JP3379267B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device

Info

Publication number
JP3379267B2
JP3379267B2 JP05062995A JP5062995A JP3379267B2 JP 3379267 B2 JP3379267 B2 JP 3379267B2 JP 05062995 A JP05062995 A JP 05062995A JP 5062995 A JP5062995 A JP 5062995A JP 3379267 B2 JP3379267 B2 JP 3379267B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
engine
flow path
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05062995A
Other languages
Japanese (ja)
Other versions
JPH08218850A (en
Inventor
宏行 宇佐美
政一 田中
衛 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP05062995A priority Critical patent/JP3379267B2/en
Priority to DE19527490A priority patent/DE19527490B4/en
Priority to US08/508,090 priority patent/US5765369A/en
Publication of JPH08218850A publication Critical patent/JPH08218850A/en
Application granted granted Critical
Publication of JP3379267B2 publication Critical patent/JP3379267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02T10/47

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,自動車等のエンジンの
排気浄化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust emission control device for an engine of an automobile or the like.

【0002】[0002]

【従来技術】自動車の排気ガス浄化には,従来から貴金
属(白金,ロジウム等)またはその他の金属を担持した
触媒装置が使われている。この触媒装置は排気ガス中の
有害成分(HC,CO,NOX )を酸化,もしくは還元
させることによって排気ガスを浄化する。
2. Description of the Related Art A catalyst device carrying a noble metal (platinum, rhodium, etc.) or another metal has been conventionally used for purification of exhaust gas from an automobile. The catalytic converter purifies exhaust gas by causing harmful components in exhaust gas (HC, CO, NO X) oxide, or reduced.

【0003】このうち,特に触媒によるHCの浄化は,
排気ガス温度の影響が強く,一般に350〜400℃以
上の温度を必要とする。そのため,エンジン始動直後で
は,排気ガス温度が低く触媒が活性温度(通常350〜
400℃以上)に達しないため,触媒装置によるHCの
浄化はほとんど行われない。これに加えてエンジン冷間
時にはHCの排出が非常に多いため,排気ガスの温度が
低いときには,大量のHCが大気に放出されるという問
題があった。
Of these, the purification of HC by a catalyst is
Exhaust gas temperature has a strong effect and generally requires a temperature of 350 to 400 ° C or higher. Therefore, immediately after the engine is started, the exhaust gas temperature is low and the catalyst has an activation temperature (normally 350 to
Since the temperature does not reach 400 ° C or higher), the purification of HC by the catalytic device is hardly performed. In addition to this, there is a problem that a large amount of HC is released to the atmosphere when the temperature of exhaust gas is low because the amount of HC emitted is very large when the engine is cold.

【0004】そこで上記の問題を解決するため,エンジ
ンの排気系に触媒装置を配備すると共に,その上流側ま
たは下流側にエンジン冷間時に排出されたHC(以下コ
ールドHCと呼ぶ)を吸着するための吸着剤を収めたH
Cトラッパーを配備した浄化装置が提案されている(特
開平4−17710号公報,特開平2−135126号
公報,特開平6−66130号公報等)。
In order to solve the above problems, a catalyst device is installed in the exhaust system of the engine, and HC discharged during cold engine (hereinafter referred to as cold HC) is adsorbed on the upstream side or the downstream side thereof. H containing the adsorbent
Purification devices equipped with a C trapper have been proposed (JP-A-4-17710, JP-A-2-135126, JP-A-6-66130, etc.).

【0005】特開平2−135126号公報にかかる排
気浄化装置では,触媒装置の上流側にゼオライト系吸着
剤を用いた吸着装置を配置し,触媒装置と吸着装置とを
併用し,排気ガスが低温のとき吸着剤にコールドHCを
吸着させ,排気ガスが高温のときには吸着剤から脱離し
たHC及びエンジンから排出されたHCを触媒装置で浄
化させるものである。
In the exhaust gas purifying apparatus according to Japanese Patent Application Laid-Open No. 2-135126, an adsorbing device using a zeolite adsorbent is arranged on the upstream side of the catalytic device, the catalytic device and the adsorbing device are used together, and the exhaust gas is low in temperature. At this time, the cold HC is adsorbed by the adsorbent, and when the exhaust gas has a high temperature, the HC desorbed from the adsorbent and the HC discharged from the engine are purified by the catalyst device.

【0006】また,特開平4−17710号公報にかか
る排気浄化装置では,触媒装置の下流側に,吸着剤を含
むHCトラッパーをメイン流路と並列のバイパス流路に
配置するとともに,HCトラッパーを含む上記バイパス
流路と上記メイン流路とを切り換える流路切換弁を設け
ている。そして,エンジン始動直後から所定時間の間,
上記流路切換弁を操作し,排気ガスをバイパス流路側へ
流し,その間コールドHCはHCトラッパーに吸着され
る。
Further, in the exhaust gas purifying apparatus according to Japanese Unexamined Patent Publication No. 4-17710, an HC trapper containing an adsorbent is arranged in a bypass flow passage in parallel with the main flow passage, and the HC trapper is provided downstream of the catalyst device. A flow path switching valve that switches between the bypass flow path including the bypass flow path and the main flow path is provided. Then, immediately after the engine is started, for a predetermined time,
The flow passage switching valve is operated to allow the exhaust gas to flow to the bypass flow passage side, during which cold HC is adsorbed by the HC trapper.

【0007】一方,吸着剤からコールドHCが脱離する
高温時には,上記流路切換弁はメイン流路に排気ガスを
流すように操作され,この時,HCトラッパーの下流側
とエンジンの吸気管とをつなぐHC脱離用の還流配管に
エンジンの吸気管の負圧が加わり,脱離したHCは上記
吸気管へ吸い込まれて再びエンジン内で燃焼するように
なっている。
On the other hand, at a high temperature when cold HC is desorbed from the adsorbent, the flow path switching valve is operated so that exhaust gas flows through the main flow path, and at this time, the downstream side of the HC trapper and the intake pipe of the engine are connected to each other. The negative pressure of the intake pipe of the engine is applied to the HC desorption reflux pipe connecting the two, and the desorbed HC is sucked into the intake pipe and burned again in the engine.

