まれて再びエンジン内で燃焼するようになってい
る。
On the other hand, at the time of high temperature when cold HC is desorbed from the adsorbent, the flow path switching valve is operated so as to flow the exhaust gas into the main flow path, and at this time, the downstream side of the HC trapper and the engine intake pipe are connected. Negative pressure in the intake pipe of the engine is applied to the HC desorption pipe, and the desorbed HC is sucked into the intake pipe and burned again in the engine.

【0006】さらに,特開平4−311618号公報で
は,脱離したHCを吸引ポンプを用いて強制的に触媒の
上流へ戻す方法が記載されている。また,特開平5−1
49130号公報,特開平5−256124号公報の排
気浄化装置は,触媒装置の上流側にゼオライト系吸着剤
を用いた吸着装置を配置して,吸着装置と触媒装置とを
併用し,排気ガス低温時には吸着剤にコールドHCを吸
着させ,排気ガス高温時には吸着剤から脱離したHCお
よびエンジンからの排気HCを触媒装置で浄化させるも
のである。
Further, Japanese Patent Application Laid-Open No. 4-31618 describes a method of forcibly returning the desorbed HC to the upstream side of the catalyst by using a suction pump. In addition, Japanese Patent Laid-Open No. 5-1
In the exhaust gas purifying apparatus of Japanese Patent No. 49130 and Japanese Unexamined Patent Publication No. 5-256124, an adsorbing device using a zeolite-based adsorbent is arranged on the upstream side of a catalytic device, and the adsorbing device and the catalytic device are used in combination to reduce the exhaust gas temperature. Sometimes, the adsorbent adsorbs cold HC, and when the exhaust gas temperature is high, the HC desorbed from the adsorbent and the exhaust HC from the engine are purified by a catalyst device.

【0007】そして,特開平6−101452号公報に
かかる排気浄化装置では,触媒装置の下流側に,吸着装
置を配置したバイパス流路と吸着装置を設けないメイン
流路とを設け,更に吸着装置の入口部と出口部のそれぞ
れに排気温度センサを設けている。そして,排気ガスの
低温時に,吸着装置に有害成分が吸着されるときの吸着
熱量を求め,この吸着熱量が目標値に達しなかった場合
は吸着装置が故障であると判定する。
In the exhaust gas purifying apparatus according to Japanese Patent Laid-Open No. 6-101452, a bypass passage having an adsorbing device and a main passage having no adsorbing device are provided downstream of the catalyst device, and the adsorbing device is further provided. An exhaust gas temperature sensor is provided at each of the inlet and the outlet. Then, when the exhaust gas is at a low temperature, the amount of heat of adsorption when the harmful components are adsorbed by the adsorber is obtained, and if the amount of heat of adsorption does not reach the target value, it is determined that the adsorber is out of order.

【0008】[0008]

【解決しようとする課題】しかしながら従来の排気浄化
装置には,次のような問題点がある。それは,吸着剤の
劣化や流路切換の動作不良等が生じてもそれを検知する
手段がないことである。そのため,上記のような排気浄
化装置の故障が生じた後もそのまま使用を継続し,その
ため有害ガスが排出されるという問題を生ずる。なお,
特開平6−101452号公報に示された排気浄化装置
では,上記従来装置と異なり故障診断装置を設けている
から,ある種の故障は検知可能である。しかしながら,
特開平6−101452号公報に示された排気浄化装置
では,吸着材の劣化や不具合は診断することが出来て
も,例えば吸着した有害成分を触媒装置の上流側に還流
するための弁や前記バイパス流路の切り換え弁など可動
部分に関する装置の故障等については,全く故障診断が
不可能であり,診断機能が不十分である。本発明は,こ
のような問題点に鑑みて,装置故障に対する優れた自己
診断機能を有する排気浄化特性の良好な排気浄化装置を
提供しようとするものである。
However, the conventional exhaust emission control device has the following problems. That is, there is no means for detecting the deterioration of the adsorbent or the malfunction of the flow path switching. Therefore, even after the failure of the exhaust gas purifying apparatus as described above, the exhaust gas purifying apparatus continues to be used as it is, so that a problem occurs that harmful gas is discharged. In addition,
In the exhaust gas purification device disclosed in Japanese Patent Laid-Open No. 6-101452, unlike the above-mentioned conventional device, a failure diagnosis device is provided, so that a certain kind of failure can be detected. However,
In the exhaust gas purification device disclosed in Japanese Patent Laid-Open No. 6-101452, a valve or a valve for circulating adsorbed harmful components to the upstream side of the catalyst device can be used even if deterioration or malfunction of the adsorbent can be diagnosed. With regard to malfunctions of devices related to moving parts such as bypass passage switching valves, malfunction diagnosis is impossible at all, and the diagnosis function is insufficient. In view of such problems, the present invention is to provide an exhaust gas purification device having an excellent self-diagnosis function for device failure and having good exhaust gas purification characteristics.

【0009】[0009]

【課題の解決手段】本願の第1発明は,エンジンの排気
通路に設けられた排気浄化装置であって,該排気浄化装
置は,上記排気通路の上流側に位置し排気ガスを浄化す
る触媒装置を備えた第1メイン流路と,該第1メイン流
路の下流に位置し有害ガスを吸着する吸着装置を備えた
吸着流路と,上記第1メイン流路の下流に位置し上記吸
着流路に並列な流路を形成する第2メイン流路と,上記
吸着流路及び第2メイン流路の下流に位置する排出流路
と,上記吸着流路から分岐し上記触媒装置の上流側に至
る流路を形成する戻し流路と,上記吸着流路,第2メイ
ン流路及び戻し流路を開閉する流路開閉手段と,該流路
開閉手段を制御するコントローラと,装置の不具合を自
己診断する故障診断装置とを有しており,上記戻し流路
には,上記吸着流路から触媒装置上流に至る排気の流れ
だけを許容する方向弁が設けられており,上記コントロ
ーラは,排気の低温時においては,上記流路開閉手段を
第1動作状態に操作し,これによって上記戻し流路を閉
路し上記吸着流路を通った排気を上記排出流路に流通さ
せると共に上記第2メイン流路から排出流路に至る排気
の流れを遮断し,一方排気の高温時においては,上記流
路開閉手段を第2動作状態に操作し,これによって上記
第2メイン流路から排出流路に排気を流通させると共に
上記戻し流路を開路して上記吸着流路を通った排気を戻
し流路に流通させ,更に吸着流路から排出流路への排気
の流れを遮断し,上記故障診断装置は,上記吸着装置の
温度を測定し,上記第1動作状態においては上記温度の
上昇速度が設定値以下である場合に装置故障と判定し,
上記第2動作状態においては上記温度の上昇速度が所定
の上限値以上もしくは所定の下限値以下である場合に装
置故障と判定する判定手段を有していることを特徴とす
る排気浄化装置にある。
A first invention of the present application is an exhaust gas purification device provided in an exhaust passage of an engine, wherein the exhaust gas purification device is located upstream of the exhaust passage and purifies exhaust gas. A first main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful gas, and an adsorption flow path located downstream of the first main flow path. A second main channel forming a channel parallel to the channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a branch from the adsorption channel to the upstream side of the catalyst device. A return flow path forming a flow path, a flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a device malfunction A failure diagnosis device for diagnosing, and the adsorption flow in the return flow path. Is provided with a directional valve that allows only the flow of exhaust gas from the exhaust gas to the upstream of the catalyst device, and the controller operates the flow path opening / closing means to the first operation state when the exhaust gas is at a low temperature, thereby causing the return operation. Exhaust gas that has closed the flow path and passed through the adsorption flow path is circulated to the exhaust flow path, and blocks the flow of exhaust gas from the second main flow path to the exhaust flow path. The flow passage opening / closing means is operated to the second operation state, whereby exhaust gas is circulated from the second main flow passage to the discharge flow passage, and the return flow passage is opened to return the exhaust gas passing through the adsorption flow passage. Flow through the passage and block the flow of exhaust gas from the adsorption passage to the discharge passage, the failure diagnosis device measures the temperature of the adsorption device, and in the first operating state, the temperature rise rate is When the value is less than the set value It is determined that location failure,
In the second operating state, there is provided an exhaust gas purification device, characterized in that the exhaust gas purification device has a judging means for judging that the device has failed when the temperature rising rate is equal to or higher than a predetermined upper limit value or lower than a predetermined lower limit value. .

【0010】第1発明において最も注目すべきことの第
1点は,排気の低温時においては,戻し流路を閉路し吸
着流路を通った排気を排出流路に流通させると共に第2
メイン流路から排出流路に至る排気の流れを遮断する,
いわゆる第1動作状態に流路開閉手段を操作すること,
そして排気の高温時においては,上記第2メイン流路か
ら排出流路に排気を流通させると共に上記戻し流路を開
路して上記吸着流路を通った排気を戻し流路に流通させ
更に吸着流路から排気流路への排気の流れを遮断する,
いわゆる第2動作状態に流路開閉手段を操作することで
ある。
The first point that is most noticeable in the first aspect of the invention is that when the temperature of the exhaust gas is low, the return flow path is closed and the exhaust gas that has passed through the adsorption flow path is circulated to the exhaust flow path.
Blocks the flow of exhaust gas from the main flow path to the exhaust flow path,
Operating the passage opening / closing means in the so-called first operating state,
When the exhaust gas is at a high temperature, the exhaust gas is circulated from the second main flow channel to the exhaust flow channel, the return flow channel is opened, and the exhaust gas passing through the adsorption flow channel is circulated to the return flow channel. Cut off the flow of exhaust from the passage to the exhaust passage,
Operating the flow path opening / closing means in the so-called second operation state.

【0011】第1発明において最も注目すべきことの第
2点は,故障診断装置を有しており,該故障診断装置
は,上記吸着装置の温度を測定し,上記第1動作状態に
おいては上記温度の上昇速度が設定値以下である場合に
装置故障と判定し,上記第2動作状態においては上記温
度の上昇速度が所定の上限値以上又は下限値以下である
場合に装置故障と判定することである。
The second point that is most noticeable in the first invention is that it has a failure diagnosis device, which measures the temperature of the adsorption device and, in the first operating state, the above If the temperature rise rate is less than or equal to the set value, it is determined that the device is faulty, and in the second operating state, if the temperature rise rate is equal to or higher than a predetermined upper limit or lower than the lower limit, it is determined to be the device fault. Is.

【0012】次に,本願の第2発明は,エンジンの排気
通路に設けられた排気浄化装置であって,該排気浄化装
置は,上記排気通路の上流側に位置し排気ガスを浄化す
る触媒装置を備えた第1メイン流路と,該第1メイン流
路の下流に位置し有害物質を吸着する吸着装置を備えた
吸着流路と,上記第1メイン流路の下流に位置し上記吸
着流路に並列な流路を形成する第2メイン流路と,上記
吸着流路及び第2メイン流路の下流に位置する排出流路
と,上記吸着流路から分岐し上記触媒装置の上流側に至
る流路を形成する戻し流路と,上記吸着流路,第2メイ
ン流路及び戻し流路を開閉する流路開閉手段と,該流路
開閉手段を制御するコントローラと,装置の不具合を自
己診断する故障診断装置とを有しており,上記戻し流路
には,上記吸着流路から触媒装置上流に至る排気の流れ
だけを許容する方向弁が設けられており,上記コントロ
ーラは,排気の低温時においては,上記流路開閉手段を
第1動作状態に操作し,これによって上記戻し流路を閉
路し上記吸着流路を通った排気を上記排出流路に流通さ
せると共に上記第2メイン流路から排出流路に至る排気
の流れを遮断し,一方排気の高温時においては,上記流
路開閉手段を第2動作状態に操作し,これによって上記
第2メイン流路から排出流路に排気を流通させると共に
上記戻し流路を開路して上記吸着流路を通った排気を戻
し流路に流通させ吸着流路から排出流路への排気の流れ
を遮断し,上記故障診断装置は,上記吸着装置を通過す
る排気の流量を測定し,上記第1動作状態においては上
記通過流量が設定値以下になった場合に装置故障と判定
し,上記第2動作状態においては上記通過流量が所定の
上限値以上もしくは所定の下限値以下になった場合に装
置故障と判定する判定手段を有していることを特徴とす
る排気浄化装置にある。
Next, a second invention of the present application is an exhaust gas purification device provided in an exhaust passage of an engine, wherein the exhaust gas purification device is located upstream of the exhaust passage and purifies exhaust gas. A first main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful substances, and an adsorption flow path located downstream of the first main flow path. A second main channel forming a channel parallel to the channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a branch from the adsorption channel to the upstream side of the catalyst device. A return flow path forming a flow path, a flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a device malfunction A failure diagnosis device for diagnosing, and the adsorption flow in the return flow path. Is provided with a directional valve that allows only the flow of exhaust gas from the exhaust gas to the upstream of the catalyst device, and the controller operates the flow path opening / closing means to the first operation state when the exhaust gas is at a low temperature, thereby causing the return operation. Exhaust gas that has closed the flow path and passed through the adsorption flow path is circulated to the exhaust flow path, and blocks the flow of exhaust gas from the second main flow path to the exhaust flow path. The flow passage opening / closing means is operated to the second operation state, whereby exhaust gas is circulated from the second main flow passage to the discharge flow passage, and the return flow passage is opened to return the exhaust gas passing through the adsorption flow passage. The exhaust flow from the adsorption flow path to the discharge flow path is cut off, and the failure diagnosis device measures the flow rate of the exhaust gas passing through the adsorption device. When the value falls below the set value In the second operating state, there is a determining means for determining that the device is in failure when the passage flow rate is equal to or more than a predetermined upper limit value or less than a predetermined lower limit value. Exhaust gas purification device.

【0013】第2発明は,第1発明の排気浄化装置と故
障診断装置が異なる排気浄化装置である。即ち,第2発
明における故障診断装置は,吸着装置を通過する排気の
流量を測定し,上記第1動作状態においては上記通過流
量が設定値以下になった場合に装置故障と判定し,第2
動作状態においては上記通過流量が所定の上限値以上も
しくは下限値以下になった場合に装置故障と判定する。
A second aspect of the present invention is an exhaust emission control device which is different from the exhaust emission control device of the first aspect of the present invention in a failure diagnosis device. That is, the failure diagnosis device in the second aspect of the invention measures the flow rate of the exhaust gas passing through the adsorption device, determines that the device failure has occurred in the first operating state when the above-mentioned flow rate is below a set value, and
In the operating state, it is determined that the device is faulty when the passing flow rate is equal to or higher than a predetermined upper limit value or lower than a predetermined lower limit value.

【0014】次に,本願の第3発明は,エンジンの排気
通路に設けられた排気浄化装置であって,該排気浄化装
置は,上記排気通路の上流側に位置し排気ガスを浄化す
る触媒装置を備えた第1メイン流路と,該第1メイン流
路の下流に位置し有害物質を吸着する吸着装置を備えた
吸着流路と,上記メイン流路の下流に位置し上記吸着流
路に並列な流路を形成する第2メイン流路と,上記吸着
流路及び第2メイン流路の下流に位置する排出流路と,
上記吸着流路から分岐し上記触媒装置の上流側に至る流
路を形成する戻し流路と,上記吸着流路,第2メイン流
路及び戻し流路を開閉する流路開閉手段と,該流路開閉
手段を制御するコントローラと,装置の不具合を自己診
断する故障診断装置とを有しており,上記戻し流路に
は,上記吸着流路から触媒装置上流に至る排気の流れだ
けを許容する方向弁が設けられており,上記コントロー
ラは,排気の低温時においては,上記流路開閉手段を第
1動作状態に操作し,これによって上記戻し流路を閉路
し上記吸着流路を通った排気を上記排出流路に流通させ
ると共に上記第2メイン流路から排出流路に至る排気の
流れを遮断し,一方排気の高温時においては,上記流路
開閉手段を第2動作状態に操作し,これによって上記第
2メイン流路から排出流路に排気を流通させると共に上
記戻し流路を開路して上記吸着流路を通った排気を戻し
流路に流通させ吸着流路から排出流路への排気の流れを
遮断し,上記故障診断装置は,上記排出流路における所
定の排出ガスの濃度を測定し,該排出ガス濃度が,上記
第1動作状態と第2動作状態とで異なる値に設定された
設定値以上の値になった場合に装置故障と判定する判定
手段を有していることを特徴とする排気浄化装置にあ
る。
Next, a third invention of the present application is an exhaust gas purification device provided in an exhaust passage of an engine, wherein the exhaust gas purification device is located upstream of the exhaust passage and purifies exhaust gas. A first main flow path, a suction flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful substances, and a suction flow path located downstream of the main flow path. A second main flow path forming a parallel flow path, and an exhaust flow path located downstream of the adsorption flow path and the second main flow path,
A return flow channel that branches from the adsorption flow channel and forms a flow channel that reaches the upstream side of the catalyst device, a flow channel opening / closing unit that opens and closes the adsorption flow channel, the second main flow channel, and the return flow channel, and the flow channel. It has a controller for controlling the passage opening / closing means and a failure diagnosis device for self-diagnosing malfunctions of the device, and allows only the exhaust flow from the adsorption flow path to the upstream of the catalyst device in the return flow path. A directional valve is provided, and the controller operates the flow passage opening / closing means to a first operating state when the exhaust gas has a low temperature, whereby the return flow passage is closed and the exhaust gas that has passed through the adsorption flow passage. To the exhaust flow path and block the flow of exhaust gas from the second main flow path to the exhaust flow path, while the exhaust gas is at a high temperature, the flow path opening / closing means is operated to the second operating state. As a result, the second main channel is drained. Exhaust gas is allowed to flow through the flow path, and the return flow path is opened to allow the exhaust gas that has passed through the adsorption flow path to flow through the return flow path to block the flow of exhaust gas from the adsorption flow path to the exhaust flow path. The device measures the concentration of a predetermined exhaust gas in the exhaust flow passage, and the exhaust gas concentration becomes a value equal to or higher than a set value set to a different value in the first operating state and the second operating state. In this case, there is provided an exhaust emission control device having a determination means for determining that the device has failed.

【0015】第3発明は,第1,第2発明の故障診断装
置と異なる故障診断装置を有する排気浄化装置である。
即ち,第3発明にかかる故障診断装置は,排出流路にお
ける所定の排出ガス濃度を測定し,該排出ガス濃度が設
定値以上の値になった場合に装置故障と判定する。そし
て上記設定値は,第1動作状態と第2動作状態とで異な
った値にする。
A third invention is an exhaust emission control device having a failure diagnosis device different from the failure diagnosis devices of the first and second inventions.
That is, the failure diagnosis device according to the third aspect of the present invention measures a predetermined exhaust gas concentration in the exhaust flow passage, and determines that the device is in failure when the exhaust gas concentration becomes equal to or higher than a set value. The set value is different in the first operating state and the second operating state.