【0008】そして,特開平6−66130号公報にか
かる排気浄化装置では,触媒装置の上流側に吸着装置を
配置したバイパス流路と吸着装置を設けないメイン流路
とを設け,更に吸着装置の上流側の排気通路と吸着装置
の下流の触媒装置の上流側とに空燃比センサを設けてい
る。そして,下流側の空燃比(A/F)が上流側の空燃
比よりも所定値以上に小さい場合には,吸着装置が異常
であると判定する。
Further, in the exhaust gas purifying apparatus according to Japanese Patent Laid-Open No. 6-66130, a bypass passage having an adsorbing device and a main passage having no adsorbing device are provided on the upstream side of the catalyst device, and the adsorbing device is further provided. An air-fuel ratio sensor is provided in the exhaust passage on the upstream side and on the upstream side of the catalyst device downstream of the adsorption device. When the downstream air-fuel ratio (A / F) is smaller than the upstream air-fuel ratio by a predetermined value or more, it is determined that the adsorption device is abnormal.

【0009】[0009]

【解決しようとする課題】しかしながら,触媒装置の上
流側に吸着装置を配置する特開平2−135126号公
報又は特開平6−66130号公報に示される排気浄化
装置には,次のような問題点がある。それは,上流側に
位置されるための吸着装置が高温となり易く,吸着装置
の熱特性や耐熱性に次のような問題点が生ずることであ
る。
However, the exhaust gas purifying device disclosed in JP-A-2-135126 or JP-A-6-66130 in which an adsorption device is arranged upstream of the catalyst device has the following problems. There is. This is because the adsorption device located on the upstream side is likely to reach a high temperature, and the following problems occur in the thermal characteristics and heat resistance of the adsorption device.

【0010】一般に吸着剤は低温ほどガスの吸着性能が
高く,高温になると吸着したHC等を脱離する。そし
て,上記構成では,この脱離現象が触媒装置の活性温度
前に発生し,せっかく吸着したHC等が浄化されること
なく大気に放出されるという現象が発生する。また,上
流側に吸着装置を配置すると,その熱容量によって下流
の触媒装置の活性化を遅らせるという問題もある。
Generally, the adsorbent has a higher gas adsorbing performance at lower temperatures, and desorbs adsorbed HC and the like at higher temperatures. In the above structure, the desorption phenomenon occurs before the activation temperature of the catalyst device, and the HC or the like that has been adsorbed is released to the atmosphere without being purified. Further, when the adsorption device is arranged on the upstream side, there is a problem that activation of the catalytic device on the downstream side is delayed due to its heat capacity.

【0011】一方,特開平2−135126号公報また
は特開平4−17710号公報に示された排気浄化装置
には装置異常を自己診断する機能がないという問題点が
ある。そのため,上記排気浄化装置では,吸着装置や流
路切換弁に故障が生じてもそのまま運転が継続されると
いう不具合がある。
On the other hand, there is a problem that the exhaust emission control device disclosed in Japanese Patent Laid-Open No. 2-135126 or Japanese Patent Laid-Open No. 4-17710 does not have a function of self-diagnosing the abnormality of the device. Therefore, in the exhaust gas purification device, there is a problem that the operation is continued even if a failure occurs in the adsorption device or the flow path switching valve.

【0012】また,特開平6−66130号公報の排気
浄化装置は,吸着装置の上流側と下流側とに設置された
空燃比センサに基づいて,吸着装置の異常を判定する
が,この方法は,吸着反応のとき即ちエンジンの冷間時
に監視を行なうため,空燃比センサの暖機状態が終了す
るまでは,正確な故障診断ができないという不具合があ
る。本発明は,かかる従来の問題点に鑑みてなされたも
のであり,排気ガス中の有害成分の排出を効果的に抑制
し,かつ装置故障を的確に判定することのできるエンジ
ンの排気浄化装置を提供しようとするものである。
Further, the exhaust gas purifying apparatus disclosed in Japanese Patent Laid-Open No. 6-66130 determines the abnormality of the adsorbing device on the basis of the air-fuel ratio sensors installed on the upstream side and the downstream side of the adsorbing device. However, since the monitoring is performed during the adsorption reaction, that is, when the engine is cold, there is a problem that accurate failure diagnosis cannot be performed until the warm-up state of the air-fuel ratio sensor is completed. The present invention has been made in view of the above conventional problems, and provides an exhaust gas purification device for an engine that can effectively suppress the emission of harmful components in exhaust gas and can accurately determine a device failure. It is the one we are trying to provide.

【0013】[0013]

【課題の解決手段】第1発明は,エンジンの排気通路の
上流側に配置され排気ガスを浄化する触媒装置と,該触
媒装置の下流側に配置され排気ガス中の有害ガス成分を
吸着する吸着装置と,該吸着装置の下流側を上記触媒装
置の上流側に接続する開閉可能な還流手段と,上記触媒
装置の下流側を上記吸着装置を経由することなく直接排
気口側に連通させる第1流路と,触媒装置の下流側を上
記吸着装置を経て排気口側に連通させる第2流路と,排
気ガスの温度が所定値以下の場合には上記第2流路に排
気ガスを流通させ,排気ガスの温度が所定値を越えた場
合には上記第1流路に排気ガスを流通させると共に上記
還流手段を開路させる切り換え手段とを有するエンジン
の排気浄化装置において,上記還流手段と,上記吸着装
置の上流側の排気通路とには,上記吸着装置の作動によ
って変動する排気ガス中のガス成分等を検知する排気ガ
スセンサがそれぞれ設けられており,上記排気ガスセン
サの出力信号を受け還流手段の開路直後から上記二つの
排気ガスセンサの出力が一致するまでの時間teを測定
する時間測定手段と,上記測定時間teが所定の範囲を
外れた場合に装置故障であると判定する故障判定手段と
を設けたことを特徴とするエンジンの排気浄化装置にあ
る。
According to a first aspect of the present invention, there is provided a catalyst device arranged upstream of an exhaust passage of an engine for purifying exhaust gas, and an adsorption device arranged downstream of the catalyst device for adsorbing harmful gas components in exhaust gas. A device, an openable and closable reflux means for connecting a downstream side of the adsorption device to an upstream side of the catalyst device, and a first direct communication of the downstream side of the catalyst device to the exhaust port side without passing through the adsorption device. A flow path, a second flow path that connects the downstream side of the catalyst device to the exhaust port side through the adsorption device, and causes the exhaust gas to flow through the second flow path when the temperature of the exhaust gas is below a predetermined value. An exhaust gas purifying apparatus for an engine, comprising: a switching means for circulating the exhaust gas in the first flow path and opening the recirculation means when the temperature of the exhaust gas exceeds a predetermined value. Exhaust gas upstream of the adsorption device An exhaust gas sensor for detecting a gas component or the like in the exhaust gas that fluctuates due to the operation of the adsorption device is provided in each of the passages, and the two exhaust gases are received immediately after the recirculation means is opened upon receiving the output signal of the exhaust gas sensor. A time measuring means for measuring a time te until the outputs of the gas sensors coincide with each other, and a failure judging means for judging a device failure when the measurement time te is out of a predetermined range are provided. Located in the engine exhaust purification system.