【0016】次に本願の第4発明は,エンジンの排気通
路に設けられた排気浄化装置であって,該排気浄化装置
は,上記排気通路の上流側に位置し排気ガスを浄化する
触媒装置を備えた第1メイン流路と,該第1メイン流路
の下流に位置し有害物質を吸着する吸着装置を備えた吸
着流路と,上記第1メイン流路の下流に位置し上記吸着
流路に並列な流路を形成する第2メイン流路と,上記吸
着流路及び第2メイン流路の下流に位置する排出流路
と,上記吸着流路から分岐し上記触媒装置の上流側に至
る流路を形成する戻し流路と,上記吸着流路,第2メイ
ン流路及び戻し流路を開閉する流路開閉手段と,該流路
開閉手段を制御するコントローラと,装置の不具合を自
己診断する故障診断装置とを有しており,上記戻し流路
には,上記吸着流路から触媒装置上流に至る排気の流れ
だけを許容する方向弁が設けられており,上記コントロ
ーラは,排気の低温時においては,上記流路開閉手段を
第1動作状態に操作し,これによって上記戻し流路を閉
路し上記吸着流路を通った排気を上記排出流路に流通さ
せると共に上記第2メイン流路から排出流路に至る排気
の流れを遮断し,一方排気の高温時においては,上記流
路開閉手段を第2動作状態に操作し,これによって上記
第2メイン流路から排出流路に排気を流通させると共に
上記戻し流路を開路して上記吸着流路を通った排気を戻
し流路に流通させ吸着流路から排出通路への排気の流れ
を遮断し,上記故障診断装置は,エンジンの運転状態か
ら上記戻し流路の排気流量を算出する戻し流量算出手段
と,上記戻し流路における上記排出ガスの濃度を測定し
上記第2動作状態における上記戻し流路を通った排出ガ
スの総量を積算する積算手段と,上記排出ガスの積算総
量が設定値以下である場合に装置故障と判定する判定手
段とを有していることを特徴とする排気浄化装置にあ
る。
A fourth invention of the present application is an exhaust gas purification device provided in an exhaust passage of an engine, wherein the exhaust gas purification device is a catalyst device located upstream of the exhaust passage for purifying exhaust gas. A first main flow path provided, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful substances, and an adsorption flow path located downstream of the first main flow path A second main flow path forming a parallel flow path, an exhaust flow path located downstream of the adsorption flow path and the second main flow path, and a branch from the adsorption flow path to reach the upstream side of the catalyst device. A return flow path forming a flow path, a flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a self-diagnosis of a device failure And a suction diagnostic flow path in the return flow path. A directional valve that allows only the flow of exhaust gas from the upstream side of the catalyst device to the catalytic device is provided, and the controller operates the flow path opening / closing means to the first operation state when the exhaust gas is at a low temperature, thereby causing the return operation. Exhaust gas that has closed the flow path and passed through the adsorption flow path is circulated to the exhaust flow path, and blocks the flow of exhaust gas from the second main flow path to the exhaust flow path. The flow passage opening / closing means is operated to the second operation state, whereby exhaust gas is circulated from the second main flow passage to the discharge flow passage, and the return flow passage is opened to return the exhaust gas passing through the adsorption flow passage. And a return flow rate calculating means for calculating the exhaust flow rate of the return flow path from the operating state of the engine, and the return flow path. The above discharge gas in Means for measuring the concentration of the exhaust gas and integrating the total amount of exhaust gas that has passed through the return flow path in the second operation state, and determining means for determining the device failure when the total integrated amount of exhaust gas is less than or equal to a set value. And an exhaust emission control device.

【0017】第4発明は,第1〜第3発明の故障診断装
置と異なる故障診断装置を有する排気浄化装置である。
即ち,第4発明の故障診断装置は,エンジンの運転状態
から戻し流路の排気流量Qr を算出する戻し流量算出手
段と,上記戻し流路における上記排出ガスの濃度を測定
し第2動作状態における上記戻し流路を通った排出ガス
の総量Wを積算する積算手段と,該排出ガスの積算総量
Wを設定値Wo と比較し装置の故障を判定する判定手段
とを有している。
A fourth invention is an exhaust emission control device having a failure diagnosis device different from the failure diagnosis devices of the first to third inventions.
That is, the failure diagnosing device of the fourth aspect of the invention includes a return flow rate calculating means for calculating the exhaust flow rate Q r of the return flow path from the operating state of the engine, and a concentration of the exhaust gas in the return flow path to measure the second operating state. In the above, there is provided an integrating means for integrating the total amount W of exhaust gas that has passed through the return flow path, and a determining means for comparing the integrated total amount W of exhaust gas with a set value W o to judge a malfunction of the apparatus.

【0018】上記戻し流量Qr は,例えば,エンジン排
気の流量とエンジンの運転状態を示すパラメータから,
一定の算式に従って計算することができる。また,上記
積算手段には,例えば上記排出ガスセンサの出力Cr
戻し流量Qr との積を第2動作状態の間に積算する積分
器などがある(Wr =∫Cr r dt)。
The return flow rate Q r can be calculated from, for example, a parameter indicating the flow rate of engine exhaust and the operating state of the engine.
It can be calculated according to a certain formula. The integrating means includes, for example, an integrator that integrates the product of the output C r of the exhaust gas sensor and the return flow rate Q r during the second operation state (W r = ∫C r Q r dt). .

【0019】なお,第3,第4発明において,上記故障
診断装置は更に吸着装置の温度を測定し,上記温度の上
昇速度が第1動作状態において設定値以上であるか否
か,及び上記上昇速度が第2動作状態において所定の上
限値もしくは所定の下限値以下であるか否かを判定する
第2判定手段を設けることが好ましい。
In the third and fourth aspects of the invention, the failure diagnosis device further measures the temperature of the adsorption device, and determines whether the rate of temperature rise is above a set value in the first operating state, and whether or not the temperature rises. It is preferable to provide second determining means for determining whether or not the speed is equal to or lower than a predetermined upper limit value or a predetermined lower limit value in the second operating state.

【0020】このような第2判定手段を設けることによ
り,次項で後述するように,流路に所定値以上の洩れが
あるか否か等を知ることが可能となり,これによって故
障診断装置(メイン判定手段)が判定した故障の原因が
流路開閉手段の洩れによるものかどうか等の解明するこ
とができるからである。その結果,故障の修復作業をよ
り容易にすることができる。
By providing such a second judging means, as will be described later in the next section, it becomes possible to know whether or not there is a leakage of a predetermined value or more in the flow path, and thereby the failure diagnosis device (main This is because it is possible to elucidate whether the cause of the failure determined by the determination means) is due to the leakage of the flow path opening / closing means. As a result, the repair work for the failure can be made easier.

【0021】また,第3,第4発明において,上記故障
診断装置は,更に上記吸着装置を通過する排気流量を測
定し,上記通過流量が第1動作状態において設定値以下
であるか否か,及び上記通過流量が所定の上限値以上も
しくは所定の下限値以下であるか否かを判定する第3判
定手段設けることが好ましい。
Further, in the third and fourth inventions, the failure diagnosis device further measures an exhaust flow rate passing through the adsorption device, and determines whether the passage flow rate is less than or equal to a set value in the first operating state. Further, it is preferable to provide a third determination means for determining whether or not the flow rate of flow is equal to or more than a predetermined upper limit value or less than a predetermined lower limit value.

【0022】このような,第3判定手段を設けることに
より,詳細を後述するように排気流路に所定値以上の洩
れがあるか又は戻し流路に閉塞があるか否か等を知るこ
とが可能となり,上記と同様に故障診断装置が判定した
故障の原因を解明することができるからである。その結
果,故障の修復作業が容易となる。
By providing such a third judging means, it is possible to know whether or not there is a leakage of a predetermined value or more in the exhaust passage or whether the return passage is blocked, as will be described later in detail. This is because it becomes possible and the cause of the failure judged by the failure diagnosis device can be clarified in the same manner as above. As a result, the repair work of the failure becomes easy.

【0023】次に,本願の第5発明は,エンジンの排気
通路に設けられた排気浄化装置であって,該排気浄化装
置は,上記排気通路の上流側に位置し排気ガスを浄化す
る触媒装置を備えた第1メイン流路と,該第1メイン流
路の下流に位置し有害ガスを吸着する吸着装置を備えた
吸着流路と,上記第1メイン流路の下流に位置し上記吸
着流路に並列な流路を形成する第2メイン流路と,上記
吸着流路及び第2メイン流路の下流に位置する排出流路
と,上記吸着流路から分岐し上記触媒装置の上流側に至
る流路を形成する戻し流路と,上記吸着流路,第2メイ
ン流路及び戻し流路を開閉する流路開閉手段と,該流路
開閉手段を制御するコントローラと,装置の不具合を自
己診断する故障診断装置とを有しており,上記戻し流路
には,上記吸着流路から触媒装置上流に至る排気の流れ
だけを許容する方向弁が設けられており,上記コントロ
ーラは,排気の低温時においては,上記流路開閉手段を
第1動作状態に操作し,これによって上記戻し流路を閉
路し上記吸着流路を通った排気を上記排出流路に流通さ
せると共に上記第2メイン流路から排出流路に至る排気
の流れを遮断し,一方,排気の高温時においては,上記
流路開閉手段を第2動作状態に操作し,これによって上
記第2メイン流路から排出流路に排気を流通させると共
に上記戻し流路を開路して上記吸着流路を通った排気を
戻し流路に流通させ,更に吸着流路から排出流路への排
気の流れを遮断し,上記故障診断装置は,上記吸着装置
の下流側と上記戻し流路とのそれぞれの排気温度を測定
し,上記第2動作状態において,上記二つの排気温度の
間の相関関係の程度を算出し,この相関関係の程度が一
定の水準に達しない場合に装置故障であると判定する判
定手段を有していることを特徴とする排気浄化装置にあ
る。
Next, a fifth invention of the present application is an exhaust gas purification device provided in an exhaust passage of an engine, wherein the exhaust gas purification device is located upstream of the exhaust passage and purifies exhaust gas. A first main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful gas, and an adsorption flow path located downstream of the first main flow path. A second main channel forming a channel parallel to the channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a branch from the adsorption channel to the upstream side of the catalyst device. A return flow path forming a flow path, a flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a device malfunction A failure diagnosis device for diagnosing, and the adsorption flow in the return flow path. Is provided with a directional valve that allows only the flow of exhaust gas from the exhaust gas to the upstream of the catalyst device, and the controller operates the flow path opening / closing means to the first operation state when the exhaust gas is at a low temperature, thereby causing the return operation. The flow path is closed and the exhaust gas passing through the adsorption flow path is circulated to the exhaust flow path and the flow of the exhaust gas from the second main flow path to the exhaust flow path is blocked, while at the time of high temperature of the exhaust gas, The flow path opening / closing means is operated to the second operating state, whereby exhaust gas is circulated from the second main flow path to the exhaust flow path, and the return flow path is opened to return the exhaust gas that has passed through the adsorption flow path. The exhaust flow from the adsorption channel to the exhaust channel is blocked, and the failure diagnosis device measures the exhaust temperature of each of the downstream side of the adsorption device and the return channel. In the second operating state above, Exhaust gas purification characterized by having a determination means for calculating the degree of correlation between two exhaust temperatures and determining that the device failure has occurred when the degree of correlation does not reach a certain level On the device.

【0024】第5発明は,第1 〜第4発明と異なる故障
診断装置を有する他の排気浄化装置である。即ち,第5
発明にかかる故障診断装置は,着装置の下流側と上記戻
し流路とのそれぞれの排気温度を測定し,上記第2動作
状態において,上記二つの排気温度の間の相関関係の程
度を算出し,この相関関係の程度が一定の水準に達しな
い場合に装置故障であると判定する判定手段を有してい
る。上記において,相関関係の程度を算出する指標に
は,例えば,相関比,相関係数などがある。詳細を後述
するように,第5発明にかかる故障診断装置は,特に戻
し流路における方向弁の故障検出機能に優れている。
The fifth invention is another exhaust gas purification apparatus having a failure diagnosis apparatus different from the first to fourth inventions. That is, the fifth
The failure diagnosis device according to the invention measures the exhaust temperature of each of the downstream side of the attachment device and the return flow path, and calculates the degree of the correlation between the two exhaust temperatures in the second operating state. A device is provided for judging that the device is faulty when the degree of this correlation does not reach a certain level. In the above, the index for calculating the degree of correlation includes, for example, a correlation ratio and a correlation coefficient. As will be described later in detail, the failure diagnosis device according to the fifth aspect of the present invention is particularly excellent in the function of detecting the failure of the directional valve in the return passage.

【0025】なお,第5発明において,上記故障診断装
置は,更に,上記吸着装置の温度を測定し,この温度の
上昇速度が第1動作状態において設定値以上であるか否
か,及びこの上昇速度が第2動作状態において設定値以
上であるか否かを判定する第4判定手段を設けることが
好ましい。このような第4判定手段を設けることによ
り,次項において詳細を後述するように,メイン流路の
開閉手段に所定値以上の漏れがあるか否か等を判定可能
となり,故障の原因を解明することが用意となるからで
ある。それ故,故障の修復作業が容易となる。
In the fifth aspect of the invention, the failure diagnosis device further measures the temperature of the adsorption device and determines whether or not the rate of temperature rise is above a set value in the first operating state, and whether or not the temperature rises. It is preferable to provide fourth determining means for determining whether or not the speed is equal to or higher than a set value in the second operating state. By providing such a fourth determining means, it becomes possible to determine whether or not there is a leakage of a predetermined value or more in the opening / closing means of the main flow passage, and the cause of the failure is clarified, as will be described later in detail. Because it will be ready. Therefore, the repair work of the failure becomes easy.

【0026】また,更に第5発明において,上記判定手
段が,上記二つの排気温度の間の相関関係の程度を算出
し,装置故障であると判定する時期は,前記第2動作状
態にあると共にエンジンがアイドリング状態にあること
又は車両が減速状態にあることを条件とすることが好ま
しい。アイドリング状態にあることを条件に付加するこ
とにより,判定時間を短縮でき,また車両が減速状態に
あることを条件に付加することにより,相関値が故障の
有無でより鮮明に分離できるからである。
Further, in the fifth aspect of the invention, the determination means calculates the degree of correlation between the two exhaust temperatures and determines that the device is in failure, when the second operation state is set. It is preferable that the condition is that the engine is idling or the vehicle is decelerating. By adding the condition that the vehicle is idling to the condition, the judgment time can be shortened, and by adding the condition that the vehicle is in the decelerating condition, the correlation value can be more clearly separated depending on the presence or absence of a failure. .

【0027】[0027]

【作用及び効果】初めに,第1発明の作用効果について
説明する。排気が低温である段階では,流路は第1動作
状態となり,排気はすべて吸着流路から排出流路に流入
する。それ故,排気が低温なために触媒装置で浄化され
ないHCなどの有毒な排出ガスは,吸着装置に吸着され
る(有害ガス吸着工程)。従って,有害な排出ガスは外
部に排出されない。
[Operation and effect] First, the operation and effect of the first invention will be described. When the exhaust gas is at a low temperature, the flow path is in the first operating state, and all the exhaust gas flows from the adsorption flow path to the exhaust flow path. Therefore, toxic exhaust gas such as HC that is not purified by the catalyst device because the exhaust gas is low in temperature is adsorbed by the adsorption device (toxic gas adsorption step). Therefore, harmful exhaust gas is not emitted to the outside.

【0028】一方,排気が高温となれば,流路は第2動
作状態に切換えられ,排気は二つの流れを構成し,一方
の排気の流れは第2メイン流路から排出流路を経て外部
に排出される(有害ガス脱離工程)。そして,排気は高
温であるから,有害な排出ガスは触媒装置で浄化され
る。
On the other hand, when the temperature of the exhaust gas becomes high, the flow path is switched to the second operation state, the exhaust gas forms two flows, and one of the exhaust flow flows from the second main flow path to the exhaust flow path to the outside. Is discharged to (dangerous gas desorption process). Since the exhaust gas is hot, harmful exhaust gas is purified by the catalyst device.

【0029】また,他方の排気の流れは,吸着流路から
戻し流路に流入する。この高温の排気の流れによって,
吸着装置に吸着された排出ガスは脱離し,戻し流路から
触媒装置の上流に導入される。そして,排出ガスは,触
媒装置によって浄化される。上記のように,排気の温度
に対応して流路開閉手段を第1,第2動作状態に切替え
ることにより,エンジンの排出ガスの外部排出を抑止す
ることができ,排気浄化特性の良好な排気浄化装置を得
ることができる。
The other exhaust flow flows from the adsorption flow path to the return flow path. With this high temperature exhaust flow,
The exhaust gas adsorbed by the adsorption device is desorbed and introduced into the upstream of the catalyst device through the return passage. Then, the exhaust gas is purified by the catalyst device. As described above, by switching the flow path opening / closing means to the first and second operating states in accordance with the temperature of the exhaust gas, it is possible to suppress the external discharge of the exhaust gas of the engine, and the exhaust gas having a good exhaust gas purification characteristic. A purification device can be obtained.

【0030】一方,故障診断装置は,吸着装置における
温度を測定して,その上昇速度Vtを算出する。上記速
度Vt は,例えば温度の測定値を微分演算するなどの方
法により容易に算出することができる。そして,第1動
作状態における上記上昇速度Vt は,図5に示すよう
に,上記吸着流路を通らない洩れ流量Qa (図4)によ
って漸減することが知られている。
On the other hand, the failure diagnosis device measures the temperature in the adsorption device and calculates the rising speed V t thereof. The velocity V t can be easily calculated by a method such as performing a differential operation on the measured temperature value. Then, the rising rate V t in the first operation state, as shown in FIG. 5, to be gradually reduced by leakage that does not pass through the suction passage flow rate Q a (FIG. 4) is known.

【0031】それ故,上記Vt を知ることによって,上
記洩れ流量Qa の大きさを知ることができる。即ち,図
5に示すように,Vt が所定値Vt0以下であれば,流路
開閉手段からの洩れ流量Qa は,少なくとも設定値Qa0
以上であると判定することができる。
Therefore, the magnitude of the leakage flow rate Q a can be known by knowing the V t . That is, as shown in FIG. 5, when V t is equal to or less than the predetermined value V t0 , the leak flow rate Q a from the flow path opening / closing means is at least the set value Q a0.
It can be determined that the above.

【0032】洩れ流量Qa が多いことは,図4の破線で
示すように,吸着装置に吸着されずに排出される排出ガ
スが多いことであるから,洩れ流量Qa が所定値Qa0
越えることは,排気浄化装置の故障状態と判定すること
ができる。
A large leakage flow rate Q a means that a large amount of exhaust gas is discharged without being adsorbed by the adsorption device, as indicated by the broken line in FIG. 4, so that the leakage flow rate Q a becomes a predetermined value Q a0 . Exceeding this can be determined to be a failure state of the exhaust purification device.