【0014】第1発明において最も注目すべきことの第
1点は,吸着装置が触媒装置の下流側に設けられてお
り,吸着装置のある第1流路と吸着装置のない第2流路
とが排気ガスの温度によって切換えられ,更に第1流路
に排気ガスを流通させるときには同時に還流手段を作動
(開路)させることである。また,最も注目すべきこと
の第2点は,還流手段と吸着装置の上流側とに,吸着装
置の作動によって変動する排気ガス中のガス成分等を検
知する排気ガスセンサが設けられていることである。
The first point that is most noticeable in the first invention is that the adsorbing device is provided on the downstream side of the catalyst device, and the first flow path with the adsorbing device and the second flow path without the adsorbing device are provided. Is switched by the temperature of the exhaust gas, and when the exhaust gas is further circulated in the first flow path, the recirculation means is operated (opened) at the same time. The second point that is most noticeable is that an exhaust gas sensor that detects gas components in exhaust gas that fluctuates due to the operation of the adsorption device is provided on the recirculation means and the upstream side of the adsorption device. is there.

【0015】吸着装置の作動によって変動する排気ガス
中のガスには,HC,O2 ,空燃比などがあり,上記ガ
スセンサには,HCセンサ,酸素センサ,空燃比センサ
などがある。そして,最も注目すべきことの第3点は,
二つのガスセンサの出力が一致するまでの時間teを測
定する時間測定手段と,上記時間teが所定の範囲を外
れた場合に装置が故障であると判定する故障判定手段と
を設けたことである。なお,故障判定手段が,上記時間
teから,装置故障を判定する手順等については,次項
において後述する。
The gases in the exhaust gas that fluctuate due to the operation of the adsorption device include HC, O 2 , air-fuel ratio and the like, and the gas sensors include HC sensor, oxygen sensor, air-fuel ratio sensor and the like. And the third point that is most noteworthy is
The time measuring means for measuring the time te until the outputs of the two gas sensors coincide with each other, and the failure determining means for determining that the device is in failure when the time te is out of a predetermined range are provided. . The procedure by which the failure determination means determines a device failure from the time te will be described later in the next section.

【0016】一方,第2発明は,エンジンの排気通路の
上流側に配置され排気ガスを浄化する触媒装置と,該触
媒装置の下流側に配置され排気ガス中の有害ガス成分を
吸着する吸着装置と,該吸着装置の下流側を上記触媒装
置の上流側に接続する開閉可能な還流手段と,上記触媒
装置の下流側を上記吸着装置を経由することなく直接排
気口側に連通させる第1流路と,触媒装置の下流側を上
記吸着装置を経て排気口側に連通させる第2流路と,排
気ガスの温度が所定値以下の場合には上記第2流路に排
気ガスを流通させ,排気ガスの温度が所定値を越えた場
合には上記第1流路に排気ガスを流通させると共に上記
還流手段を開路させる切り換え手段とを有するエンジン
の排気浄化装置において,上記還流手段と,上記吸着装
置の上流側の排気通路とには,上記吸着装置の作動によ
って変動する排気ガス中のガス成分を検知する排気ガス
センサがそれぞれ設けられており,上記排気ガスセンサ
の出力信号を入力し,上記還流手段を開路後の,上記吸
着手段から上記有害ガス成分を脱離させている時間内に
おける上記2つの排気ガスセンサの出力の相関関係の程
度を算出する相関算出手段と,上記相関関係の程度が一
定水準に達しない場合に装置故障であると判定する故障
判定手段とを設けたことを特徴とする排気浄化装置にあ
る。
On the other hand, the second aspect of the present invention is a catalyst device arranged upstream of the exhaust passage of the engine for purifying exhaust gas, and an adsorption device arranged downstream of the catalyst device for adsorbing harmful gas components in the exhaust gas. And an openable / closable reflux means for connecting the downstream side of the adsorption device to the upstream side of the catalyst device, and a first flow for directly communicating the downstream side of the catalyst device with the exhaust port side without passing through the adsorption device. A passage, a second flow passage that connects the downstream side of the catalyst device to the exhaust port side through the adsorption device, and causes the exhaust gas to flow through the second flow passage when the temperature of the exhaust gas is a predetermined value or less, An exhaust emission control device for an engine, comprising: a switching means for circulating the exhaust gas in the first flow path and opening the recirculation means when the temperature of the exhaust gas exceeds a predetermined value. Exhaust on the upstream side of the device The a road, exhaust gas sensor for detecting gas components in the exhaust gas varies by the operation of the suction device is provided respectively, the output signal of the exhaust gas sensor, after open the recirculation means, the Sucking
Correlation calculating means for calculating the degree of correlation between the outputs of the two exhaust gas sensors within the time period during which the harmful gas component is desorbed from the adsorbing means, and the device for the case where the degree of the correlation does not reach a certain level. An exhaust emission control device is provided with a failure determination means for determining a failure.

【0017】第2発明において最も注目すべきことは,
前記第1発明における最も注目すべき第1点及び第2点
に加えて,上記相関算出手段と故障判定手段を設けたこ
とである。即ち,排気浄化装置には,排気ガスセンサの
出力信号を入力し,還流手段を開路後の所定の時間内に
おける2つの排気ガスセンサの出力の相関関係の程度を
算出する相関算出手段と,上記相関関係の程度が一定の
水準に達しない場合に装置故障であると判定する故障判
定手段を設けてある。そして,相関関係の程度を算出す
る指標には,相関比,相関係数などがある。
What is most noticeable in the second invention is that
In addition to the most remarkable first and second points in the first aspect of the invention, the correlation calculating means and the failure determining means are provided. That is, the exhaust emission control device receives the output signal of the exhaust gas sensor and calculates the degree of correlation between the outputs of the two exhaust gas sensors within a predetermined time after opening the recirculation means, and the correlation calculation means. There is provided a failure determination means for determining that the device is in failure when the degree of the above does not reach a certain level. The index for calculating the degree of correlation includes a correlation ratio and a correlation coefficient.

【0018】[0018]

【作用及び効果】第1,第2発明の排気浄化装置では,
触媒装置が作動しない低温のときには,排気ガスを第2
流路に流通させることにより有害ガスを吸着し,触媒装
置の作動後は,吸着装置から脱離した有害ガスを還流手
段を介して触媒装置の上流に戻して排気ガス中の有害成
分と共に触媒装置によって浄化する。
[Operation and effect] In the exhaust emission control device of the first and second inventions,
When the catalyst device does not operate at low temperature, exhaust gas is
After the harmful gas is adsorbed by flowing through the flow path and the catalytic device is operated, the harmful gas desorbed from the adsorbing device is returned to the upstream of the catalytic device through the recirculation means to return to the catalytic device together with the harmful component in the exhaust gas. Purify by.

【0019】そして,第1,第2発明の排気浄化装置で
は,吸着装置が触媒装置の上流側にあるので触媒装置の
加熱を妨げたりすることがなく,また吸着装置自体の温
度上昇が相対的に抑制されるから,吸着装置の性能を効
果的に発揮することができる。従って,排気浄化装置が
正常に作動している限り,有害ガスを効果的に浄化する
ことができる。
In the exhaust gas purifying apparatus of the first and second inventions, since the adsorbing device is located on the upstream side of the catalytic device, it does not hinder the heating of the catalytic device, and the temperature rise of the adsorbing device itself is relatively high. Therefore, the performance of the adsorption device can be effectively exhibited. Therefore, the harmful gas can be effectively purified as long as the exhaust emission control device is operating normally.

【0020】そして,第1発明の排気浄化装置では,還
流手段に配置する第1のガスセンサと排気通路に配置す
る第2のガスセンサとがあり,時間測定手段を介して還
流手段作動後において第1ガスセンサと第2ガスセンサ
の出力が同一となるまでの時間幅teを測定する。上記
時間teを測定する理由は,以下に述べる通りである。
In the exhaust gas purifying apparatus of the first invention, there are the first gas sensor arranged in the recirculation means and the second gas sensor arranged in the exhaust passage, and the first gas sensor is arranged in the first passage after the operation of the recirculation means via the time measuring means. The time width te until the outputs of the gas sensor and the second gas sensor become the same is measured. The reason for measuring the time te is as described below.

【0021】正常に装置が作動している場合には,還流
手段の流路には吸着装置から脱離したガス成分が排気ガ
ス中に加わるために,吸着装置の脱離中は第1ガスセン
サの出力が第2ガスセンサの出力よりも大きくなる(図
5参照)。そして,吸着装置における吸着ガスの脱離が
完了すると,第1,第2排気ガスセンサの出力は一致す
る(図6参照)。それ故,装置が正常に働いている場合
には,上記時間測定手段が測定する時間teは,エンジ
ンの運転状況に対応した所定の値の範囲内に入ってく
る。
When the device is operating normally, the gas component desorbed from the adsorber is added to the exhaust gas in the flow path of the recirculation means. Therefore, during desorption of the adsorber, the first gas sensor The output becomes larger than the output of the second gas sensor (see FIG. 5). When the desorption of the adsorbed gas in the adsorption device is completed, the outputs of the first and second exhaust gas sensors match (see FIG. 6). Therefore, when the device is operating normally, the time te measured by the time measuring means falls within a predetermined value range corresponding to the operating condition of the engine.

【0022】従って,上記故障判定手段は,上記時間t
eが所定の範囲内にあるか否かを判定し,これによって
吸着装置の不具合や切り換え手段の異常など何らかの故
障があったことを的確に判定することができる。そのた
め,故障のまま排気浄化装置が長時間運転されるような
ことがない。上記のように第1発明によれば,正常時に
排気ガス中の有害成分の排出を効果的に抑制し,かつ装
置故障を的確に判定することのできる排気浄化装置を提
供することができる。
Therefore, the failure determination means is provided with the time t.
It is possible to determine whether or not e is within a predetermined range, and by this, it is possible to accurately determine that there is some failure such as a malfunction of the suction device or an abnormality of the switching means. Therefore, the exhaust emission control device does not operate for a long period of time with a failure. As described above, according to the first aspect of the present invention, it is possible to provide an exhaust emission control device that can effectively suppress the emission of harmful components in exhaust gas in a normal state and can accurately determine a device failure.

【0023】一方,第2発明の排気浄化装置には,相関
算出手段と故障判定手段とが設けられている。そして前
記のように,装置が正常に働いている場合には,吸着装
置の脱離中には第1排気ガスセンサの出力は第2排気ガ
スセンサよりも大きくなり,また第1排気ガスセンサと
第2排気ガスセンサの出力の間には強い相関関係が存在
する(図5参照)。
On the other hand, the exhaust emission control device of the second invention is provided with a correlation calculation means and a failure determination means. As described above, when the device is operating normally, the output of the first exhaust gas sensor becomes larger than that of the second exhaust gas sensor during desorption of the adsorption device, and the first exhaust gas sensor and the second exhaust gas sensor There is a strong correlation between the outputs of the gas sensors (see Figure 5).