【0033】一方,第2動作状態においては,昇温速度
tdは,吸着流路から排出流路に漏洩する洩れ流量Qd
(図4)によって図6に示すように変化する。それ故,
昇温速度Vtdが上限値Vt1以上であることをもって洩れ
流量Qd が上限洩れ流量Qd0を越えたと判定することが
できるから,これによって有害ガス脱離工程における装
置の故障と判定することができる。なぜならば,上記洩
れ流量Qd が多く存在することは,吸着装置から脱離し
た排出ガスが排出流路を経て外部に排出されることだか
らである。
On the other hand, in the second operating state, the temperature rising rate V td is the leakage flow rate Q d leaking from the adsorption flow path to the discharge flow path.
(FIG. 4) changes as shown in FIG. Therefore,
Since it is possible heating rate V td is determined that the flow rate Q d leakage have to be the upper limit value V t1 more exceeds the upper limit leakage flow Q d0, thereby determining a failure of the device in the harmful gas desorption step You can This is because there is a large amount of the leakage flow rate Q d because the exhaust gas desorbed from the adsorption device is discharged to the outside through the discharge flow path.

【0034】また,有害ガス脱離工程において吸着流路
から戻し流路を経て触媒装置の上流に至る還流流路に閉
塞などの不具合が生じ,その戻し流量Qr (図4)が減
少することがある。そして,上記還流流量Qr が減少す
ると図7に示すように昇温速度Vtdが減少する。それ
故,昇温速度Vtdが下限値Vt2以下であることを持って
還流流量Qr の過少(Qr ≦Qr0),即ち装置の故障で
あるとすることができる。
Further, in the harmful gas desorption process, the return flow passage Q r (FIG. 4) is reduced due to the occurrence of problems such as blockage in the return flow passage from the adsorption flow passage to the upstream of the catalyst device via the return flow passage. There is. When the reflux flow rate Q r decreases, the temperature rising rate V td decreases as shown in FIG. Therefore, since the rate of temperature increase V td is equal to or lower than the lower limit value V t2 , it can be considered that the reflux flow rate Q r is too small (Q r ≤Q r0 ), that is, the device is out of order.

【0035】上記戻し流量Qr が不充分であると,吸着
装置で脱離した排出ガスを触媒装置で浄化させることが
できなくなり,また排気と共に外部に洩出するからであ
る。上記のように,本発明の故障診断装置は,昇温速度
t ,Vtdを上記のように監視することにより,排気流
路の洩れや閉塞による装置故障を自己診断することがで
き,従って常に排気浄化特性を良好に保持することがで
きる。上記のように,第1発明によれば,自己診断機能
を有し排気浄化特性の良好な排気浄化装置を提供するこ
とができる。
This is because if the return flow rate Q r is insufficient, the exhaust gas desorbed by the adsorption device cannot be purified by the catalyst device and leaks to the outside together with the exhaust gas. As described above, the failure diagnosis device of the present invention can self-diagnose the device failure due to the leakage or blockage of the exhaust passage by monitoring the temperature rising rates V t and V td as described above. Exhaust gas purification characteristics can always be kept good. As described above, according to the first aspect of the present invention, it is possible to provide an exhaust gas purification device having a self-diagnosis function and excellent exhaust gas purification characteristics.

【0036】次に,第2発明の作用効果について述べ
る。第2発明にかかる排気浄化装置においては故障診断
装置は吸着装置を通過する排気の流量Qt を測定する。
そして,第1動作状態(有害ガス吸着工程)における上
記通過流量Qt は,図10に示すように,第2メイン流
路から漏出する洩れ流量Qa (図4)の大きさによって
変化する。即ち,流量Qt が設定値Q0 以下であること
をもって,洩れ流量Qa が所定値Qa0以上であることを
知ることができ,前記のように排気浄化装置の故障(汚
染排気の排出)を検知することができる。
Next, the function and effect of the second invention will be described. In the exhaust gas purifying apparatus according to the second invention fault diagnosis apparatus for measuring the flow rate Q t of exhaust gas passing through the adsorption apparatus.
Then, the flow rate through Q t in the first operation state (hazardous gas adsorption step), as shown in FIG. 10, it changes according to the magnitude of the leakage flow rate Q a leaking from the second main flow passage (Fig. 4). That is, with the flow rate Q t is equal to or smaller than the set value Q 0, it is possible to know the leakage flow rate Q a is the predetermined value Q a0 above, (emission of polluting emissions) failure of the exhaust gas purifier as Can be detected.

【0037】一方,第2動作状態(有害ガス脱離工程)
においては,上記通過流量Qtdは,吸着流路から排出流
路に洩出する洩れ流量Qd (図4)によって図11に示
すように変化する。即ち,第2動作状態における排気流
量Qtdが,上限値Q1 以上であることをもって,上記洩
れ流量Qd が上限値Qd0以上であり,前記のように装置
故障(汚染排気の洩出)であることを検知することがで
きる。
On the other hand, the second operating state (toxic gas desorption process)
In the above, the passing flow rate Q td changes as shown in FIG. 11 depending on the leak flow rate Q d (FIG. 4) leaking from the adsorption flow path to the discharge flow path. That is, since the exhaust flow rate Qtd in the second operating state is the upper limit value Q 1 or more, the leakage flow rate Q d is the upper limit value Q d0 or more, and as described above, the device malfunctions (leakage of polluted exhaust gas). Can be detected.

【0038】また,前記のように第2動作状態における
還流流量Qr が下限値Qr0以下であることによって戻し
流路の不具合(閉塞など)を知ることができる。そし
て,第2動作状態における通過流量Qtdと還流流量Qr
との間には図12に示すような関係があるから,通過流
量Qtdが下限値Q2 以下であるか否かを検知し,装置故
障を判定することができる。上記のように第2発明の故
障診断装置によれば,排気流路の洩れや閉塞による装置
故障を検知することができる。その他については,第1
発明と同様である。
Further, as described above, when the return flow rate Q r in the second operating state is equal to or lower than the lower limit value Q r0, it is possible to know the malfunction (blockage, etc.) of the return passage. Then, in the second operating state, the passing flow rate Q td and the return flow rate Q r
12 has a relationship as shown in FIG. 12, it is possible to detect whether the passing flow rate Q td is equal to or less than the lower limit value Q 2 and determine the device failure. As described above, according to the failure diagnosis apparatus of the second invention, it is possible to detect the apparatus failure due to the leakage or blockage of the exhaust passage. For others, first
It is similar to the invention.

【0039】次に第3発明の作用効果について述べる。
第3発明にかかる排気浄化装置においては,排出流路に
おけるHCなど所定の排出ガスの濃度Cを測定する。一
方,上記排出ガスの濃度Cは,吸着装置の吸着能力の低
下や,吸着装置を通らない排気の洩出などによる排気浄
化装置の不具合によって増大する。
Next, the function and effect of the third invention will be described.
In the exhaust emission control device according to the third aspect of the present invention, the concentration C of a predetermined exhaust gas such as HC in the exhaust passage is measured. On the other hand, the concentration C of the exhaust gas increases due to a decrease in the adsorption capacity of the adsorption device or a malfunction of the exhaust gas purification device due to leakage of exhaust gas that does not pass through the adsorption device.

【0040】即ち,排気浄化装置が正常な場合における
第1動作状態(吸着工程)においては,図15に示すよ
うに,破線で示すエンジンの出口における排出ガスの濃
度(図15ではHC)は,実線で示す曲線のように排出
流路では大幅に減少する。それ故,排出流路における排
出ガス濃度Cの平均値が設定値Ca よりも小さい場合に
は,排気浄化装置の故障である判定することができる。
That is, in the first operating state (adsorption step) when the exhaust emission control device is normal, as shown in FIG. 15, the exhaust gas concentration (HC in FIG. 15) at the outlet of the engine shown by the broken line is As shown by the solid curve, the discharge flow path has a large decrease. Therefore, when the average value of the exhaust gas concentration C in the exhaust passage is smaller than the set value C a , it can be determined that the exhaust purification device is out of order.

【0041】同様に,第2動作状態(脱離工程)におい
ては,図16に示すように,上記排出ガス(図16では
HC)の濃度Cは実線で示す曲線のような極めて小さな
値となるから,上記濃度Cの平均値が設定値Cd よりも
大きいことをもって排気浄化装置の故障と判定すること
ができる。そして,本発明の故障診断装置は,第1動作
状態と第2動作状態における排出ガス濃度Cが設定値C
a ,Cd 以上であるか否かを監視して排気浄化装置の故
障を判定する。
Similarly, in the second operating state (desorption process), as shown in FIG. 16, the concentration C of the exhaust gas (HC in FIG. 16) becomes an extremely small value as shown by the solid curve. From the above, it can be determined that the exhaust purification device has a failure when the average value of the concentration C is larger than the set value C d . Further, in the failure diagnosis device of the present invention, the exhaust gas concentration C in the first operating state and the second operating state is the set value C.
a, it determines the failure of the exhaust gas purification apparatus to monitor whether a C d or more.

【0042】本発明においては,排出流路における排出
ガスの濃度Cを直接測定するから,第1,第2発明と同
様に排気流路の洩れなどの不具合による故障を検知でき
るほか,吸着装置の吸着能力低下による故障の場合も故
障検知することができる。その他については,第1発明
と同様である。
In the present invention, since the concentration C of the exhaust gas in the exhaust passage is directly measured, it is possible to detect a failure due to a failure such as a leak in the exhaust passage as in the first and second inventions, and to detect the adsorption device. It is also possible to detect a failure in the case of a failure due to a decrease in adsorption capacity. Others are the same as the first invention.

【0043】次に第4発明の作用効果について述べる。
本発明にかかる排気浄化装置においては,戻し流路にお
ける戻し流量Qr の算出手段と,戻し流路における上記
排出ガスの濃度Cr を測定し第2動作状態における排出
ガスの総量W(戻し量)を積算する積算手段と,上記戻
し量Wを設定値Wo と比較し排気浄化装置の故障を判定
する判定手段とを有する。
Next, the function and effect of the fourth invention will be described.
In the exhaust emission control device according to the present invention, the return flow rate Q r in the return flow path is calculated, and the concentration C r of the exhaust gas in the return flow path is measured to measure the total amount W (return amount) of the exhaust gas in the second operating state. ), And a determining means for comparing the return amount W with a set value W o and determining a failure of the exhaust gas purification device.

【0044】そして,排気浄化装置が正常ならば,図2
0に示すように,上記戻し量Wは設定値Wo を越える値
となるが,何らかの原因で排気浄化装置が故障すると,
戻し量Wは設定値Wo 以下となる。従って両者W,W0
の差又は比率を算出し,この差又は比率が所定値となっ
たとき(W−W0 ≧0,又はW0 /W≧1)に,判定手
段は排気浄化装置が故障であると判定することができ
る。
If the exhaust gas purifying device is normal, FIG.
As shown in 0, the return amount W exceeds the set value W o , but if the exhaust purification device fails for some reason,
The return amount W becomes the set value W o or less. Therefore, both W and W 0
The difference or ratio is calculated, and when this difference or ratio reaches a predetermined value (W−W 0 ≧ 0, or W 0 / W ≧ 1), the determination means determines that the exhaust gas purification device has a failure. be able to.

【0045】上記のように,第4発明の場合は,第1動
作状態と第2動作状態とからなる1つのサイクルを完結
した段階で戻し量Wを算出し排気浄化装置の良否を判定
する。その他については,第3発明と同様である。
As described above, in the case of the fourth aspect of the invention, the return amount W is calculated and the quality of the exhaust gas purification device is judged when one cycle consisting of the first operating state and the second operating state is completed. Others are the same as the third invention.

【0046】なお,第3,第4発明にかかる排気浄化装
置は,請求項4又は請求項5記載のように,第1発明又
は第2発明の故障診断装置に用いたと同様の第2又は第
3の判定条件を併用することが好ましい。これによっ
て,より確実に故障を判定することができると共に,故
障の原因が排気流路の不具合によるものか吸着装置の特
性不良によるものか等を判別することができる。そし
て,このように故障原因を判別することにより,故障修
復を容易に行うことができる。
The exhaust emission control device according to the third and fourth inventions, as described in claim 4 or 5, is the same as the second or the same second one used in the failure diagnosis device of the first invention or the second invention. It is preferable to use the determination conditions of 3 together. As a result, it is possible to more reliably determine the failure, and it is also possible to determine whether the cause of the failure is due to a defect in the exhaust passage or a characteristic failure of the adsorption device. Then, by determining the cause of the failure in this way, the failure can be easily repaired.

【0047】次に第5発明の作用効果について述べる。
第5発明にかかる排気浄化装置においては,吸着装置の
下流側と戻し流路とのそれぞれに流れる排気ガスの温度
Tri,Treを,第2動作状態において測定する。そして
上記排気ガスの温度Tri,Treは,戻し流路の方向弁及
びこの方向弁を作動させる操作手段(例えば開閉手段や
電磁弁等)が正常に働いている場合には,互いに強い相
関関係を有していることが知られている(後述する図2
3参照)。一方,上記戻し流路の方向弁及びこの方向弁
を作動させる操作手段等に故障が生じた場合には,上記
温度Tri,Treの間の相関関係が大きく崩れることが知
られている(後述する図25参照)。
Next, the function and effect of the fifth invention will be described.
In the exhaust emission control device according to the fifth aspect of the present invention, the temperatures Tri and Tre of the exhaust gas flowing respectively on the downstream side of the adsorption device and the return passage are measured in the second operating state. The temperatures Tri and Tre of the exhaust gas have a strong correlation with each other when the directional valve of the return passage and the operating means for operating the directional valve (for example, the opening / closing means and the solenoid valve) are operating normally. It is known to have (see FIG.
3). On the other hand, it is known that when a failure occurs in the directional valve of the return flow path, the operating means for operating the directional valve, or the like, the correlation between the temperatures Tri and Tre is largely lost (described later). (See FIG. 25).

【0048】それ故,故障診断装置は,温度Tri,Tre
の間の相関度を基に装置の故障を判断することが出来
る。また,本発明においては,吸着装置の下流側を流れ
る排気ガスの温度を測定しているから,第1発明に関す
る説明において述べたように,吸着流路と第2メイン流
路を開閉する流路開閉手段の故障をも判定可能である。
そして,この流路開閉手段の故障は,第1動作状態及び
第2動作状態のいずれの状態においても可能である。
Therefore, the failure diagnosing device has the temperatures Tri and Tre.
The device failure can be determined based on the correlation between the two. Further, in the present invention, since the temperature of the exhaust gas flowing on the downstream side of the adsorption device is measured, as described in the description of the first invention, the flow passage for opening and closing the adsorption flow passage and the second main flow passage. The failure of the opening / closing means can also be determined.
The failure of the flow path opening / closing means is possible in both the first operating state and the second operating state.

【0049】[0049]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 第1発明の実施例にかかる排気浄化装置につき,図1〜
図7を用いて説明する。本例は,図1に示すように,エ
ンジン51の排気通路に設けられた自動車の排気浄化装
置1である。排気浄化装置1は,排気通路の上流側に位
置し排気ガスを浄化する触媒装置21を備えた第1メイ
ン流路31と,第1メイン流路31の下流に位置し有害
ガスを吸着する吸着装置22を備えた吸着流路33と,
第1メイン流路31の下流に位置し吸着流路33に並列
な流路を形成する第2メイン流路32と,吸着流路33
及び第2メイン流路32の下流に位置する排出流路34
と,吸着流路33から分岐し触媒装置21の上流側に至
る流路を形成する戻し流路35と,上記流路32,3
3,35を開閉する流路開閉手段23,24と,流路開
閉手段23,24を制御するコントローラ41と,装置
の不具合を自己診断する故障診断装置10とを有する。
Embodiment 1 An exhaust gas purification apparatus according to an embodiment of the first invention is shown in FIGS.
This will be described with reference to FIG. As shown in FIG. 1, this example is an automobile exhaust emission control device 1 provided in an exhaust passage of an engine 51. The exhaust gas purification device 1 is provided with a first main flow passage 31 located upstream of the exhaust passage and provided with a catalyst device 21 for purifying exhaust gas, and an adsorption device located downstream of the first main flow passage 31 for adsorbing harmful gas. Adsorption channel 33 with device 22;
A second main channel 32 that is located downstream of the first main channel 31 and forms a channel parallel to the adsorption channel 33, and an adsorption channel 33.
And a discharge flow path 34 located downstream of the second main flow path 32
And a return channel 35 that branches from the adsorption channel 33 and forms a channel that reaches the upstream side of the catalyst device 21, and the channels 32 and 3
It has flow path opening / closing means 23, 24 for opening / closing 3, 35, a controller 41 for controlling the flow path opening / closing means 23, 24, and a failure diagnosis device 10 for self-diagnosing malfunctions of the device.

【0050】そして,戻し流路35には,吸着流路33
から触媒装置21の上流に至る排気の流れだけを通す方
向弁25が設けられている。コントローラ41は,排気
の低温時においては,流路開閉手段23,24を第1動
作状態に操作し,これによって戻し流路35を閉路し吸
着流路33を通った排気を排出流路34に流通させると
共に,第2メイン流路32から排出流路34に至る排気
の流れを遮断する。また,排気の高温時においては,コ
ントローラ41は,流路開閉手段23,24を第2動作
状態に操作し,これによって第2メイン流路32から排
出流路34に排気を流通させると共に,戻し流路35を
開路して吸着流路33を通った排気を戻し流路35に流
通させ,更に吸着流路33から排出流路34への排気の
流れを遮断する。
Then, in the return flow path 35, the adsorption flow path 33
A directional valve 25 is provided that allows only the flow of exhaust gas from the upstream side to the upstream side of the catalyst device 21 to pass therethrough. When the temperature of the exhaust gas is low, the controller 41 operates the flow path opening / closing means 23, 24 to the first operation state, thereby closing the return flow path 35 and the exhaust gas passing through the adsorption flow path 33 to the exhaust flow path 34. The flow of the exhaust gas from the second main flow path 32 to the exhaust flow path 34 is cut off while being circulated. Further, when the temperature of the exhaust gas is high, the controller 41 operates the flow path opening / closing means 23, 24 to the second operation state, whereby the exhaust gas is circulated from the second main flow path 32 to the exhaust flow path 34 and returned. The flow path 35 is opened, the exhaust gas passing through the adsorption flow path 33 is circulated to the return flow path 35, and the flow of exhaust gas from the adsorption flow path 33 to the discharge flow path 34 is blocked.

【0051】一方,故障診断装置10は,吸着装置22
の温度を測定し,上記第1動作状態においては,上記温
度の上昇速度Vt が設定値Vt0以下である場合に装置故
障であると判定し,上記第2動作状態においては,上記
昇温速度Vt が所定の上限値Vt1以上もしくは所定の下
限値Vt2以下である場合に装置故障であると判定する判
定手段を有している。
On the other hand, the failure diagnosing device 10 includes the suction device 22.
The temperature was measured, in the first operating state, it is determined to be a device failure if the rising speed V t of the temperature is equal to or smaller than the set value V t0, in the above-described second operating state, the Atsushi Nobori It has a determination means for determining that the device is in failure when the speed V t is equal to or higher than a predetermined upper limit value V t1 or lower than a predetermined lower limit value V t2 .

【0052】以下それぞれについて説明を補足する。図
1に示すように,エンジン51の排気管には,排気マニ
ホルド52の直後の位置に触媒装置21を配置してあ
る。また,排気管における触媒装置21の下流には,大
径部を設けてあり,この中に吸着装置22を収納した吸
着流路33と第2メイン流路32が形成されている。吸
着装置22はステンレス鋼またはコージェライト等のセ
ラミックからなり,大径部の径に合致する半円筒形状を
有し,図2に示すように,平行な多数の通孔221を有
し,吸着剤担持層222にはゼオライト系吸着剤が担持
されている。
A supplementary explanation will be given below for each of these. As shown in FIG. 1, the catalyst device 21 is arranged in the exhaust pipe of the engine 51 immediately after the exhaust manifold 52. Further, a large diameter portion is provided in the exhaust pipe downstream of the catalyst device 21, and an adsorption flow path 33 accommodating the adsorption device 22 and a second main flow path 32 are formed therein. The adsorption device 22 is made of a ceramic such as stainless steel or cordierite, has a semi-cylindrical shape that matches the diameter of the large diameter portion, and has a large number of parallel through holes 221 as shown in FIG. A zeolite-based adsorbent is carried on the carrying layer 222.

【0053】なお,吸着装置22は,上記大径部の形状
に合わせて楕円形状や方形形状とすることができる。そ
して,図1に示すように,吸着装置22の吸着剤担持層
222の後端直後には,第1流路開閉手段23を配設し
てある。触媒装置21と吸着装置22との距離は,触媒
装置21が排気ガスに加熱されて活性化温度に達するタ
イミングと,吸着装置22に担持された吸着剤が加熱さ
れて吸着機能を失うタイミングとがほぼ一致するような
距離に設定される。
The suction device 22 may have an elliptical shape or a rectangular shape according to the shape of the large diameter portion. Then, as shown in FIG. 1, a first flow path opening / closing means 23 is arranged immediately after the rear end of the adsorbent carrying layer 222 of the adsorption device 22. The distance between the catalyst device 21 and the adsorption device 22 depends on the timing at which the catalyst device 21 is heated by the exhaust gas to reach the activation temperature and the timing at which the adsorbent carried by the adsorption device 22 is heated and loses the adsorption function. The distances are set so that they almost match.

【0054】吸着装置22は,第2メイン流路32との
間が隔壁223によって分離・保持されている。隔壁2
23には,図2に示すように,穴224が設けられてい
る。また,図2に示すように,吸着装置22の上流側に
は整流板225が配備されており,吸着装置22に流れ
る排気ガスの流速分布を均一にし,吸着効率を高めてい
る。
The adsorption device 22 is separated and held between the second main flow path 32 and the partition wall 223. Partition 2
As shown in FIG. 2, the hole 23 is provided in the hole 23. Further, as shown in FIG. 2, a flow straightening plate 225 is provided on the upstream side of the adsorption device 22 to make the flow velocity distribution of the exhaust gas flowing through the adsorption device 22 uniform and enhance the adsorption efficiency.

【0055】隔壁223と整流板225とは,図2のよ
うに一体構造でもよいし,分離されていてもよい。ま
た,吸着装置22の内部には,図1に示すように故障診
断装置10を構成する温度センサ15が配備されてお
り,吸着装置22の温度をモニタしている。温度センサ
15は吸着装置22の内部であればどこに配備されてい
てもよく,または,吸着装置22の後方であってかつ流
路開閉手段23の前方であってもよい。
The partition wall 223 and the flow regulating plate 225 may have an integral structure as shown in FIG. 2 or may be separated. Further, as shown in FIG. 1, a temperature sensor 15 constituting the failure diagnosis device 10 is provided inside the adsorption device 22 to monitor the temperature of the adsorption device 22. The temperature sensor 15 may be provided anywhere inside the adsorption device 22, or may be behind the adsorption device 22 and in front of the flow path opening / closing means 23.

【0056】そして,吸着流路33の後端に近い位置か
ら戻し流路35が分岐し,戻し流路35は管内の排気の
流れを一方向に制御する方向弁25と第2流路開閉手段
24を一体化したリード弁26を有しており,排気マニ
ホールド52に連通する。第1流路開閉手段23にはア
クチュエータ231を設けてあり,アクチュエータ23
1はシャフト232により第1流路開閉手段23のブレ
ード230に連結せしめてある。
Then, the return flow path 35 branches from a position near the rear end of the adsorption flow path 33, and the return flow path 35 controls the flow of exhaust gas in the pipe in one direction and the second flow path opening / closing means. It has a reed valve 26 in which 24 is integrated and communicates with the exhaust manifold 52. The first flow path opening / closing means 23 is provided with an actuator 231.
1 is connected to the blade 230 of the first flow path opening / closing means 23 by the shaft 232.

【0057】アクチュエータ231は,これを作動させ
る負圧を供給するための吸気管361,362を経て,
エンジン51上流部のサージタンク53に連通されてい
る。そして,吸気管361と362の間には第1電磁弁
27が配設されている。方向弁25は,戻し流路35か
ら触媒装置21の上流側に向かう排気の流通のみを許容
する。
The actuator 231 passes through intake pipes 361 and 362 for supplying a negative pressure for operating it,
It communicates with a surge tank 53 located upstream of the engine 51. The first solenoid valve 27 is arranged between the intake pipes 361 and 362. The directional valve 25 allows only the flow of exhaust gas from the return passage 35 toward the upstream side of the catalyst device 21.

【0058】第2流路開閉手段24は,負圧で作動する
ダイヤフラム等により作動する。そして,流路開閉手段
24は,これに負圧を供給する吸気管371,372に
より,第1電磁弁27とサージタンク53とをつなぐ吸
気管362に連通し,吸気管371と372の間には第
2電磁弁28が介設されている。
The second flow path opening / closing means 24 is operated by a diaphragm or the like which operates with negative pressure. The flow path opening / closing means 24 communicates with the intake pipe 362 that connects the first electromagnetic valve 27 and the surge tank 53 by the intake pipes 371 and 372 that supply a negative pressure to the intake pipe 371, and between the intake pipes 371 and 372. Is provided with a second solenoid valve 28.

【0059】コントローラ41は,マイクロコンピュー
タ40と図3に示す制御プログラムとからなり,エンジ
ン51や温度センサ15からの信号を受け,運転状態に
応じて電磁弁27,28を開閉制御し,これにより流路
開閉手段23,24を制御する。また,故障診断装置1
0は,マイクロコンピュータ40と,図3に示す故障診
断プログラムとからなる。
The controller 41 is composed of the microcomputer 40 and the control program shown in FIG. 3, receives signals from the engine 51 and the temperature sensor 15, and controls the opening and closing of the solenoid valves 27 and 28 according to the operating state. The flow path opening / closing means 23, 24 are controlled. In addition, the failure diagnosis device 1
0 consists of the microcomputer 40 and the failure diagnosis program shown in FIG.

【0060】次に,故障診断装置10の作動を,図1
と,図3のフローチャートを用いて説明する。図3のス
テップ601でエンジン始動(IG=イグニッション
ON)を確認すると,ステップ602に進む。ステップ
602では,温度センサ15からの信号を受け,その温
度Tの値をチェックし吸着装置22における吸着の可否
を判断する。
Next, referring to FIG.
And will be described with reference to the flowchart of FIG. In step 601, the engine is started (IG = ignition).
When it is confirmed to be ON, the process proceeds to step 602. In step 602, the signal from the temperature sensor 15 is received, the value of the temperature T thereof is checked, and it is determined whether or not the adsorption by the adsorption device 22 is possible.

【0061】エンジンの冷間始動の場合には,吸着装置
22は冷えており,上記温度T(℃)が吸着可能温度T
a (℃)以下であると,ステップ603以下の吸着工程
に進み,ステップ603で第1電磁弁27が開弁され,
吸気管361,362が連通する。これによりサージタ
ンク53の負圧が吸気管362,361を経てアクチュ
エータ231に作用してシャフト232を引っ張り,第
1流路開閉手段23は,図1の破線に示す位置(流路開
閉手段23 閉)となる。
When the engine is cold started, the adsorption device 22 is cold, and the temperature T (° C.) is the adsorbable temperature T.
If it is a (° C.) or less, the adsorption process proceeds to step 603 and subsequent steps, and the first solenoid valve 27 is opened in step 603,
The intake pipes 361 and 362 communicate with each other. As a result, the negative pressure of the surge tank 53 acts on the actuator 231 via the intake pipes 362 and 361 to pull the shaft 232, and the first flow path opening / closing means 23 moves to the position shown by the broken line in FIG. ).

【0062】エンジン51の冷間始動直後は排気ガス温
度は低く,エンジン51は多量のコールドHCを含んだ
排気ガスを排出する。そして,排気ガス温度が低い間
は,触媒装置21は活性化温度に達しないため,コール
ドHCは触媒装置21でほとんど浄化されずに第1メイ
ン流路31を流れる。
Immediately after the cold start of the engine 51, the exhaust gas temperature is low, and the engine 51 discharges the exhaust gas containing a large amount of cold HC. While the exhaust gas temperature is low, the catalyst device 21 does not reach the activation temperature, so that the cold HC flows through the first main flow path 31 without being purified by the catalyst device 21.

【0063】この排気ガス流は,吸着装置22のゼオラ
イトを担持してない吸着剤無担持層229(図2)から
ゼオライトを担持した吸着剤担持層220に流れ,コー
ルドHCは吸着剤に吸着される。そして,コールドHC
が除去された排気ガスは排出流路34を経て大気中に放
出される。この時,整流板225が排気ガスの流れを整
流しているため,排気ガスは均一な流速分布となって,
吸着装置22内を流れている。
This exhaust gas flow flows from the adsorbent-free layer 229 (FIG. 2) that does not support zeolite in the adsorption device 22 to the adsorbent-supporting layer 220 that supports zeolite, and cold HC is adsorbed by the adsorbent. It And cold HC
The exhaust gas from which is removed is discharged into the atmosphere through the exhaust passage 34. At this time, since the straightening plate 225 straightens the flow of the exhaust gas, the exhaust gas has a uniform flow velocity distribution,
It flows in the adsorption device 22.

【0064】上記のようにコールドHCを吸着している
間,吸着装置22は排気ガスによって熱せられる。この
時,図4に示すように流路開閉手段23からの洩れ流量
aが増加していると,吸着装置22内に流れる排気ガ
ス量が減少し,その昇温速度Vt が遅れる。その結果,
図5に示すように,吸着装置22の昇温速度Vt は洩れ
流量Qa がない場合に比べ,小さくなる。
While adsorbing the cold HC as described above, the adsorbing device 22 is heated by the exhaust gas. At this time, the leakage flow rate Q a of the flow path opening and closing means 23 as shown in FIG. 4 is increased, the amount of exhaust gas flowing through the adsorbing device 22 is reduced, the heating rate V t is delayed. as a result,
As shown in FIG. 5, the temperature rising rate V t of the adsorption device 22 becomes smaller than that when there is no leakage flow rate Q a .

【0065】上記昇温速度Vt は温度センサ15の信号
から計算できる。上記洩れ流量Qaはアクチュエータ2
31,シャフト232,ブレード230などが破損した
場合に増加するが,この洩れ流量Qa が許容値Qa0を越
えた場合,吸着装置22の昇温速度Vt は許容値Vt0
下になる。
The temperature rising rate V t can be calculated from the signal from the temperature sensor 15. The above leakage flow rate Q a is the actuator 2
31, the shaft 232 will be increased when such blade 230 is damaged, the leakage flow rate Q a may exceed the allowable value Q a0, heating rate V t of the adsorber 22 becomes less than the allowable value V t0.

【0066】そして,吸着されるコールドHCの量が減
少し,全体の浄化能力が低下する。この不具合は,図5
に示すようにVt がVt0よりも小さくなることによって
判断することができる。即ち,ステップ604におい
て,昇温速度Vt がVt0以下である場合には,排気浄化
装置1の故障と判定し,ステップ605で第1電磁弁2
7を閉路して第2動作状態(定常運転状態)とする。そ
して,ステップ606で故障情報を出力する。上記のよ
うな一連の処理により,有害ガス吸着工程における装置
の故障の有無を診断できる。
Then, the amount of cold HC adsorbed is reduced, and the overall purification capacity is reduced. This defect is shown in Figure 5.
It can be determined by the fact that V t becomes smaller than V t0 as shown in FIG. That is, in step 604, if the temperature increase rate V t is equal to or lower than V t0, it is determined that the exhaust purification device 1 is out of order, and in step 605, the first solenoid valve 2 is operated.
7 is closed to enter the second operation state (steady operation state). Then, in step 606, the failure information is output. Through the series of processes described above, it is possible to diagnose the presence or absence of a device failure in the harmful gas adsorption process.

【0067】一方,エンジン51が暖機して,ステップ
602において,前記温度Tが吸着装置22のHC吸着
可能温度Ta を越えると,ステップ610に進み,第1
電磁弁27が閉弁される。これによりアクチュエータ2
31への負圧の供給が遮断され,アクチュエータ231
は内蔵のスプリングの弾性力により,シャフト232を
押す。
On the other hand, when the engine 51 warms up and the temperature T exceeds the HC adsorbable temperature T a of the adsorption device 22 in step 602, the process proceeds to step 610 and the first
The solenoid valve 27 is closed. This allows the actuator 2
The supply of the negative pressure to 31 is cut off, and the actuator 231
Pushes the shaft 232 by the elastic force of the built-in spring.

【0068】そのため,第1流路開閉手段23は実線位
置(流路開閉手段23 開位置)となり,排気ガスの流
路が切換えられ,吸着装置22の存在しない第2メイン
流路32を流れる。このときは,触媒装置21は既に活
性化温度に達しており,排気ガス中のHCは触媒装置2
1で浄化され,HCをほとんど含まない排気ガスが,第
2メイン流路32から排出流路34を経て大気中に放出
される。
Therefore, the first flow path opening / closing means 23 is in the solid line position (flow path opening / closing means 23 open position), the flow path of the exhaust gas is switched, and flows through the second main flow path 32 where the adsorption device 22 does not exist. At this time, the catalyst device 21 has already reached the activation temperature, and the HC in the exhaust gas remains in the catalyst device 2.
The exhaust gas which is purified by 1 and contains almost no HC is discharged from the second main flow path 32 to the atmosphere through the discharge flow path 34.

【0069】そして,ステップ611〜613におい
て,吸着装置22の温度Tが脱離浄化終了温度Td を越
えた値になるまで次の操作を続ける。即ち,第1電磁弁
27が閉弁された直後から温度センサ15の値を読み込
み,この吸着装置22の温度Tをモニタし,ステップ6
11においてこの値Tが上記Td 以下であれば,ステッ
プ612に進み第2電磁弁28が開弁される。これによ
り吸入管272と吸入管271が連通し,サージタンク
53から第2流路開閉手段24に負圧が供給され,流路
開閉手段24が開弁する。
Then, in steps 611 to 613, the next operation is continued until the temperature T of the adsorption device 22 reaches a value exceeding the desorption purification finishing temperature T d . That is, immediately after the first electromagnetic valve 27 is closed, the value of the temperature sensor 15 is read, the temperature T of the adsorption device 22 is monitored, and step 6
If the value T is less than or equal to the above T d in 11, the second solenoid valve 28 is opened in step 612. As a result, the suction pipe 272 and the suction pipe 271 communicate with each other, negative pressure is supplied from the surge tank 53 to the second passage opening / closing means 24, and the passage opening / closing means 24 opens.

【0070】一方,吸着装置22の側面では,既に高温
となった排気ガスが第2メイン流路32を流通してい
る。この温度の排気ガスは図2に示す隔壁223の穴2
24を介し,吸着装置22の吸着剤担持層220と接し
ている。そのため,排気ガスの熱は吸着剤担持層220
に良好に伝えられ吸着剤が昇温してHCの脱離を促進す
る。
On the other hand, on the side surface of the adsorption device 22, the exhaust gas which has already become hot flows through the second main flow path 32. Exhaust gas of this temperature is used for the holes 2 of the partition wall 223 shown in FIG.
It is in contact with the adsorbent support layer 220 of the adsorption device 22 via 24. Therefore, the heat of the exhaust gas is absorbed by the adsorbent support layer 220.
The temperature of the adsorbent rises and the desorption of HC is promoted.

【0071】このとき,上記のように流路開閉手段24
は開弁されているから排気マニホールド52内に発生す
る排気脈動は戻し流路35を介して方向弁25を断続的
に開弁させる。これにより吸着装置22の吸着剤担持層
220の吸着剤から脱離したHCは戻し流路35を経て
排気マニホールド52に流入する。そしてエンジン51
からの排気ガス中のHCとともに触媒装置21で浄化さ
れる。
At this time, as described above, the flow path opening / closing means 24
Since the valve is open, the exhaust pulsation generated in the exhaust manifold 52 causes the directional valve 25 to be intermittently opened via the return passage 35. As a result, the HC desorbed from the adsorbent of the adsorbent carrier layer 220 of the adsorbing device 22 flows into the exhaust manifold 52 via the return flow path 35. And engine 51
It is purified by the catalyst device 21 together with HC in the exhaust gas from.

【0072】そして,図6に示すように流路開閉手段2
3からの洩れ流量Qd (図4)が許容値Qd0以上であれ
ば,吸着装置22の昇温速度Vtdは許容値Vt1以上にな
る。即ち,アクチュエータ231,シャフト232,ブ
レード230などが破損した場合は,上記洩れ流量Qd
が許容値Qd0を越え,排出流路34には通常の流量以上
に排気ガスが流れる。
Then, as shown in FIG. 6, the flow path opening / closing means 2
If the leakage flow rate Q d from FIG. 3 (FIG. 4) is the allowable value Q d0 or more, the temperature rising rate V td of the adsorption device 22 becomes the allowable value V t1 or more. That is, when the actuator 231, the shaft 232, the blade 230, etc. are damaged, the leakage flow rate Q d
Exceeds the allowable value Qd0 , and exhaust gas flows through the discharge passage 34 at a flow rate higher than the normal flow rate.

【0073】また,触媒装置21へ還流されるHCの戻
し量が減少し,全体の浄化能力が低下する。これは図6
に示すようにVtdがVt1以上となることによって判断で
きる。即ちステップ613の結果がNO(否)であるこ
とによって,装置が故障であると判定することができ
る。
Further, the amount of HC returned to the catalyst device 21 is reduced, and the overall purification capacity is reduced. This is Figure 6
It can be judged by the fact that V td becomes V t1 or more as shown in FIG. That is, since the result of step 613 is NO (no), it can be determined that the device is in failure.

【0074】また,上記流路開閉手段23のアクチュエ
ータ231,シャフト232,ブレード230が正常に
作動していても,リード弁26が故障すると触媒装置2
1へ還流される排気ガス流量Qr (図4)が減少する。
そして,吸着装置22に対する伝熱が悪くなり,上記V
tdが低くなる。即ち上記戻し流量Qr が許容値Qr0以下
になると,図7に示すように,昇温速度Vtdは許容値V
t2以下になる。それ故,リード弁26の故障の場合もV
tdがVt2以下になることによって検知することができ
る。
Even if the actuator 231, the shaft 232, and the blade 230 of the flow path opening / closing means 23 are operating normally, if the reed valve 26 fails, the catalyst device 2
The exhaust gas flow rate Q r (FIG. 4) recirculated to 1 decreases.
Then, the heat transfer to the adsorption device 22 becomes poor, and the V
td becomes low. That is, the return flow Q r becomes equal to or less than the allowable value Q r0, as shown in FIG. 7, heating rate V td allowable value V
It becomes less than t2 . Therefore, even if the reed valve 26 fails, V
It can be detected when td becomes V t2 or less.