【0024】一方,吸着装置や還流手段等に故障が生じ
た場合には,上記第1排気ガスセンサの出力と第2排気
ガスの出力の相関関係が大きく崩れてくる。例えば,還
流手段が故障して常時閉又は常時開の状態に陥った場合
には,触媒装置が働いて吸着装置の脱離工程に入った場
合における両排気ガスセンサの出力の間の相関度が大き
く低下する(図13参照)。
On the other hand, when a failure occurs in the adsorbing device, the recirculation means, etc., the correlation between the output of the first exhaust gas sensor and the output of the second exhaust gas is greatly lost. For example, when the recirculation means fails and falls into the normally closed or normally open state, the correlation between the outputs of both exhaust gas sensors is large when the catalyst device operates and enters the desorption process of the adsorption device. Decrease (see FIG. 13).

【0025】それ故,排気浄化装置は,相関算出手段が
算出した相関度をもとにして装置の故障を判定すること
ができる。上記のように,第2発明によれば,正常時に
排気ガス中の有害成分の排出を効果的に抑制し,かつ装
置故障を的確に判定することのできる排気浄化装置を提
供することができる。
Therefore, the exhaust emission control device can determine the failure of the device based on the degree of correlation calculated by the correlation calculation means. As described above, according to the second aspect of the present invention, it is possible to provide an exhaust emission control device that can effectively suppress the emission of harmful components in exhaust gas in a normal state and can accurately determine a device failure.

【0026】[0026]

【実施例】【Example】

実施例1 本発明の実施例にかかる排気浄化装置につき,図1〜図
8を用いて説明する。本例は,図1に示すように,エン
ジン51の排気通路30の上流側に配置され排気ガスを
浄化する触媒装置11と,触媒装置11の下流側に配置
され排気ガス中の有害ガス成分を吸着する吸着装置12
と,吸着装置12の下流側を触媒装置11の上流側に接
続する開閉可能な還流手段15と,触媒装置11の下流
側を吸着装置12を経由することなく直接排気口側に連
通させる第1流路31と,触媒装置11の下流側を吸着
装置12を経て排気口側に連通させる第2流路32と,
排気ガスの温度が所定値以下の場合には第2流路32に
排気ガスを流通させ,排気ガスの温度が所定値を越えた
場合には第1流路31に排気ガスを流通させると共に還
流手段15を開路させる切り換え手段とを有するエンジ
ン51の排気浄化装置1である。
Example 1 An exhaust emission control device according to an example of the present invention will be described with reference to FIGS. In this example, as shown in FIG. 1, a catalyst device 11 arranged upstream of the exhaust passage 30 of the engine 51 for purifying exhaust gas, and a harmful gas component in the exhaust gas arranged downstream of the catalyst device 11 Adsorption device 12 for adsorption
And an openable / closable recirculation unit 15 that connects the downstream side of the adsorption device 12 to the upstream side of the catalyst device 11, and the first side that directly connects the downstream side of the catalyst device 11 to the exhaust port side without passing through the adsorption device 12. A flow path 31 and a second flow path 32 that connects the downstream side of the catalyst device 11 to the exhaust port side via the adsorption device 12,
When the temperature of the exhaust gas is equal to or lower than a predetermined value, the exhaust gas is circulated in the second flow path 32, and when the temperature of the exhaust gas is higher than the predetermined value, the exhaust gas is circulated and recirculated in the first flow path 31. It is the exhaust gas purification device 1 of the engine 51 having switching means for opening the means 15.

【0027】還流手段15と吸着装置12の上流の排気
通路とには,吸着装置12の作動によって変動する排気
ガス中のガス成分であるO2 を検知する酸素濃度センサ
21,22がそれぞれ設けられている。また,酸素濃度
センサ21,22の出力信号を受け,還流手段15の開
路直後から酸素濃度センサ21,22の出力が一致する
までの時間teを測定する時間測定手段41と,上記測
定時間teが所定の範囲を外れた場合に装置故障である
と判定する故障判定手段42とを有する。
Oxygen concentration sensors 21 and 22 for detecting O 2 which is a gas component in the exhaust gas which fluctuates due to the operation of the adsorption device 12 are provided in the recirculation means 15 and the exhaust passage upstream of the adsorption device 12, respectively. ing. Further, the time measuring means 41 which receives the output signals of the oxygen concentration sensors 21 and 22 and measures the time te from immediately after the opening of the reflux means 15 until the outputs of the oxygen concentration sensors 21 and 22 coincide, It has a failure determination means 42 for determining that the apparatus is out of order when it is out of a predetermined range.

【0028】以下それぞれについて説明を補足する。図
1に示すように,エンジン51の排気通路30には,排
気マニホルド52の直後の位置に触媒装置11を配置し
てある。また,排気通路30における触媒装置11の下
流には,大径部300を設けてあり,この中に吸着装置
12を収納した第2流路32と第1流路31が形成され
ている。
A supplementary explanation will be given below for each of them. As shown in FIG. 1, in the exhaust passage 30 of the engine 51, the catalyst device 11 is arranged immediately after the exhaust manifold 52. Further, a large diameter portion 300 is provided in the exhaust passage 30 downstream of the catalyst device 11, and a second flow passage 32 and a first flow passage 31 that accommodate the adsorption device 12 are formed therein.

【0029】吸着装置12はステンレス鋼またはコージ
ェライト等のセラミックからなり,大径部300の形状
に合致する半円筒形状を有する。そして,図2に示すよ
うに,平行な多数の通孔121を有し,後部の吸着剤担
持層120にはゼオライト系吸着剤が担持されている。
一方,前方に位置する吸着剤無担持層129には,吸着
剤は担持されていない。なお,吸着装置12は,上記大
径部300の形状に合わせて楕円形状や方形形状とする
ことができる。
The adsorption device 12 is made of a ceramic such as stainless steel or cordierite, and has a semi-cylindrical shape matching the shape of the large diameter portion 300. As shown in FIG. 2, a large number of parallel through holes 121 are provided, and a zeolite-based adsorbent is supported on the adsorbent-supporting layer 120 at the rear part.
On the other hand, no adsorbent is loaded on the adsorbent-free layer 129 located on the front side. The adsorbing device 12 may have an elliptical shape or a rectangular shape according to the shape of the large diameter portion 300.