【0075】即ち,ステップ613でNO(否)と判定
された場合には,ステップ614において第2電磁弁2
8を閉じて定常状態とし,ステップ606にて装置故障
情報を出力する。流路開閉手段23が開位置(実線図
示)に切換えられて上記HC脱離浄化工程に入った後,
正常にステップ613の条件を満足し続ける場合には,
やがてステップ611においてHCの脱離浄化が完了す
る温度Td に到達し(T>Td ),ステップ615に進
み第2電磁弁28および流路開閉手段24を閉じて定常
の運転状態となる。
That is, when it is determined NO in step 613, the second solenoid valve 2 is operated in step 614.
8 is closed to bring it to a steady state, and device failure information is output in step 606. After the flow path opening / closing means 23 is switched to the open position (shown by the solid line) to enter the HC desorption purification step,
When the condition of step 613 is normally satisfied,
Eventually, in step 611, the temperature reaches the temperature T d at which the desorption and purification of HC is completed (T> T d ), and the routine proceeds to step 615, where the second electromagnetic valve 28 and the flow passage opening / closing means 24 are closed to enter a steady operating state.

【0076】上記のように本例の排気浄化装置1では,
触媒が活性化温度に達するまでのエンジン冷間時にもコ
ールドHCの放出が防止される。そして本装置1では,
コールドHCを吸着剤に吸着させる時も,HCを脱離浄
化させる時も,故障診断装置10が吸着装置22の昇温
温度Vt をモニタして装置の故障を自己診断することが
できる。上記のように,本例によれば,装置の自己診断
機能を有し排気浄化特性の良好な排気浄化装置1を提供
することができる。
As described above, in the exhaust emission control device 1 of this example,
Release of cold HC is prevented even when the engine is cold until the catalyst reaches the activation temperature. And in this device 1,
Even when adsorbing cold HC adsorbent, even when for desorption purifying HC, can be failure diagnosis device 10 is self-diagnosis device failure by monitoring the heating temperature V t of the adsorption device 22. As described above, according to this example, it is possible to provide the exhaust gas purification device 1 having a self-diagnosis function of the device and having excellent exhaust gas purification characteristics.

【0077】実施例2 本例は,図8,図9に示すように,実施例1において,
故障診断装置11を変更した第2発明の実施例である。
即ち,図8に示すように,本例の故障診断装置11は,
吸着装置22の前後の差圧を測定する差圧計16を有
し,これによって吸着装置22を通る流量Qt を測定
し,図9に示す故障診断のフローチャートに従って排気
浄化装置1の故障を診断する。
Example 2 In this example, as shown in FIG. 8 and FIG.
It is the Example of the 2nd invention which changed the failure diagnostic apparatus 11.
That is, as shown in FIG. 8, the failure diagnosis device 11 of this example is
A differential pressure gauge 16 for measuring the differential pressure across the adsorption device 22 is provided to measure the flow rate Q t through the adsorption device 22 and to diagnose the failure of the exhaust gas purification device 1 according to the failure diagnosis flowchart shown in FIG. .

【0078】図8のシステム構成図および図9のフロー
チャートにより,上記実施例1と本例との相違点を中心
に説明する。吸着装置22の内部にはマノメータ(差圧
計)16が配備されており,吸着装置22の通孔221
(図2)を流れる排気ガスの差圧をモニタしている。
Differences between the first embodiment and the present embodiment will be mainly described with reference to the system configuration diagram of FIG. 8 and the flowchart of FIG. A manometer (differential pressure gauge) 16 is provided inside the adsorption device 22, and a through hole 221 of the adsorption device 22 is provided.
The differential pressure of the exhaust gas flowing through (Fig. 2) is monitored.

【0079】始めに,ステップ601においてエンジン
51が始動する(IG.ON)と,コントローラ41は
図示しないエンジン水温センサや排気温センサからの信
号を受け,吸着装置22の吸着の可否を判断する。即
ち,ステップ621において,例えば上記水温センサの
値Tw (℃)が吸着可能温度Twa(℃)以下であると,
ステップ603以下の工程に進む。ステップ603で第
1電磁弁27が開弁され,排気ガスは吸着装置22を流
れ,排気ガス中のコールドHCが吸着される。
First, when the engine 51 is started (IG.ON) in step 601, the controller 41 receives signals from an engine water temperature sensor and an exhaust temperature sensor (not shown), and determines whether or not adsorption by the adsorption device 22 is possible. That is, in step 621, for example, if the value T w (° C.) of the water temperature sensor is equal to or lower than the adsorbable temperature T wa (° C.),
The process proceeds to the steps following step 603. In step 603, the first electromagnetic valve 27 is opened, the exhaust gas flows through the adsorption device 22, and the cold HC in the exhaust gas is adsorbed.

【0080】続くステップ623において,エンジン始
動後の時間tをチェックし,所定の時間(ta)を経過
した場合には,吸着工程を完了し,ステップ610に進
み,コントローラ41からの信号で第1電磁弁27が閉
弁し,流路開閉手段23は実線の定常位置に切換えられ
る。そして,既に高温となって活性化した触媒装置21
でHCを浄化された排気ガスは第2メイン流路32を流
れる。
In the following step 623, the time t after the engine is started is checked, and when the predetermined time (ta) has elapsed, the adsorption process is completed, the process proceeds to step 610, and the first signal is sent from the controller 41. The solenoid valve 27 is closed, and the flow path opening / closing means 23 is switched to the steady position indicated by the solid line. Then, the catalyst device 21 that has already become hot and activated
The exhaust gas from which the HC has been purified flows through the second main flow path 32.

【0081】一方,ステップ623で上記所定の時間t
aに達していないと判定された場合には,吸着工程を継
続する。そしてコールドHCを吸着している間,吸着装
置22には排気ガスが流れているため,マノメータ16
には差圧が生じる。この差圧は吸着装置22内を流れた
排気ガス流量Qt との間に一定の関係を有するから,こ
れによって流量Qt を知ることができる。
On the other hand, at step 623, the predetermined time t
If it is determined that the value has not reached a, the adsorption process is continued. Since the exhaust gas is flowing through the adsorption device 22 while adsorbing the cold HC, the manometer 16
A differential pressure is generated at. This pressure difference is because having a constant relationship between the exhaust gas flow rate Q t flowing through the suction device 22, whereby it is possible to know the flow rate Q t.

【0082】そして,流路開閉手段23からの洩れ流量
a (図4)が増加すると,図10に示すように,上記
t は減少する(エンジンから排出される排気ガスの総
量QE は(Qt +Qa )であるため)。もしアクチュエ
ータ231,シャフト232,ブレード230などが破
損した場合,上記Qa は許容値Qa0以上になる。そし
て,図10に示すように,Qt はQ0 以下になり,吸着
されるコールドHCの量が減少し,全体の浄化能力が低
下する。即ちステップ624で条件を満足する場合に
は,排気浄化装置1の故障と判定することができる。
When the leakage flow rate Q a (FIG. 4) from the flow path opening / closing means 23 increases, the Q t decreases as shown in FIG. 10 (the total amount Q E of exhaust gas discharged from the engine is (Because it is Q t + Q a ). If the actuator 231, shaft 232, if such blade 230 is damaged, the Q a is equal to or greater than the allowable value Q a0. Then, as shown in FIG. 10, Q t becomes Q 0 or less, the amount of cold HC adsorbed decreases, and the overall purification capacity decreases. That is, if the conditions are satisfied in step 624, it can be determined that the exhaust emission control device 1 has failed.

【0083】ステップ624の条件を満足する場合に
は,ステップ605に進み第1電磁弁27を閉じて定常
状態とした後,ステップ606で装置故障の情報を出力
する。一方,ステップ623において,前記のようにエ
ンジン始動後に所定の時間taが経過した場合には,エ
ンジンは暖機状態となっているから,前記のようにステ
ップ610に進み第1電磁弁27を閉弁して脱離工程に
入る。
When the condition of step 624 is satisfied, the routine proceeds to step 605, where the first electromagnetic valve 27 is closed to bring it to a steady state, and then, at step 606, the information of the device failure is output. On the other hand, in step 623, when the predetermined time ta has elapsed after the engine has been started as described above, the engine is in a warmed-up state, and thus the process proceeds to step 610 as described above to close the first solenoid valve 27. Valve to enter the desorption process.

【0084】そして,続くステップ612でコントロー
ラ41が第2電磁弁28を開弁させる。その結果,上記
実施例1と同様に,第2流路開閉手段24が開弁され,
方向弁25が断続的に開弁されて,吸着剤から脱離した
HCは排気マニホールド52に流入し,エンジン51か
らの排気ガス中のHCとともに触媒装置21で浄化され
る。
Then, in the following step 612, the controller 41 opens the second electromagnetic valve 28. As a result, like the first embodiment, the second flow path opening / closing means 24 is opened,
The directional valve 25 is opened intermittently, and the HC desorbed from the adsorbent flows into the exhaust manifold 52 and is purified by the catalyst device 21 together with the HC in the exhaust gas from the engine 51.

【0085】次にステップ632において,再び運転開
始後の時間tをチェックする。そして第2電磁弁28の
開弁後にHCが完全に脱離・浄化するに至る時間(ta
+td)を経過した後は,ステップ615に進み,第2
電磁弁28はコントローラ41からの制御信号で閉じら
れ,これにより,第1流路開閉手段24は閉弁し,一連
の浄化工程が完了し定常の運転状態とする。
Next, at step 632, the time t after the start of operation is checked again. Then, after the opening of the second solenoid valve 28, the time until the HC is completely desorbed and purified (ta
+ Td), the process proceeds to step 615, where the second
The electromagnetic valve 28 is closed by a control signal from the controller 41, whereby the first flow path opening / closing means 24 is closed, and a series of purification steps are completed and a steady operating state is achieved.

【0086】一方,HCの脱離・浄化工程の間(従って
t≦ta+td),吸着装置22には還流排気ガスが流
れているため,マノメータ16には差圧が生じる。この
差圧は,前記のように吸着装置22内を流れる排気ガス
流量Qtdに比例した値を示す。そして,図11に示すよ
うに,流路開閉手段23からの洩れ流量Qd (図4)が
増加すると,上記流量Qtdは増加する。
On the other hand, during the HC desorption / purification process (hence, t ≦ ta + td), since the recirculated exhaust gas is flowing through the adsorption device 22, a differential pressure is generated in the manometer 16. This differential pressure has a value proportional to the exhaust gas flow rate Q td flowing in the adsorption device 22 as described above. Then, as shown in FIG. 11, when the leakage flow rate Q d from the flow path opening / closing means 23 (FIG. 4) increases, the flow rate Q td increases.

【0087】もしもアクチュエータ231,シャフト2
32,ブレード230などが破損した場合には,上記Q
d は許容値Qd0以上になり,そのため流量Qtdは図11
に示すようにQ1 以上になる。そのため,戻し流路35
から還流されるHCの量が減少し,全体の浄化能力が低
下する。
If actuator 231, shaft 2
If the 32 or the blade 230 is damaged,
d becomes the allowable value Q d0 or more, so the flow rate Q td is as shown in FIG.
It becomes Q 1 or more as shown in. Therefore, the return channel 35
The amount of HC that is returned from the tank decreases, and the overall purification capacity decreases.

【0088】それ故,吸着装置22内の差圧をモニタす
ることによって上記装置の故障を診断することができ
る。即ち,ステップ633において,脱離工程における
通過流量QtdがQ1 以上である場合には,ステップ61
4において第2電磁弁(流路開閉手段24)を閉路した
後,ステップ606において装置故障情報を出力する。
Therefore, by monitoring the pressure difference in the adsorption device 22, it is possible to diagnose the malfunction of the device. That is, in step 633, if the passing flow rate Q td in the desorption process is equal to or more than Q 1 , step 61
After closing the second solenoid valve (flow path opening / closing means 24) in 4, the device failure information is output in step 606.

【0089】一方,上記アクチュエータ231,シャフ
ト232,ブレード230が正常に作動していても,リ
ード弁26が故障すると戻し流路35から触媒装置21
へ還流される排気ガス流量Qr (図4)が減少する。一
方,吸着装置22内を流れる排気ガス流量Qtdと上記戻
し流量Qr とはほぼ等しく,上記Qtdが,図12に示す
許容値Q2 以下になると,吸着装置22の昇温が遅れ
る。そして,HCを離脱・浄化する設定時間(tatd
を過ぎても脱離・浄化が完了しないという不具合を生ず
る。
On the other hand, even if the actuator 231, the shaft 232, and the blade 230 are operating normally, if the reed valve 26 fails, the return passage 35 causes the catalyst device 21 to move.
The flow rate Q r (Fig. 4) of the exhaust gas recirculated to is reduced. On the other hand, the exhaust gas flow rate Q td flowing in the adsorption device 22 and the return flow rate Q r are substantially equal to each other, and when Q td becomes equal to or less than the allowable value Q 2 shown in FIG. 12, the temperature rise of the adsorption device 22 is delayed. Then, set time ( ta + td ) for removing and purifying HC
Even after passing, the problem that desorption / purification is not completed occurs.

【0090】従って,リード弁26の故障についても通
過流量Qtdが設定値Q2 以下になることによって判断す
ることができる。即ち,ステップ633において,通過
流量QtdがQ2 以下である場合には,ステップ614,
606に進み装置故障の情報を出力する。
Therefore, the failure of the reed valve 26 can also be judged by the passage flow rate Q td being equal to or less than the set value Q 2 . That is, in step 633, if the passing flow rate Q td is equal to or less than Q 2 , step 614,
Proceeding to 606, the information about the device failure is output.

【0091】本実施例は吸着装置22内の通過流量を計
測するため,HCの吸着時,脱離・浄化時のどちらの場
合においても流路開閉手段23からの漏れを高精度に検
出でき,かつリード弁26の異常も検出できるため,第
1の実施例よりもさらに故障診断が正確になる利点があ
る。その他については,実施例1と同様である。
In this embodiment, since the flow rate in the adsorption device 22 is measured, the leakage from the flow path opening / closing means 23 can be detected with high accuracy in both cases of adsorbing HC and desorbing / purifying it. Moreover, since the abnormality of the reed valve 26 can be detected, there is an advantage that the failure diagnosis is more accurate than that of the first embodiment. Others are the same as those in the first embodiment.

【0092】実施例3 本例は,図13,図14に示すように,実施例1におい
て故障診断装置12を変更した第3発明の実施例であ
る。即ち,図13に示すように,本例の故障診断装置1
2は,HCセンサ17によって排出流路34におけるH
C濃度を検出し,図14に示す故障診断のフローチャー
トに従って排気浄化装置1の故障を診断する。
Embodiment 3 This embodiment is an embodiment of the third invention in which the failure diagnosis device 12 in Embodiment 1 is changed as shown in FIGS. 13 and 14. That is, as shown in FIG. 13, the failure diagnosis device 1 of this example
2 is H in the discharge flow path 34 by the HC sensor 17.
The C concentration is detected, and the failure of the exhaust emission control device 1 is diagnosed according to the flowchart of the failure diagnosis shown in FIG.

【0093】ステップ601において,エンジン51が
始動する(=IG.ON)とステップ621に進む。そ
して,ステップ621で図示しないエンジン水温センサ
や排気温センサからの信号を受け,コントローラ41に
より吸着装置22の吸着の可否が判断される。例えば水
温センサの値Tw (℃)が吸着可能温度とTwa(℃)以
下であると,HCの吸着工程であると判断し,次のステ
ップ603に進み第1電磁弁27が開弁され,排気ガス
は吸着装置22を流れ,排気ガス中のコールドHCが吸
着される。
At step 601, when the engine 51 is started (= IG.ON), the routine proceeds to step 621. Then, in step 621, the controller 41 determines whether or not the adsorption of the adsorption device 22 is possible by receiving signals from an engine water temperature sensor and an exhaust temperature sensor (not shown). For example, when the value T w (° C.) of the water temperature sensor is equal to or lower than the adsorbable temperature and T wa (° C.), it is determined that the HC adsorbing process is being performed, the process proceeds to the next step 603, and the first solenoid valve 27 is opened. The exhaust gas flows through the adsorption device 22, and the cold HC in the exhaust gas is adsorbed.

【0094】そして,コールドHCを吸着している間,
ステップ641において排気ガスのHC濃度CはHCセ
ンサ17によって検知され,故障診断装置12にモニタ
されている。この濃度Cの変化の一例を図15に示す。
HC濃度Cはエンジン51の始動直後から吸着装置22
の吸着により小さくなっており,その値は正常では許容
値Ca 以上となることはない。
While adsorbing the cold HC,
In step 641, the HC concentration C of the exhaust gas is detected by the HC sensor 17 and monitored by the failure diagnosis device 12. An example of this change in the density C is shown in FIG.
The HC concentration C is measured by the adsorption device 22 immediately after the engine 51 is started.
It becomes smaller due to the adsorption of No., and the value does not exceed the allowable value C a in the normal case.

【0095】しかし,第1流路開閉手段23からの洩れ
流量が増加したり,吸着装置22の破損等によって図2
に示す穴224から排気ガスが洩れるようなことがある
と,吸着されるコールドHCの量が減少し,Cは許容値
a 以上になる。そのため,ステップ641において,
HCセンサ17の濃度Cをチェックし,上記HC濃度C
が設定値Ca より小さいかどうかを監視する。
However, the leakage flow rate from the first flow path opening / closing means 23 is increased, the adsorption device 22 is damaged, etc.
If the exhaust gas leaks from the hole 224 shown in (4), the amount of cold HC adsorbed decreases and C exceeds the allowable value C a . Therefore, in step 641,
Check the concentration C of the HC sensor 17, and check the above HC concentration C
Is smaller than the set value C a .

【0096】もし,HC濃度CがCa 以上であれば,実
施例1,実施例2と同様にステップ605,606に進
み,装置故障情報を出力する。即ち,上記のように流路
開閉手段23が不具合となった場合には,ステップ64
1においてHC濃度Cを監視することにより装置故障を
検出することができる。
If the HC concentration C is equal to or higher than C a , the process proceeds to steps 605 and 606 as in the first and second embodiments, and device failure information is output. That is, when the flow path opening / closing means 23 becomes defective as described above, step 64
By monitoring the HC concentration C in No. 1, the device failure can be detected.

【0097】一方,ステップ641においてHC濃度が
正常値(C<Ca )である場合にはステップ623に進
み,ステップ623において,始動後の時間tをチェッ
クし,所定時間ta内(t≦ta)であれば,ステップ
603を経て前記HC濃度Cのチェックルーチン(ステ
ップ641)を継続する。上記所定時間taは,前記の
ようにHC吸着を継続すべき時間である。
On the other hand, if the HC concentration is the normal value (C <C a ) in step 641, the process proceeds to step 623, and in step 623, the time t after the start is checked, and within a predetermined time ta (t ≦ ta If it is), the routine for checking the HC concentration C (step 641) is continued through step 603. The predetermined time ta is the time for which HC adsorption should be continued as described above.