【0030】そして,図1に示すように,吸着装置12
の後端直後には,切り換え手段を構成する第1開閉手段
13を配設してある。なお,触媒装置11と吸着装置1
2との距離は,触媒装置11が排気ガスに加熱されて活
性化温度に達する時間と,吸着装置22に担持された吸
着剤が加熱されて吸着機能を失う時間とがほぼ一致する
ような距離に設定されている。
Then, as shown in FIG. 1, the adsorption device 12
Immediately after the rear end, a first opening / closing means 13 which constitutes a switching means is arranged. The catalyst device 11 and the adsorption device 1
The distance from 2 is such that the time when the catalyst device 11 is heated by the exhaust gas to reach the activation temperature and the time when the adsorbent carried by the adsorption device 22 is heated and loses the adsorption function are substantially equal to each other. Is set to.

【0031】吸着装置12は,第1流路31との間が隔
壁123によって分離・保持されている。隔壁123に
は,図2に示すように,開口部124が設けられてい
る。また,吸着装置12の上流側には整流板125が配
備されており,吸着装置12に流れる排気ガスの流速分
布を均一にし,吸着効率を高める作用を発揮している。
隔壁123と整流板125とは,図2のように一体構造
でもよいし,分離されていてもよい。
The adsorption device 12 is separated and held between the first flow path 31 and the first flow path 31 by a partition wall 123. As shown in FIG. 2, the partition wall 123 is provided with an opening 124. A rectifying plate 125 is provided on the upstream side of the adsorbing device 12 to make the flow velocity distribution of the exhaust gas flowing through the adsorbing device 12 uniform and to enhance the adsorbing efficiency.
The partition wall 123 and the current plate 125 may have an integrated structure as shown in FIG. 2 or may be separated.

【0032】そして,図1に示すように,第2流路32
の後部から還流流路35が分岐し,還流流路35は管内
の排気の流れを一方向に抑制する方向弁25と切り換え
手段を構成する第2開閉手段24とを一体化したリード
弁26を有しており,排気マニホールド52に連通して
いる。
Then, as shown in FIG.
A recirculation flow path 35 branches off from the rear part of the recirculation flow path 35. It has, and communicates with the exhaust manifold 52.

【0033】そして,還流流路35のリード弁26の上
流側には,第1酸素濃度センサ21が設置されている。
また,吸着装置12の後部には,第1開閉手段13を操
作する操作部材14が台座140の上に設けられてお
り,第1開閉手段13は,シャフト141とクランク1
42と枢軸とアーム144とを介して操作部材14の可
動片145に連結されている。
A first oxygen concentration sensor 21 is installed upstream of the reed valve 26 in the return flow passage 35.
Further, an operation member 14 for operating the first opening / closing means 13 is provided on the pedestal 140 at the rear part of the adsorption device 12, and the first opening / closing means 13 includes the shaft 141 and the crank 1.
It is connected to the movable piece 145 of the operating member 14 via 42, the pivot and the arm 144.

【0034】操作部材14は,台座140によって吸着
装置12から離して設置されており,排気ガスの熱が直
射されず,またシャフト141や台座140を介して伝
わる熱量も少なく,また,外気によって冷却され易いか
ら障害等が発生しにくい。操作部材14は,これを作動
させる負圧を供給するために吸気管361,362を経
て,エンジン51上流部のサージタンク53に連通して
いる。そして,吸気管361と362の境界には第1電
磁弁27が配設されている。
The operating member 14 is installed away from the adsorption device 12 by the pedestal 140, the heat of the exhaust gas is not directly radiated, the heat quantity transmitted through the shaft 141 and the pedestal 140 is small, and the operating member 14 is cooled by the outside air. Since it is easy to be damaged, it is difficult for obstacles to occur. The operating member 14 communicates with the surge tank 53 upstream of the engine 51 via the intake pipes 361 and 362 to supply a negative pressure for operating the operating member 14. The first electromagnetic valve 27 is arranged at the boundary between the intake pipes 361 and 362.

【0035】また,還流流路35の方向弁25は,吸着
装置12の下流から触媒装置21の上流側に向かう排気
の流通のみを許容する弁である。一方,第2開閉手段2
4は,負圧に応動するダイヤフラム等により作動する。
そして,第2開閉手段24は,これに負圧を供給するた
めに,吸気管371,372を介してサージタンク53
に至る吸気管362に連通し,吸気管371と372の
間には第2電磁弁28が介設されている。
The directional valve 25 of the return flow passage 35 is a valve which allows only the flow of exhaust gas from the downstream side of the adsorption device 12 toward the upstream side of the catalyst device 21. On the other hand, the second opening / closing means 2
4 operates by a diaphragm or the like that responds to negative pressure.
The second opening / closing means 24 supplies the negative pressure to the surge tank 53 via the intake pipes 371, 372.
A second electromagnetic valve 28 is provided between the intake pipes 371 and 372 and communicates with the intake pipe 362.

【0036】酸素濃度センサ21,22の出力は,排気
ガスの空燃比に対応して,図3に示すように,リツチ領
域(空燃比小)において出力が急増する。また,排気ガ
スの温度を検出する温度センサ43が設置されており,
切り換え手段を操作する電子制御装置(ECU)40
に,出力信号を送出する。時間測定手段41及び故障判
定手段42はマイクロコンピュータを内蔵した電子制御
装置(ECU)40の中に形成されており,ECU40
は酸素濃度センサ21,22及び温度センサ43の信号
を受け,第1,第2電磁弁27,28を操作して第1,
第2開閉手段13,24を制御する。
The outputs of the oxygen concentration sensors 21 and 22 rapidly increase in the latch region (small air-fuel ratio) as shown in FIG. 3, corresponding to the air-fuel ratio of the exhaust gas. Further, a temperature sensor 43 for detecting the temperature of exhaust gas is installed,
Electronic control unit (ECU) 40 for operating the switching means
The output signal is sent to. The time measuring means 41 and the failure determining means 42 are formed in an electronic control unit (ECU) 40 having a built-in microcomputer.
Receives signals from the oxygen concentration sensors 21 and 22 and the temperature sensor 43, and operates the first and second solenoid valves 27 and 28 to perform the first and second
The second opening / closing means 13 and 24 are controlled.

【0037】次に,排気浄化装置1の動作手順につい
て,図1のシステム構成図とともに図4に示すフローチ
ャートを用いて説明する。ステップ601において,エ
ンジン51が始動(イグニッション・オン)すると,E
CU40はステップ602において第1電磁弁27を開
路し,吸気管361,362が連通する。その結果,サ
ージタンク53の負圧が操作部材14に働き,シャフト
141を引っ張り,第1開閉手段13は破線で示す位置
となる(閉動作)。
Next, the operation procedure of the exhaust purification system 1 will be described with reference to the system configuration diagram of FIG. 1 and the flowchart shown in FIG. In step 601, when the engine 51 is started (ignition on), E
In step 602, the CU 40 opens the first electromagnetic valve 27 so that the intake pipes 361 and 362 communicate with each other. As a result, the negative pressure of the surge tank 53 acts on the operating member 14, pulls the shaft 141, and the first opening / closing means 13 comes to the position shown by the broken line (closing operation).

【0038】エンジン51の始動直後は,排気ガスの温
度が低く,エンジン51は多量のコールドHCを含んだ
排気ガスを排出する。そして,排気ガスの温度が低い間
は触媒は活性化温度に達しておらず,コールドHCは触
媒装置11で殆ど浄化されないまま第2流路32を流れ
る。なお,上記排気ガスの温度は,前記温度センサ43
によって監視されている。この低温時における排気ガス
流は,吸着装置12の吸着剤(ゼオライト)無担持層1
29(図2)から吸着剤担持層120へと流れ,吸着剤
によって吸着される。そして,吸着装置12を通過して
コールドHCが除去された排気ガスは,図示しないマフ
ラーを経て大気に放出される。
Immediately after starting the engine 51, the temperature of the exhaust gas is low and the engine 51 discharges the exhaust gas containing a large amount of cold HC. While the temperature of the exhaust gas is low, the catalyst has not reached the activation temperature, and the cold HC flows through the second flow path 32 without being purified by the catalyst device 11. The temperature of the exhaust gas is measured by the temperature sensor 43.
Being monitored by. The exhaust gas flow at this low temperature is the adsorbent (zeolite) unsupported layer 1 of the adsorption device 12.
29 (FIG. 2) flows to the adsorbent support layer 120 and is adsorbed by the adsorbent. Then, the exhaust gas from which the cold HC has been removed after passing through the adsorption device 12 is released to the atmosphere through a muffler (not shown).

【0039】なお,吸着装置12を通る排気ガスは,前
記のように整流板125によって整流されるから,均一
な流速分布となって吸着装置12を通過する。このと
き,ECU40は,ステップ603に示すように,第1
電磁弁27,動作後の時間tをカウントしている。そし
て,ステップ604に示すように,エンジン51が暖機
して,排気ガスの温度が吸着剤の作動温度を越える所定
の時間taが経過すると(t>ta),ステップ605
においてECU40は第1電磁弁27を閉弁させる。
Since the exhaust gas passing through the adsorption device 12 is rectified by the rectifying plate 125 as described above, it has a uniform flow velocity distribution and passes through the adsorption device 12. At this time, the ECU 40, as shown in step 603,
The solenoid valve 27 counts the time t after the operation. Then, as shown in step 604, when the engine 51 warms up and a predetermined time ta in which the temperature of the exhaust gas exceeds the operating temperature of the adsorbent has elapsed (t> ta), step 605
At, the ECU 40 closes the first electromagnetic valve 27.

【0040】これによって,操作部材14に対する負圧
の供給が遮断され,スプリング149の付勢力によりシ
ャフト141を押し出す。その結果,ステップ605に
おいて,第1開閉手段23は,図1の実線で示す状態に
復元し,第1流路31を開路し,第2流路32を閉じ
る。そして,このステップまでの時間経過t(>ta)
の中で,前記のように触媒装置11は活性化温度に達し
ており,排気ガス中のHCは触媒装置11で浄化され,
HCを殆ど含まない排気ガスが第1流路31を経て大気
中に放出される。このようにして,本例の排気浄化装置
1は,HCの排出を大幅に低減させることができる。
As a result, the supply of negative pressure to the operating member 14 is cut off, and the shaft 141 is pushed out by the urging force of the spring 149. As a result, in step 605, the first opening / closing means 23 restores the state shown by the solid line in FIG. 1, opens the first flow path 31, and closes the second flow path 32. Then, the time elapsed until this step is t (> ta)
As described above, the catalyst device 11 has reached the activation temperature, and the HC in the exhaust gas is purified by the catalyst device 11,
Exhaust gas containing almost no HC is released into the atmosphere through the first flow path 31. In this way, the exhaust emission control device 1 of this example can significantly reduce the emission of HC.

【0041】また,ステップ605で第1電磁弁27が
閉弁した後に,ステップ606に示すように,第2電磁
弁28が開弁する。そして,吸気管371がサージタン
ク53に連通し,第2開閉手段24に負圧が供給され,
第2開閉手段24が開弁する。そして,ステップ608
に示すように,再びタイマのカウントを開始する。一
方,吸着装置12の側面では,既に高温となった排気ガ
スが第1流路31を流通しており,高温の排気ガスは図
2に示す隔壁123の開口部124を介して吸着剤担持
層120と接している。
After the first solenoid valve 27 is closed in step 605, the second solenoid valve 28 is opened as shown in step 606. Then, the intake pipe 371 communicates with the surge tank 53, negative pressure is supplied to the second opening / closing means 24,
The second opening / closing means 24 opens. And step 608
As shown in, the timer starts counting again. On the other hand, on the side surface of the adsorption device 12, the exhaust gas that has already become hot flows through the first flow passage 31, and the hot exhaust gas passes through the opening 124 of the partition wall 123 shown in FIG. It is in contact with 120.