【0098】一方,ステップ623において,エンジン
始動後,所定の時間(ta)が経過すると,ステップ6
10に進みコントローラ41からの信号により第1電磁
弁27を閉弁し,流路開閉手段23は図13の実線の位
置に切換えられる。これにより,排気ガスは,既に高温
となって活性化した触媒装置21でHCを浄化されて第
2メイン流路32を流れる。
On the other hand, when a predetermined time (ta) elapses after the engine is started in step 623, step 6
10, the first electromagnetic valve 27 is closed by the signal from the controller 41, and the flow path opening / closing means 23 is switched to the position shown by the solid line in FIG. As a result, the exhaust gas has its HC purified by the catalyst device 21, which has already become hot and has been activated, and flows through the second main flow path 32.

【0099】そして,ステップ612において,第2流
路開閉手段24を開状態にする。その結果,方向弁25
は断続的に開弁されて,吸着装置22から脱離したHC
は,排気マニホールド52に流入し,エンジン51から
の排気ガス中のHCと共に触媒装置21で浄化される。
Then, in step 612, the second flow path opening / closing means 24 is opened. As a result, the directional valve 25
HC which is intermittently opened and desorbed from the adsorption device 22
Enters the exhaust manifold 52 and is purified by the catalyst device 21 together with HC in the exhaust gas from the engine 51.

【0100】そして,ステップ645において,HC脱
離工程におけるHC濃度Cがチェックされる。HC脱離
工程におけるHC濃度Cは,図16に示すように,正常
ならば極めて小さな値を示す。従ってもしHC濃度Cが
設定値Cd 以上であれば,異常であり,ステップ61
4,606に進み第2流路開閉手段24を閉路して定常
状態とし,装置故障情報を出力する。なお,上記設定値
d は,前記設定値Ca よりも小さな値である。
Then, in step 645, the HC concentration C in the HC desorption process is checked. As shown in FIG. 16, the HC concentration C in the HC desorption step shows an extremely small value under normal conditions. Therefore, if the HC concentration C is greater than or equal to the set value C d , it is abnormal and step 61
4, 606, the second flow path opening / closing means 24 is closed to be in a steady state, and device failure information is output. The set value C d is smaller than the set value C a .

【0101】HC濃度Cが設定値Cd 以上となる原因に
は,流路開閉手段23からの洩れ流量Qd の増加,吸着
装置22の破損による穴224(図2)からの排気の洩
れ,戻し流路35の閉塞による吸着装置22の上流側か
ら第2メイン流路32へのHCの洩れ,などの不具合が
ある。
The causes of the HC concentration C exceeding the set value C d include the increase of the leakage flow rate Q d from the flow path opening / closing means 23, the leakage of the exhaust gas from the hole 224 (FIG. 2) due to the damage of the adsorption device 22, There is a problem such as leakage of HC from the upstream side of the adsorption device 22 to the second main flow path 32 due to blockage of the return flow path 35.

【0102】上記のように,本例の故障診断装置12に
よれば,流路開閉手段23の不良,吸着装置22の不
良,戻し流路35の閉塞などによる装置故障を検知する
ことができる。一方,ステップ645においてHC濃度
が正常な状態を継続し,ステップ646において脱離工
程の時間(ta+td)が経過した場合には,ステップ
615に進み,定常運転時のように流路開閉手段24を
閉じて故障情報を出力することなく故障診断ルーチンを
終了する(故障なし)。
As described above, according to the failure diagnosis device 12 of the present embodiment, it is possible to detect a device failure due to a failure of the flow path opening / closing means 23, a failure of the adsorption device 22, a blockage of the return flow path 35, or the like. On the other hand, if the HC concentration continues to be normal in step 645 and the desorption process time (ta + td) has elapsed in step 646, the process proceeds to step 615, and the flow path opening / closing means 24 is opened as in the steady operation. The failure diagnosis routine is terminated without closing and outputting failure information (no failure).

【0103】本実施例は第1の実施例に比べ,吸着装置
22後方のHC濃度を直接計測するため,吸着時,脱離
・浄化時のどちらにおいてもHCの洩れを高精度に検出
でき,第1の実施例よりもさらに故障診断が正確になる
利点がある。その他については,実施例1と同様であ
る。
Compared to the first embodiment, this embodiment directly measures the HC concentration behind the adsorption device 22, so that the HC leakage can be detected with high accuracy during both adsorption and desorption / purification. There is an advantage that the fault diagnosis is more accurate than that of the first embodiment. Others are the same as those in the first embodiment.

【0104】実施例4 本例は,図17,図18に示すように,実施例1におい
て故障診断装置13を変更した第4発明の実施例であ
る。即ち,本例の故障診断装置13は,図17に示すよ
うに,戻し流路35におけるHC濃度を検知するHCセ
ンサ18を配設し,図18に示す故障診断フローに従っ
て排気浄化装置1の故障を自己判断する。
Embodiment 4 As shown in FIGS. 17 and 18, this embodiment is an embodiment of the fourth invention in which the failure diagnosis device 13 in Embodiment 1 is changed. That is, as shown in FIG. 17, the failure diagnosis device 13 of the present example is provided with the HC sensor 18 for detecting the HC concentration in the return flow path 35, and the exhaust gas purification device 1 fails according to the failure diagnosis flow shown in FIG. Make a self-judgment.

【0105】なお,図17において,HCセンサ18
は,戻し流路35の吸着装置22寄りに配置してある
が,戻し流路35におけるエンジン51寄りに配置して
もよい。ステップ601においてエンジン51が始動す
ると,図示しないエンジン水温センサや排気温センサか
らの信号を受け,コントローラ41により吸着装置22
による吸着の可否が判断される。
In FIG. 17, the HC sensor 18
Is disposed near the adsorption device 22 in the return flow passage 35, but may be disposed near the engine 51 in the return flow passage 35. When the engine 51 is started in step 601, signals from an engine water temperature sensor and an exhaust temperature sensor (not shown) are received, and the controller 41 causes the adsorption device 22 to operate.
Whether or not adsorption is possible is determined.

【0106】即ち,ステップ621においてその値Tw
(℃)が吸着可能温度Twa(℃)以下であると,ステッ
プ603で第1電磁弁が開弁され,排気ガスは吸着装置
22を流れ,排気ガス中のコールドHCが吸着される。
続いて,ステップ623でエンジン始動後,所定の時間
(ta)が経過すると,ステップ610でコントローラ
41からの信号で第1電磁弁27が閉弁し,流路開閉手
段23は図17の実線の位置に切換えられる。
That is, in step 621, the value T w
If (° C.) is equal to or lower than the adsorbable temperature T wa (° C.), the first electromagnetic valve is opened in step 603, the exhaust gas flows through the adsorption device 22, and the cold HC in the exhaust gas is adsorbed.
Subsequently, when a predetermined time (ta) has elapsed after the engine was started in step 623, the first electromagnetic valve 27 is closed by a signal from the controller 41 in step 610, and the flow path opening / closing means 23 is indicated by the solid line in FIG. Switched to position.

【0107】これにより,排気ガスは,既に高温となっ
て活性化した触媒装置21でHCが浄化され,第2メイ
ン流路32を流れる。上記のようにエンジン51が暖機
して第1電磁弁27が閉弁した後,ステップ612でコ
ントローラ41は電磁弁28を開弁させる。
As a result, the exhaust gas has its HC purified by the catalyst device 21 that has already become hot and activated, and flows through the second main flow path 32. After the engine 51 has warmed up and the first solenoid valve 27 has closed as described above, the controller 41 opens the solenoid valve 28 in step 612.

【0108】そして,上記第1の実施例と同様に流路開
閉手段24が開弁され,方向弁25が断続的に開弁され
て,吸着装置22から脱離したHCは排気マニホールド
52に流入し,エンジン51からの排気ガス中のHCと
ともに触媒装置21で浄化される。そしてステップ64
6で,HCが完全に脱離・浄化するに至る時間を経過し
た後〔t>(ta+td)〕,ステップ615におい
て,第2電磁弁28はコントローラ41からの信号で閉
じられ,これにより,流路開閉手段24は閉弁し,一連
の浄化作業が完了する。
Then, as in the first embodiment, the flow path opening / closing means 24 is opened, the directional valve 25 is opened intermittently, and the HC desorbed from the adsorption device 22 flows into the exhaust manifold 52. Then, it is purified by the catalyst device 21 together with HC in the exhaust gas from the engine 51. And step 64
In step 6, after the time until HC is completely desorbed and purified [t> (ta + td)], in step 615, the second solenoid valve 28 is closed by a signal from the controller 41, which causes the flow. The road opening / closing means 24 is closed, and a series of purification work is completed.

【0109】HCを脱離・浄化している間,HCセンサ
18の配備されている戻し流路35には還流される排気
ガスが流れている。そして,吸着装置22からはHCが
脱離する。このHC濃度Cは,図19に示すように,始
めの間は時間とともに吸着装置22が熱せられて増加す
る。そして吸着していたHCが全て脱離し終わると,そ
の値は第2メイン流路32を流れるHCと同様に非常に
小さい値になる。そして,装置が正常な場合には,HC
が脱離・浄化している時間内〔ta<t<(ta+t
d)〕において,HC濃度Cに戻し流量Qr を乗じて時
間積分した値,すなわち還流HC総量Wは許容値W0
上になる(図20)。
While desorbing and purifying the HC, the exhaust gas to be recirculated flows through the return passage 35 in which the HC sensor 18 is provided. Then, HC is desorbed from the adsorption device 22. As shown in FIG. 19, the HC concentration C increases as the adsorption device 22 is heated with time during the beginning. Then, when all the adsorbed HC have been desorbed, the value becomes very small like the HC flowing in the second main flow path 32. If the device is normal, HC
Within the desorption / purification time [ta <t <(ta + t
In d)], the value obtained by multiplying the HC concentration C by the return flow rate Q r and time integration, that is, the total reflux HC amount W becomes equal to or greater than the allowable value W 0 (FIG. 20).

【0110】故障診断装置13には,戻し流路35を流
れる還流流量Qr を,エンジン51の運転状態から算出
できる演算プログラムがあらかじめセットされている
(流量算出手段)。そして,上記Qr とCとから,積算
手段はHC総量Wを算出する。そして,流路開閉手段2
3からの洩れ流量が増加したり,吸着装置22の破損に
よって図2の穴224から排気ガスが洩れるようなこと
があると,還流されるHCの量が減少し,上記WがW0
を超えなくなってしまう。
In the failure diagnosis device 13, a calculation program which can calculate the recirculation flow rate Q r flowing through the return flow path 35 from the operating state of the engine 51 is set in advance (flow rate calculation means). Then, the integrating means calculates the total HC amount W from the above Q r and C. And the flow path opening / closing means 2
If the amount of leaked gas from No. 3 increases or the exhaust gas leaks from the hole 224 in FIG. 2 due to damage to the adsorption device 22, the amount of HC that is recirculated decreases, and W is W 0
Will not exceed.

【0111】また,リードバルブ26が故障してHCが
還流されなくなってもHCの量が減少し,上記WがW0
を超えなくなってしまう。従って,もしアクチュエータ
231,シャフト232,ブレード230,吸着装置2
2,さらにはリードバルブ26が破損した場合には,ス
テップ650において,上記のように還流されるHC濃
度Cをモニタすることにより上記装置の故障を診断する
ことができる。
Further, even if the reed valve 26 fails and HC is no longer recirculated, the amount of HC decreases, and the above W becomes W 0
Will not exceed. Therefore, if the actuator 231, the shaft 232, the blade 230, the suction device 2
2. Further, when the reed valve 26 is damaged, in step 650, the malfunction of the device can be diagnosed by monitoring the refluxed HC concentration C as described above.

【0112】そして,ステップ650において,還流H
C量が上記W0 以下である場合には,ステップ606に
進み,故障情報を出力する。その他については,実施例
1と同様である。
Then, in step 650, the reflux H
If the C amount is less than or equal to W 0 , the process proceeds to step 606, and failure information is output. Others are the same as those in the first embodiment.

【0113】実施例5 本例は,第5発明の実施例であり,図21,図22に示
すように,実施例1において故障診断装置14を変更し
たもう一つの実施例である。即ち,本例の故障診断装置
14は,図21に示すように,吸着装置22の下流と戻
し流路35とにそれぞれ温度センサ190,191を設
け,これによって吸着装置22及び戻し流路35を通る
排気の温度Tri,Treを測定し,図22に示すフローチ
ャートに従って排気浄化装置1の故障を診断する。
Embodiment 5 This is an embodiment of the fifth invention, and is another embodiment in which the failure diagnosis device 14 is modified in Embodiment 1 as shown in FIGS. 21 and 22. That is, as shown in FIG. 21, the failure diagnosis device 14 of the present example is provided with temperature sensors 190 and 191 respectively on the downstream side of the adsorption device 22 and the return flow path 35, whereby the adsorption device 22 and the return flow path 35 are connected. The temperatures Tri and Tre of the exhaust gas passing therethrough are measured, and the failure of the exhaust gas purification device 1 is diagnosed according to the flowchart shown in FIG.

【0114】始めに,ステップ601においてエンジン
51の始動を検知すると,ステップ652に進む。ステ
ップ652では,温度センサ190からの信号を受け,
その温度Triの値をチェックし吸着装置22における吸
着能力の有無を判断する。即ち,ステップ652におい
て,上記温度Triの値が吸着装置の吸着可能な温度Tri
a 以下である場合には,ステップ603において,第一
電磁弁27を開弁し流路開閉手段23は図21の破線の
位置に切り換えられ,排気ガスは吸着装置を流れ,排気
ガス中のコールドHCが吸着される。
First, when the start of the engine 51 is detected in step 601, the process proceeds to step 652. In step 652, the signal from the temperature sensor 190 is received,
The value of the temperature Tri is checked to determine whether or not the adsorption device 22 has an adsorption ability. That is, in step 652, the value of the temperature Tri is equal to the temperature Tri that the adsorption device can adsorb.
If it is a or less, in step 603, the first electromagnetic valve 27 is opened, the flow path opening / closing means 23 is switched to the position of the broken line in FIG. 21, the exhaust gas flows through the adsorption device, and the cold in the exhaust gas is reached. HC is adsorbed.

【0115】次に,上記のようにコールドHCが吸着さ
れている間に,ステップ654において,流路開閉手段
23からの排気ガスの漏れ流量Qaの大小を判定する。
この漏れ流量Qaの判定は,実施例1のステップ604
と同様に昇温速度の大小によって行われる。ただし,実
施例1においては,吸着装置22の昇温速度Vtを用い
て判定していたが,本例においては,吸着装置22の下
流を流れる排気ガスの温度の昇温速度Vt’を用いて判
定する。上記昇温速度Vt’は,ステップ603におい
て流路開閉手段23を閉じてから所定の時間(4〜5
秒)待った後に測定され,判定に供される。
Next, while the cold HC is being adsorbed as described above, in step 654, the magnitude of the leak flow rate Qa of the exhaust gas from the flow path opening / closing means 23 is judged.
The determination of the leak flow rate Qa is performed in step 604 of the first embodiment.
Similarly to the above, it is performed depending on the magnitude of the temperature rising rate. However, in the first embodiment, the determination is made using the temperature rising rate Vt of the adsorption device 22, but in the present example, the temperature rising rate Vt ′ of the temperature of the exhaust gas flowing downstream of the adsorption device 22 is used. judge. The temperature increase rate Vt ′ is set to a predetermined time (4 to 5) after closing the flow path opening / closing means 23 in step 603.
After waiting for 2 seconds), it is measured and used for judgment.

【0116】その結果,昇温速度Vt’が許容値Vto’
よりも小さいならば,流路開閉手段23の故障,即ち排
気浄化装置1の故障と判定し,ステップ605において
第一電磁弁27を閉路し,ステップ606において故障
情報を出力する。一方,上記ステップ652において,
エンジンの暖機により前記温度Triが吸着可能な温度温
度Tria を越えている場合には,ステップ610に進
み,第一電磁弁27を閉路し,流路開閉手段23は図2
1の実線の位置に切り換えられる。そして,排気ガス
は,既に高温となり活性化した触媒装置21においてH
Cを除去,浄化され,第二メイン流路32を流れて行
く。
As a result, the temperature rising rate Vt 'is equal to the allowable value Vto'.
If it is smaller than the above, it is determined that the flow path opening / closing means 23 has a failure, that is, the exhaust gas purifying apparatus 1 has a failure, the first electromagnetic valve 27 is closed in step 605, and the failure information is output in step 606. On the other hand, in step 652 above,
When the temperature Tri exceeds the adsorbable temperature Tria due to engine warm-up, the routine proceeds to step 610, where the first electromagnetic valve 27 is closed, and the flow path opening / closing means 23 is set to the position shown in FIG.
1 is switched to the position indicated by the solid line. Then, the exhaust gas becomes H in the catalytic device 21 which has already become hot and has been activated.
After C is removed and purified, it flows through the second main flow path 32.

【0117】そして,続くステップ656〜659にお
いて,温度Triが,吸着装置22からの脱離浄化終了の
温度Trid を越えた値となるまで,次に述べる操作を継
続する。即ち,第一電磁弁27が閉路した直後から,温
度センサ190の値を読み込み,この値Triを監視し,
ステップ656において,温度Triが上記浄化終了の温
度Trid 以下であれば,ステップ612に進み第二電磁
弁28が開弁される。そして,実施例1の場合と同様に
流路開閉手段23を開弁し,方向弁25が断続的に開弁
されて,吸着装置22から脱離したHCは排気マニホー
ルド52に流入し,エンジン51からの排気ガス中のH
Cと共に触媒装置21において浄化される。
Then, in the subsequent steps 656 to 659, the following operation is continued until the temperature Tri becomes a value exceeding the temperature Trid at the end of desorption purification from the adsorption device 22. That is, immediately after the first solenoid valve 27 is closed, the value of the temperature sensor 190 is read and this value Tri is monitored,
If the temperature Tri is equal to or lower than the temperature Trid at the end of purification in step 656, the process proceeds to step 612 and the second solenoid valve 28 is opened. Then, as in the case of the first embodiment, the flow path opening / closing means 23 is opened, the directional valve 25 is opened intermittently, and the HC desorbed from the adsorption device 22 flows into the exhaust manifold 52 and the engine 51. H in the exhaust gas from
Purified in the catalyst device 21 together with C.

【0118】この時,続くステップ657において,流
路開閉手段23からの漏れ流量Qdの大小を判定する。
この判定も,実施例1におけると同様に昇温速度Vtd’
(但し吸着装置22下流の排気ガスの温度)によって行
われる。ここで,昇温速度Vtd’が許容値Vt1’よりも
大きいならば,流路開閉手段23(排気浄化装置1)の
故障と判定し,ステップ614において,第二電磁弁2
8を閉弁し,ステップ606において故障情報を出力す
る。
At this time, in the following step 657, the magnitude of the leakage flow rate Qd from the flow path opening / closing means 23 is determined.
This determination is also made in the same manner as in the first embodiment, the heating rate Vtd '.
(However, the temperature of the exhaust gas downstream of the adsorption device 22). Here, if the temperature increase rate Vtd 'is larger than the allowable value Vt1', it is determined that the flow path opening / closing means 23 (exhaust gas purification device 1) has failed, and in step 614, the second electromagnetic valve 2
8 is closed, and failure information is output in step 606.

【0119】一方,ステップ657において,昇温速度
Vtd’が許容値Vt1’以下であり,流路開閉手段23が
正常であると判断された場合には,ステップ658に進
む。そして,ここで戻し流路35を流れる排気ガスの温
度Treを温度センサ191によって測定し,同時に温度
センサ190によって温度Triを測定する。
On the other hand, if it is determined in step 657 that the temperature increase rate Vtd 'is less than or equal to the allowable value Vt1' and the flow path opening / closing means 23 is normal, the process proceeds to step 658. Then, the temperature Tre of the exhaust gas flowing through the return passage 35 is measured by the temperature sensor 191 and the temperature Tri is measured by the temperature sensor 190 at the same time.

【0120】そしてマイクロコンピュータ40には,上
記温度Triと温度Treの相関係数Dを算出する手段(プ
ログラム)が内蔵されている。即ち,相関係数Dは,温
度Tri,温度Treをサンプリング時間ts 毎にn個収集
し,その平均値,標準偏差K,共分散Cを算出し,つぎ
のように求められる。 D=C(Tri,Tre)/{K(Tri)*K(Tre)} ここで, C(Tri,Tre)=〔Σ{Tri(i)−Tri(av)}
*{Tre(i)−Tre(av)}〕/n {K(Tri)}2 =〔Σ{Tri(i)−Tri(av)}
2 〕/n {K(Tre)}2 =〔Σ{Tre(i)−Tre(av)}
2 〕/n であり, Tri(i)=Triのi番目のデータ Tre(i)=Treのi番目のデータ Tri(av)=n個のTriの平均値 Tre(av)=n個のTreの平均値 である。そして,より具体的には,本例のサンプリング
時間ts は0.5秒,nは100である。
The microcomputer 40 incorporates means (program) for calculating the correlation coefficient D between the temperature Tri and the temperature Tre. That is, the correlation coefficient D is obtained as follows by collecting n values of temperature Tri and temperature Tre at every sampling time ts and calculating the average value, standard deviation K, and covariance C thereof. D = C (Tri, Tre) / {K (Tri) * K (Tre)} where C (Tri, Tre) = [Σ {Tri (i) -Tri (av)}
* {Tre (i) -Tre (av)}] / n {K (Tri)} 2 = [Σ {Tri (i) -Tri (av)}
2 ] / n {K (Tre)} 2 = [Σ {Tre (i) -Tre (av)}
2 ] / n, and Tri (i) = i-th data of Tri Tre (i) = i-th data of Tre Tri (av) = average value of n Tris Tre (av) = n Tres Is the average value of. Then, more specifically, the sampling time ts in this example is 0.5 seconds, and n is 100.

【0121】もしも,方向弁25が故障したり,第二開
閉手段24が開弁しなくなった場合や,リード弁26の
シール性能が低下して排気ガスの逆流が生じた場合に
は,還流される排気ガスの流量Qrが減少する(図
4)。第二開閉手段24が開弁不能になった場合には,
還流排気ガスの流量Qrがゼロになるため,還流排気ガ
スの入口部の温度に相当する温度Triが第二メイン流路
32に流れる排気ガスの温度に影響されて変動しても,
戻し流路35内においては排気ガスの流れが無いために
戻し流路35の途中の温度Treは変動しない(あるいは
極めて小さい)。そのため,温度Triと温度Treとの相
関が非常に小さくなり,相関係数Dは設定値を越えな
い。
If the directional valve 25 fails, the second opening / closing means 24 does not open, or if the reed valve 26 deteriorates in sealing performance and a back flow of exhaust gas occurs, the gas is recirculated. The exhaust gas flow rate Qr is reduced (FIG. 4). When the second opening / closing means 24 cannot open the valve,
Since the flow rate Qr of the recirculated exhaust gas becomes zero, even if the temperature Tri corresponding to the temperature of the inlet portion of the recirculated exhaust gas is affected by the temperature of the exhaust gas flowing through the second main flow path 32 and fluctuates,
Since there is no flow of exhaust gas in the return passage 35, the temperature Tre in the middle of the return passage 35 does not change (or is extremely small). Therefore, the correlation between the temperature Tri and the temperature Tre becomes very small, and the correlation coefficient D does not exceed the set value.

【0122】そのため,ステップ659に示すように,
相関係数の大小により第二電磁弁24の故障を判定する
ことが出来る。ここで故障と判定された場合には,ステ
ップ614に進み,第二電磁弁28を閉弁し,ステップ
606において故障情報を出力する。また,方向弁26
のシール性能が低下して排気ガスの逆流を引き起こす場
合には,還流排気ガスの流量Qrは減少する。そして,
排気マニホールド52から戻し流路35を経て排気ガス
が吸着装置22に逆流する。従って,戻し流路35の途
中温度に相当する温度Treは,還流排気ガスの入口部の
温度変動だけでなく,上記逆流排気ガスの影響を被るこ
ととなる。そして,この逆流排気ガスの温度変動は,第
二メイン流路32に流れる排気ガスの温度変動と同期し
ていないため,戻し流路35内の途中温度に相当する温
度Treは,温度Triとの相関が非常に小さくなり,上記
相関係数Dは,設定値を越えない。
Therefore, as shown in step 659,
The failure of the second solenoid valve 24 can be determined by the magnitude of the correlation coefficient. If it is determined that a failure occurs, the process proceeds to step 614, the second solenoid valve 28 is closed, and failure information is output at step 606. Also, the directional valve 26
When the sealing performance of No. 2 deteriorates and causes backflow of the exhaust gas, the flow rate Qr of the recirculated exhaust gas decreases. And
Exhaust gas flows back from the exhaust manifold 52 to the adsorption device 22 through the return flow path 35. Therefore, the temperature Tre, which corresponds to the temperature in the middle of the return flow path 35, is affected not only by the temperature variation at the inlet of the recirculated exhaust gas but also by the above-mentioned backflow exhaust gas. Since the temperature fluctuation of the backflow exhaust gas is not synchronized with the temperature fluctuation of the exhaust gas flowing in the second main flow path 32, the temperature Tre corresponding to the midway temperature in the return flow path 35 is equal to the temperature Tri. The correlation becomes very small, and the correlation coefficient D does not exceed the set value.

【0123】それ故,ステップ659において,リード
弁26の故障を相関係数の大小によって判定することが
できる。そして,故障と判定された場合には,ステップ
614において第二電磁弁28を閉弁し,ステップ60
6において,故障情報まを出力する。
Therefore, in step 659, the failure of the reed valve 26 can be determined by the magnitude of the correlation coefficient. Then, when it is determined that there is a failure, the second solenoid valve 28 is closed in step 614, and step 60
At 6, the failure information is output.

【0124】なお,流路開閉手段23が図の実線で示す
開位置に切り換えられて前記HC脱離工程に入った後,
正常にステップ612〜659のルートをたどる場合に
は,やがてステップ656において,HCの脱離浄化が
完了する温度Trid に到達し,ステップ615に進む。
そして第二電磁弁28及び流路開閉手段24 を閉じて定
常の運転状態にはいる。上記のように,本例によれば,
装置の自己診断機能を有し排気浄化特性の良好な排気浄
化装置1を提供することができる。
After the flow path opening / closing means 23 is switched to the open position shown by the solid line in the figure to enter the HC desorption step,
When the route of steps 612 to 659 is normally followed, in step 656, the temperature Trid at which the desorption purification of HC is completed is eventually reached, and the process proceeds to step 615.
Then, the second electromagnetic valve 28 and the flow path opening / closing means 24 are closed to enter a normal operating state. As mentioned above, according to this example,
It is possible to provide the exhaust gas purification device 1 having a self-diagnosis function of the device and having excellent exhaust gas purification characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の排気浄化装置のシステム構成図。FIG. 1 is a system configuration diagram of an exhaust emission control device according to a first embodiment.

【図2】実施例1の吸着装置の分解斜視図。FIG. 2 is an exploded perspective view of the adsorption device according to the first embodiment.

【図3】実施例1の排気浄化装置の制御及び故障診断の
フローチャート。
FIG. 3 is a flowchart of control and failure diagnosis of the exhaust emission control device of the first embodiment.

【図4】実施例1の排気浄化装置における吸着装置の周
辺の排気の流れ。
FIG. 4 is a flow of exhaust gas around an adsorption device in the exhaust emission control device of the first embodiment.

【図5】実施例1の排気浄化装置の吸着工程における昇
温速度と洩れ流量Qa の関係を表すグラフ。
FIG. 5 is a graph showing the relationship between the temperature rise rate and the leakage flow rate Q a in the adsorption process of the exhaust gas purification device of the first embodiment.

【図6】実施例1の脱離工程における昇温速度と洩れ流
量Qd との関係を表すグラフ。
FIG. 6 is a graph showing the relationship between the temperature rising rate and the leakage flow rate Q d in the desorption process of Example 1.

【図7】実施例1の脱離工程における昇温速度と戻し流
量Qr との関係を表すグラフ。
FIG. 7 is a graph showing the relationship between the temperature rising rate and the return flow rate Q r in the desorption process of Example 1.

【図8】実施例2の排気浄化装置のシステム構成図。FIG. 8 is a system configuration diagram of an exhaust emission control device according to a second embodiment.

【図9】実施例2の排気浄化装置の制御及び故障診断の
フローチャート。
FIG. 9 is a flowchart of control and failure diagnosis of the exhaust emission control device of the second embodiment.

【図10】実施例2の吸着工程における吸着装置の通過
流量と洩れ流量Qa との関係を表すグラフ。
FIG. 10 is a graph showing the relationship between the flow rate passing through the adsorption device and the leakage flow rate Q a in the adsorption process of Example 2.

【図11】実施例2の脱離工程における吸着装置の通過
流量と洩れ流量Qd との関係を表すグラフ。
FIG. 11 is a graph showing the relationship between the passing flow rate and the leak flow rate Q d of the adsorption device in the desorption process of Example 2.

【図12】実施例2の脱離工程における吸着装置の通過
流量と戻し流量Qr との関係を表すグラフ。
FIG. 12 is a graph showing the relationship between the passing flow rate and the returning flow rate Q r of the adsorption device in the desorption process of Example 2.

【図13】実施例3の排気浄化装置のシステム構成図。FIG. 13 is a system configuration diagram of an exhaust emission control device according to a third embodiment.

【図14】実施例3の排気浄化装置の制御及び故障診断
のフローチャート。
FIG. 14 is a flowchart of control and failure diagnosis of the exhaust emission control device of the third embodiment.

【図15】実施例3の吸着工程におけるHC濃度の推移
グラフ。
FIG. 15 is a transition graph of HC concentration in the adsorption process of Example 3.

【図16】実施例3の脱離工程におけるHC濃度の推移
グラフ。
16 is a transition graph of HC concentration in the desorption process of Example 3. FIG.

【図17】実施例4の排気浄化装置のシステム構成図。FIG. 17 is a system configuration diagram of an exhaust emission control device according to a fourth embodiment.

【図18】実施例4の排気浄化装置の制御及び故障診断
のフローチャート。
FIG. 18 is a flowchart of control and failure diagnosis of the exhaust emission control device of the fourth embodiment.

【図19】実施例4の脱離工程におけるHC濃度の推移
グラフ。
FIG. 19 is a transition graph of HC concentration in the desorption process of Example 4.

【図20】実施例4の脱離工程における還流HC量の積
算値の推移グラフ。
FIG. 20 is a transition graph of the integrated value of the amount of refluxed HC in the desorption process of Example 4.

【図21】実施例5の排気浄化装置のシステム構成図。FIG. 21 is a system configuration diagram of an exhaust emission control device according to a fifth embodiment.

【図22】実施例5の排気浄化装置の制御及び故障診断
のフローチャート。
FIG. 22 is a flowchart of control and failure diagnosis of the exhaust emission control device of the fifth embodiment.

【図23】実施例5の排気浄化装置において,正常時に
おける吸着装置の下流部排気ガス温度Triと戻し流路内
の排気ガス温度Treとの関係を示す図。
FIG. 23 is a diagram showing a relationship between a downstream exhaust gas temperature Tri of the adsorption device and an exhaust gas temperature Tre in the return passage in a normal state in the exhaust emission control device of the fifth embodiment.

【図24】実施例5の排気浄化装置において,故障時に
おける吸着装置の下流部排気ガス温度Triと戻し流路内
の排気ガス温度Treとの関係を示す図。
FIG. 24 is a diagram showing the relationship between the exhaust gas temperature Tri of the downstream side of the adsorption device and the exhaust gas temperature Tre in the return passage at the time of failure in the exhaust emission control device of the fifth embodiment.

【図25】実施例5排気浄化装置において,正常時と故
障時における温度Triと温度Treとの相関係数Dの変化
を示す図。
FIG. 25 is a diagram showing changes in the correlation coefficient D between the temperature Tri and the temperature Tre during normal operation and during failure in the exhaust emission control device according to the fifth embodiment.

【符号の説明】[Explanation of symbols]