【0042】そのため,排気ガスの熱は吸着剤担持層1
20に極めて良好に伝達され,吸着剤が昇温しHCの脱
離を促進する。このとき,上記のように既に第2開閉手
段24は開弁されているから,排気マニホールド52内
に発生する排気脈動は還流流路35を介して一方向弁2
5を断続的に開弁させる。
Therefore, the heat of the exhaust gas is absorbed by the adsorbent support layer 1
20 is transmitted very well, the temperature of the adsorbent rises, and the desorption of HC is promoted. At this time, since the second opening / closing means 24 has already been opened as described above, the exhaust pulsation generated in the exhaust manifold 52 is passed through the recirculation flow path 35 to the one-way valve 2
5 is intermittently opened.

【0043】これにより,吸着装置12の吸着剤担持層
120の吸着剤から脱離したHCは還流流路35を経て
排気マニホールド52に流入する。そして,図3に示す
ように,酸素濃度センサ21,22の出力は,空燃比大
(リーン)時に比べ,空燃比小(リッチ)時の方が大幅
に大きくなる。したがって,還流流路35に設置された
酸素濃度センサ21の出力(Vex)は,吸着装置12
の上流側に設置された酸素濃度センサ22の出力(Vi
n)に比べ,脱離されたHCが増加して空燃比が小さく
なるため,常に値が大きくなる。
As a result, the HC desorbed from the adsorbent of the adsorbent-supporting layer 120 of the adsorber 12 flows into the exhaust manifold 52 through the reflux flow passage 35. Then, as shown in FIG. 3, the outputs of the oxygen concentration sensors 21 and 22 are significantly larger when the air-fuel ratio is small (rich) than when the air-fuel ratio is large (lean). Therefore, the output (Vex) of the oxygen concentration sensor 21 installed in the reflux flow path 35 is the same as the adsorption device 12
Of the oxygen concentration sensor 22 installed on the upstream side of the
Compared to n), the amount of desorbed HC increases and the air-fuel ratio decreases, so the value is always large.

【0044】そして,リッチ側からリーン側に振れると
きに,出力Vexは出力Vinよりもゆるやかに変化
し,両酸素濃度センサの出力差が顕著になる(図5)。
なお,図5〜図8で,実線は上記Vinを,破線は上記
Vexを示し,また山側はリッチ時を,谷側はリーン時
を示す(図3参照)。
When swinging from the rich side to the lean side, the output Vex changes more slowly than the output Vin, and the output difference between both oxygen concentration sensors becomes remarkable (FIG. 5).
5 to 8, the solid line indicates the Vin, the broken line indicates the Vex, the mountain side indicates the rich time, and the valley side indicates the lean time (see FIG. 3).

【0045】そして,脱離したHCは,エンジン51か
ら排出されたHCとともに触媒装置11で浄化される。
両酸素濃度センサ21,22の出力(Vex,Vin)
の比較は,ステップ609に示すように,Vex>Vi
nでなくなるまで継続されている。そして,図6に示す
ように,HCの脱離時間が経過すると,吸着装置12の
上流の排気ガスと還流流路35の排気ガスの濃度はほぼ
同一となる。
The desorbed HC is purified by the catalyst device 11 together with the HC discharged from the engine 51.
Output of both oxygen concentration sensors 21 and 22 (Vex, Vin)
Is compared with Vex> Vi as shown in step 609.
It continues until it is not n. Then, as shown in FIG. 6, after the desorption time of HC has passed, the concentrations of the exhaust gas upstream of the adsorption device 12 and the exhaust gas of the recirculation passage 35 become substantially the same.

【0046】両酸素濃度センサ21,22の出力が同一
になるとステップ610に進み,タイマのカウントを停
止し,このときまでのタイマの積算値tを測定時間te
として設定する。そして,次のステップ611におい
て,測定時間teが所定の範囲内にあるから否かを検査
する。一般に,吸着装置12を完全に脱離する時間は,
中心の値tbを中心にして一定の時間帯(tb−α)〜
(tb+α)の間にあると考えることができるから,上
記測定時間teが上記時間帯の中にあれば,故障判定手
段42は装置が正常であると判断し,ステップ613に
進む。
When the outputs of both oxygen concentration sensors 21 and 22 become the same, the process proceeds to step 610, the timer count is stopped, and the integrated value t of the timer until this time is measured time te.
Set as. Then, in the next step 611, it is inspected whether or not the measurement time te is within a predetermined range. Generally, the time to completely desorb the adsorption device 12 is
A fixed time zone (tb-α) centered on the central value tb
Since it can be considered that it is between (tb + α), if the measurement time te is within the time zone, the failure determination means 42 determines that the device is normal, and proceeds to step 613.

【0047】そして,ステップ613において第2電磁
弁28を閉じて還流流路35を閉路(第2開閉手段24
閉弁)する。一方,ステップ611において,上記測定
時間teが上記時間帯(tb−α)〜(tb+α)にな
い場合には,故障判定手段42は装置故障であると判定
し,ステップ612において故障フラグを設定し,必要
な所に故障信号を送出する。その後,ステップ613に
進み,還流流路35を閉路する。
Then, in step 613, the second electromagnetic valve 28 is closed to close the return flow passage 35 (the second opening / closing means 24
Close). On the other hand, in step 611, when the measurement time te is not within the time zone (tb-α) to (tb + α), the failure determination means 42 determines that the device is in failure, and sets the failure flag in step 612. , Send a failure signal to the required place. Then, it progresses to step 613 and closes the return flow path 35.

【0048】なお,上記,測定時間teが所定の時間帯
に入らなくなる原因には,切り換え手段を構成する電磁
弁27,28や開閉手段13,24