1...排気浄化装置, 10...故障診断装置, 21...触媒装置, 22...吸着装置, 23,24...流路開閉手段, 31...第1メイン流路, 32...第2メイン流路, 33...吸着流路, 35...戻し流路, 1. . . Exhaust gas purification device, 10. . . Failure diagnosis device, 21. . . Catalyst device, 22. . . Adsorption device, 23, 24. . . Flow path opening / closing means, 31. . . First main flow path, 32. . . Second main flow path, 33. . . Adsorption channel, 35. . . Return channel,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01M 15/00 Z (72)発明者 宇佐美 宏行 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 宝平 欣二 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location G01M 15/00 Z (72) Inventor Hiroyuki Usami 1-1, Showa-cho, Kariya city, Aichi prefecture Nidec Co., Ltd. (72) Inventor Kinji Hohei 1-1, Showa-cho, Kariya city, Aichi prefecture Nihondenso Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの排気通路に設けられた排気浄
化装置であって,該排気浄化装置は,上記排気通路の上
流側に位置し排気ガスを浄化する触媒装置を備えた第1
メイン流路と,該第1メイン流路の下流に位置し有害ガ
スを吸着する吸着装置を備えた吸着流路と,上記第1メ
イン流路の下流に位置し上記吸着流路に並列な流路を形
成する第2メイン流路と,上記吸着流路及び第2メイン
流路の下流に位置する排出流路と,上記吸着流路から分
岐し上記触媒装置の上流側に至る流路を形成する戻し流
路と,上記吸着流路,第2メイン流路及び戻し流路を開
閉する流路開閉手段と,該流路開閉手段を制御するコン
トローラと,装置の不具合を自己診断する故障診断装置
とを有しており,上記戻し流路には,上記吸着流路から
触媒装置上流に至る排気の流れだけを許容する方向弁が
設けられており,上記コントローラは,排気の低温時に
おいては,上記流路開閉手段を第1動作状態に操作し,
これによって上記戻し流路を閉路し上記吸着流路を通っ
た排気を上記排出流路に流通させると共に上記第2メイ
ン流路から排出流路に至る排気の流れを遮断し,一方,
排気の高温時においては,上記流路開閉手段を第2動作
状態に操作し,これによって上記第2メイン流路から排
出流路に排気を流通させると共に上記戻し流路を開路し
て上記吸着流路を通った排気を戻し流路に流通させ,更
に吸着流路から排出流路への排気の流れを遮断し,上記
故障診断装置は,上記吸着装置の温度を測定し,上記第
1動作状態においては上記温度の上昇速度が設定値以下
である場合に装置故障と判定し,上記第2動作状態にお
いては上記温度の上昇速度が所定の上限値以上もしくは
所定の下限値以下である場合に装置故障と判定する判定
手段を有していることを特徴とする排気浄化装置。
1. An exhaust purification device provided in an exhaust passage of an engine, wherein the exhaust purification device comprises a catalyst device located upstream of the exhaust passage for purifying exhaust gas.
A main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful gas, and a flow path located downstream of the first main flow path and parallel to the adsorption flow path. A second main channel forming a channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a channel branched from the adsorption channel to reach the upstream side of the catalyst device. Return flow path, flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a failure diagnostic device for self-diagnosing malfunctions of the device. The return flow passage is provided with a directional valve that allows only the flow of exhaust gas from the adsorption flow passage to the upstream side of the catalyst device. Operating the flow path opening / closing means to the first operating state,
As a result, the return flow path is closed, the exhaust gas that has passed through the adsorption flow path is circulated to the exhaust flow path, and the flow of exhaust gas from the second main flow path to the exhaust flow path is blocked.
When the temperature of the exhaust gas is high, the flow path opening / closing means is operated to the second operation state, whereby the exhaust gas is circulated from the second main flow path to the discharge flow path and the return flow path is opened to cause the adsorption flow. The exhaust gas that has passed through the passage is circulated to the return flow passage, and the flow of the exhaust gas from the adsorption flow passage to the discharge flow passage is blocked, and the failure diagnosis device measures the temperature of the adsorption device, and the first operating state. When the temperature rise rate is equal to or lower than a set value, it is determined that the device has failed. In the second operation state, when the temperature rise rate is equal to or higher than a predetermined upper limit value or equal to or lower than a predetermined lower limit value, An exhaust emission control device having a determination means for determining a failure.
【請求項2】 エンジンの排気通路に設けられた排気浄
化装置であって,該排気浄化装置は,上記排気通路の上
流側に位置し排気ガスを浄化する触媒装置を備えた第1
メイン流路と,該第1メイン流路の下流に位置し有害物
質を吸着する吸着装置を備えた吸着流路と,上記第1メ
イン流路の下流に位置し上記吸着流路に並列な流路を形
成する第2メイン流路と,上記吸着流路及び第2メイン
流路の下流に位置する排出流路と,上記吸着流路から分
岐し上記触媒装置の上流側に至る流路を形成する戻し流
路と,上記吸着流路,第2メイン流路及び戻し流路を開
閉する流路開閉手段と,該流路開閉手段を制御するコン
トローラと,装置の不具合を自己診断する故障診断装置
とを有しており,上記戻し流路には,上記吸着流路から
触媒装置上流に至る排気の流れだけを許容する方向弁が
設けられており,上記コントローラは,排気の低温時に
おいては,上記流路開閉手段を第1動作状態に操作し,
これによって上記戻し流路を閉路し上記吸着流路を通っ
た排気を上記排出流路に流通させると共に上記第2メイ
ン流路から排出流路に至る排気の流れを遮断し,一方排
気の高温時においては,上記流路開閉手段を第2動作状
態に操作し,これによって上記第2メイン流路から排出
流路に排気を流通させると共に上記戻し流路を開路して
上記吸着流路を通った排気を戻し流路に流通させ,更に
吸着流路から排出流路への排気の流れを遮断し,上記故
障診断装置は,上記吸着装置を通過する排気の流量を測
定し,上記第1動作状態においては上記通過流量が設定
値以下になった場合に装置故障と判定し,上記第2動作
状態においては上記通過流量が所定の上限値以上もしく
は所定の下限値以下になった場合に装置故障と判定する
判定手段を有していることを特徴とする排気浄化装置。
2. An exhaust purification device provided in an exhaust passage of an engine, wherein the exhaust purification device comprises a catalyst device located upstream of the exhaust passage for purifying exhaust gas.
A main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful substances, and a flow path located downstream of the first main flow path in parallel with the adsorption flow path. A second main channel forming a channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a channel branched from the adsorption channel to reach the upstream side of the catalyst device. Return flow path, flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a failure diagnostic device for self-diagnosing malfunctions of the device. The return flow passage is provided with a directional valve that allows only the flow of exhaust gas from the adsorption flow passage to the upstream side of the catalyst device. Operating the flow path opening / closing means to the first operating state,
As a result, the return flow path is closed and the exhaust gas that has passed through the adsorption flow path is circulated to the exhaust flow path, and the flow of exhaust gas from the second main flow path to the exhaust flow path is blocked, while the exhaust gas temperature is high. In the above, the flow passage opening / closing means is operated to the second operation state, whereby exhaust gas is circulated from the second main flow passage to the discharge flow passage, and the return flow passage is opened to pass through the adsorption flow passage. Exhaust gas is circulated to the return flow path, and the flow of exhaust gas from the adsorption flow path to the exhaust flow path is cut off, and the failure diagnosis device measures the flow rate of exhaust gas passing through the adsorption device, and the first operating state. When the passing flow rate is below a set value, it is determined that the device is faulty. With a judgment means to judge Exhaust purifying apparatus according to claim Rukoto.
【請求項3】 エンジンの排気通路に設けられた排気浄
化装置であって,該排気浄化装置は,上記排気通路の上
流側に位置し排気ガスを浄化する触媒装置を備えた第1
メイン流路と,該第1メイン流路の下流に位置し有害物
質を吸着する吸着装置を備えた吸着流路と,上記メイン
流路の下流に位置し上記吸着流路に並列な流路を形成す
る第2メイン流路と,上記吸着流路及び第2メイン流路
の下流に位置する排出流路と,上記吸着流路から分岐し
上記触媒装置の上流側に至る流路を形成する戻し流路
と,上記吸着流路,第2メイン流路及び戻し流路を開閉
する流路開閉手段と,該流路開閉手段を制御するコント
ローラと,装置の不具合を自己診断する故障診断装置と
を有しており,上記戻し流路には,上記吸着流路から触
媒装置上流に至る排気の流れだけを許容する方向弁が設
けられており,上記コントローラは,排気の低温時にお
いては,上記流路開閉手段を第1動作状態に操作し,こ
れによって上記戻し流路を閉路し上記吸着流路を通った
排気を上記排出流路に流通させると共に上記第2メイン
流路から排出流路に至る排気の流れを遮断し,一方排気
の高温時においては,上記流路開閉手段を第2動作状態
に操作し,これによって上記第2メイン流路から排出流
路に排気を流通させると共に上記戻し流路を開路して上
記吸着流路を通った排気を戻し流路に流通させ,更に吸
着流路から排出流路への排気の流れを遮断し,上記故障
診断装置は,上記排出流路における所定の排出ガスの濃
度を測定し,該排出ガス濃度が,上記第1動作状態と第
2動作状態とで異なる値に設定された設定値以上の値に
なった場合に装置故障と判定する判定手段を有している
ことを特徴とする排気浄化装置。
3. An exhaust gas purification device provided in an exhaust passage of an engine, the exhaust gas purification device comprising a catalyst device located upstream of the exhaust passage for purifying exhaust gas.
A main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful substances, and a flow path located downstream of the main flow path and parallel to the adsorption flow path. A second main flow path to be formed, a discharge flow path located downstream of the adsorption flow path and the second main flow path, and a return path that branches from the adsorption flow path to reach the upstream side of the catalyst device. A flow path, a flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path, and a return flow path, a controller for controlling the flow path opening / closing means, and a failure diagnostic device for self-diagnosing a malfunction of the device. The return flow passage is provided with a directional valve that allows only the flow of exhaust gas from the adsorption flow passage to the upstream side of the catalyst device. The road opening / closing means is operated to the first operating state, whereby the return The exhaust passage that closes the passage and flows through the adsorption passage is circulated to the exhaust passage, and the flow of the exhaust from the second main passage to the exhaust passage is blocked, while the exhaust gas flows at high temperature. The passage opening / closing means is operated to the second operation state, whereby the exhaust gas is circulated from the second main flow passage to the exhaust flow passage, and the return flow passage is opened to return the exhaust gas passing through the adsorption flow passage. The exhaust flow from the adsorption flow path to the exhaust flow path, and the failure diagnosis device measures the concentration of a predetermined exhaust gas in the exhaust flow path, and the exhaust gas concentration is An exhaust emission control device, comprising: a determination unit that determines a device failure when a value that is equal to or greater than a set value that is set to a different value between the first operating state and the second operating state.
【請求項4】 エンジンの排気通路に設けられた排気浄
化装置であって,該排気浄化装置は,上記排気通路の上
流側に位置し排気ガスを浄化する触媒装置を備えた第1
メイン流路と,該第1メイン流路の下流に位置し有害物
質を吸着する吸着装置を備えた吸着流路と,上記第1メ
イン流路の下流に位置し上記吸着流路に並列な流路を形
成する第2メイン流路と,上記吸着流路及び第2メイン
流路の下流に位置する排出流路と,上記吸着流路から分
岐し上記触媒装置の上流側に至る流路を形成する戻し流
路と,上記吸着流路,第2メイン流路及び戻し流路を開
閉する流路開閉手段と,該流路開閉手段を制御するコン
トローラと,装置の不具合を自己診断する故障診断装置
とを有しており,上記戻し流路には,上記吸着流路から
触媒装置上流に至る排気の流れだけを許容する方向弁が
設けられており,上記コントローラは,排気の低温時に
おいては,上記流路開閉手段を第1動作状態に操作し,
これによって上記戻し流路を閉路し上記吸着流路を通っ
た排気を上記排出流路に流通させると共に上記第2メイ
ン流路から排出流路に至る排気の流れを遮断する第1動
作状態に上記流路開閉手段を操作し,一方排気の高温時
においては,上記流路開閉手段を第2動作状態に操作
し,これによって上記第2メイン流路から排出流路に排
気を流通させると共に上記戻し流路を開路して上記吸着
流路を通った排気を戻し流路に流通させ,更に吸着流路
から排出通路への排気の流れを遮断し,上記故障診断装
置は,エンジンの運転状態から上記戻し流路の排気流量
を算出する戻し流量算出手段と,上記戻し流路における
上記排出ガスの濃度を測定し上記第2動作状態における
上記戻し流路を通った排出ガスの総量を積算する積算手
段と,上記排出ガスの積算総量が設定値以下である場合
に装置故障と判定する判定手段とを有していることを特
徴とする排気浄化装置。
4. An exhaust purification device provided in an exhaust passage of an engine, wherein the exhaust purification device comprises a catalyst device located upstream of the exhaust passage for purifying exhaust gas.
A main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful substances, and a flow path located downstream of the first main flow path in parallel with the adsorption flow path. A second main channel forming a channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a channel branched from the adsorption channel to reach the upstream side of the catalyst device. Return flow path, flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a failure diagnostic device for self-diagnosing malfunctions of the device. The return flow passage is provided with a directional valve that allows only the flow of exhaust gas from the adsorption flow passage to the upstream side of the catalyst device. Operating the flow path opening / closing means to the first operating state,
As a result, the return flow path is closed, the exhaust gas that has passed through the adsorption flow path is circulated to the exhaust flow path, and the exhaust flow from the second main flow path to the exhaust flow path is shut off. The flow passage opening / closing means is operated, while at the time of high temperature of the exhaust gas, the flow passage opening / closing means is operated to the second operation state, whereby the exhaust gas is circulated from the second main flow passage to the exhaust flow passage and the return is performed. The flow path is opened, the exhaust gas that has passed through the adsorption flow path is circulated to the return flow path, and the flow of exhaust gas from the adsorption flow path to the exhaust path is blocked. Return flow rate calculating means for calculating the exhaust flow rate of the return flow path, and integrating means for measuring the concentration of the exhaust gas in the return flow path and integrating the total amount of the exhaust gas passing through the return flow path in the second operating state. And the above exhaust gas Exhaust gas purification apparatus, characterized in that a determining means and device failure if the accumulated amount is equal to or less than the set value.
【請求項5】 請求項3又は請求項4において,上記故
障診断装置は,更に上記吸着装置の温度を測定し,上記
温度の上昇速度が第1動作状態において設定値以上であ
るか否か,及び上記上昇速度が第2動作状態において所
定の上限値以上もしくは所定の下限値以下であるか否か
を判定する第2判定手段を有していることを特徴とする
排気浄化装置。
5. The failure diagnosis device according to claim 3 or 4, further measuring the temperature of the adsorption device, and whether or not the temperature rising rate is equal to or higher than a set value in the first operating state, And an exhaust emission control device having second determination means for determining whether or not the rising speed is equal to or higher than a predetermined upper limit value or lower than a predetermined lower limit value in the second operating state.
【請求項6】 請求項3又は請求項4において,上記故
障診断装置は,更に上記吸着装置を通過する排気の流量
を測定し,上記通過流量が第1動作状態において設定値
以下であるか否か,及び第2動作状態において上記通過
流量が所定の上限値以上もしくは所定の下限値以下であ
るか否かを判定する第3判定手段を有していることを特
徴とする排気浄化装置。
6. The failure diagnosis device according to claim 3 or 4, further measuring the flow rate of the exhaust gas passing through the adsorption device, and determining whether the flow rate is equal to or less than a set value in the first operating state. And an exhaust gas purification device comprising third determination means for determining whether or not the passage flow rate is equal to or more than a predetermined upper limit value or less than a predetermined lower limit value in the second operation state.
【請求項7】 エンジンの排気通路に設けられた排気浄
化装置であって,該排気浄化装置は,上記排気通路の上
流側に位置し排気ガスを浄化する触媒装置を備えた第1
メイン流路と,該第1メイン流路の下流に位置し有害ガ
スを吸着する吸着装置を備えた吸着流路と,上記第1メ
イン流路の下流に位置し上記吸着流路に並列な流路を形
成する第2メイン流路と,上記吸着流路及び第2メイン
流路の下流に位置する排出流路と,上記吸着流路から分
岐し上記触媒装置の上流側に至る流路を形成する戻し流
路と,上記吸着流路,第2メイン流路及び戻し流路を開
閉する流路開閉手段と,該流路開閉手段を制御するコン
トローラと,装置の不具合を自己診断する故障診断装置
とを有しており,上記戻し流路には,上記吸着流路から
触媒装置上流に至る排気の流れだけを許容する方向弁が
設けられており,上記コントローラは,排気の低温時に
おいては,上記流路開閉手段を第1動作状態に操作し,
これによって上記戻し流路を閉路し上記吸着流路を通っ
た排気を上記排出流路に流通させると共に上記第2メイ
ン流路から排出流路に至る排気の流れを遮断し,一方,
排気の高温時においては,上記流路開閉手段を第2動作
状態に操作し,これによって上記第2メイン流路から排
出流路に排気を流通させると共に上記戻し流路を開路し
て上記吸着流路を通った排気を戻し流路に流通させ,更
に吸着流路から排出流路への排気の流れを遮断し,上記
故障診断装置は,上記吸着装置の下流側と上記戻し流路
とのそれぞれの排気温度を測定し,上記第2動作状態に
おいて,上記二つの排気温度の間の相関関係の程度を算
出し,この相関関係の程度が一定の水準に達しない場合
に装置故障であると判定する判定手段を有していること
を特徴とする排気浄化装置。
7. An exhaust gas purification device provided in an exhaust passage of an engine, the exhaust gas purification device comprising a catalyst device located upstream of the exhaust passage for purifying exhaust gas.
A main flow path, an adsorption flow path located downstream of the first main flow path and having an adsorption device for adsorbing harmful gas, and a flow path located downstream of the first main flow path and parallel to the adsorption flow path. A second main channel forming a channel, an exhaust channel located downstream of the adsorption channel and the second main channel, and a channel branched from the adsorption channel to reach the upstream side of the catalyst device. Return flow path, flow path opening / closing means for opening / closing the adsorption flow path, the second main flow path and the return flow path, a controller for controlling the flow path opening / closing means, and a failure diagnostic device for self-diagnosing malfunctions of the device. The return flow passage is provided with a directional valve that allows only the flow of exhaust gas from the adsorption flow passage to the upstream side of the catalyst device. Operating the flow path opening / closing means to the first operating state,
As a result, the return flow path is closed, the exhaust gas that has passed through the adsorption flow path is circulated to the exhaust flow path, and the flow of exhaust gas from the second main flow path to the exhaust flow path is blocked.
When the temperature of the exhaust gas is high, the flow path opening / closing means is operated to the second operation state, whereby the exhaust gas is circulated from the second main flow path to the discharge flow path and the return flow path is opened to cause the adsorption flow. The exhaust gas that has passed through the passage is circulated to the return flow passage, and the flow of the exhaust gas from the adsorption flow passage to the discharge flow passage is cut off. The failure diagnosis device includes the downstream side of the adsorption device and the return flow passage. Exhaust temperature is measured, the degree of correlation between the two exhaust temperatures is calculated in the second operating state, and if the degree of this correlation does not reach a certain level, it is determined that the device is faulty. An exhaust emission control device comprising:
【請求項8】 請求項7において,上記判定手段が,上
記二つの排気温度の間の相関関係の程度を算出し,この
相関関係の程度が一定の水準に達しない場合に装置故障
であると判定する時期は,前記第2動作状態にあると共
にエンジンがアイドリング状態にあることを条件とする
ことを特徴とする排気浄化装置。
8. The apparatus according to claim 7, wherein the determination means calculates the degree of correlation between the two exhaust temperatures, and when the degree of the correlation does not reach a certain level, it means that the device has failed. An exhaust emission control device, characterized in that the determination time is in the second operation state and the engine is in an idling state.
【請求項9】 請求項7において,上記判定手段が,上
記二つの排気温度の間の相関関係の程度を算出し,この
相関関係の程度が一定の水準に達しない場合に装置故障
であると判定する時期は,前記第2動作状態にあると共
に車両が減速状態にあることを条件とすることを特徴と
する排気浄化装置。
9. The apparatus according to claim 7, wherein the determination means calculates the degree of correlation between the two exhaust temperatures, and if the degree of the correlation does not reach a certain level, it means that the device has failed. An exhaust emission control device, characterized in that the determination time is in the second operation state and the vehicle is in a deceleration state.
【請求項10】 請求項7から請求項9のいずれか1項
において,上記故障診断装置は,更に,上記吸着装置の
温度を測定し,この温度の上昇速度が第1動作状態にお
いて設定値以上であるか否か,及びこの上昇速度が第2
動作状態において設定値以上であるか否かを判定する第
4判定手段を有していることを特徴とする排気浄化装
置。
10. The fault diagnosis device according to claim 7, further comprising measuring the temperature of the adsorption device, and the rate of temperature rise is equal to or higher than a set value in the first operating state. Whether or not, and this rising speed is the second
An exhaust emission control device having a fourth determination means for determining whether or not the value is equal to or more than a set value in an operating state.
JP19426995A 1994-07-27 1995-07-05 Exhaust purification device Expired - Fee Related JP3648792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19426995A JP3648792B2 (en) 1994-07-27 1995-07-05 Exhaust purification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19612494 1994-07-27
JP6-196124 1994-07-27
JP19426995A JP3648792B2 (en) 1994-07-27 1995-07-05 Exhaust purification device

Publications (2)

Publication Number Publication Date
JPH0893458A true JPH0893458A (en) 1996-04-09
JP3648792B2 JP3648792B2 (en) 2005-05-18

Family

ID=26508407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19426995A Expired - Fee Related JP3648792B2 (en) 1994-07-27 1995-07-05 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP3648792B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158212A (en) * 1997-09-19 2000-12-12 Toyota Jidosha Kabushiki Kaisha Failure diagnosing device for exhaust gas purifying apparatus
US6378296B1 (en) 1999-04-16 2002-04-30 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
US6389804B1 (en) 1999-04-16 2002-05-21 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
US6401451B1 (en) 1999-04-16 2002-06-11 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
JP2007205326A (en) * 2006-02-06 2007-08-16 Toyota Motor Corp Exhaust bypass device of internal combustion engine
JP2008106652A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Exhaust bypass device for internal combustion engine
JP2008215223A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Exhaust-emission purifying apparatus of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158212A (en) * 1997-09-19 2000-12-12 Toyota Jidosha Kabushiki Kaisha Failure diagnosing device for exhaust gas purifying apparatus
US6357225B1 (en) 1997-09-19 2002-03-19 Toyota Jidosha Kabushiki Kaisha Failure diagnosing device for exhaust gas purifying apparatus
US6378296B1 (en) 1999-04-16 2002-04-30 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
US6389804B1 (en) 1999-04-16 2002-05-21 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
US6401451B1 (en) 1999-04-16 2002-06-11 Honda Giken Kogyo Kabushiki Kaisha Degradation discrimination system of internal combustion engine exhaust gas purification system
JP2007205326A (en) * 2006-02-06 2007-08-16 Toyota Motor Corp Exhaust bypass device of internal combustion engine
JP2008106652A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Exhaust bypass device for internal combustion engine
JP2008215223A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Exhaust-emission purifying apparatus of internal combustion engine

Also Published As

Publication number Publication date
JP3648792B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
US5765369A (en) Exhaust gas purifying apparatus
EP1528229B1 (en) Filter control method and device
KR100605836B1 (en) Filter control device
WO2016006509A1 (en) Particulate filter fault diagnosis method and device
US20100115919A1 (en) EXHAUST EMISSION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE AND PERFORMANCE DIAGNOSIS METHOD FOR NOx ADSORBENT
WO2006009195A1 (en) Method for detecting abnormality occurred in exhaust gas clarification device
US6883307B2 (en) Diagnosis apparatus for internal combustion engine
JP3198865B2 (en) Failure diagnosis device for evaporation purge system
US7165447B2 (en) Failure diagnostic apparatus for fuel vapor purge system and fuel vapor purge apparatus and combustion engine having failure diagnostic apparatus
JP3648792B2 (en) Exhaust purification device
JP3739876B2 (en) Exhaust purification device
JPH08284764A (en) Failure diagnosis device for exhaust gas recirculation system
JP3908204B2 (en) Filter control device
JPH06101452A (en) Adsorbent self-diagnosing device for internal combustion engine
JP2003013810A (en) Failure diagnostic system for evaporated fuel treating device
JP4748083B2 (en) Exhaust gas purification device for internal combustion engine
JP2746016B2 (en) Failure diagnosis device for evaporation purge system
JP3379267B2 (en) Exhaust gas purification device
JP3409647B2 (en) Degradation diagnosis device for HC adsorbent of engine
JP3428506B2 (en) Failure diagnosis device for evaporation purge system
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JP2751763B2 (en) Failure diagnosis device for evaporation purge system
JP2005061335A (en) Failure diagnosis control device for intake air quantity detecting means for engine
JPH06159044A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees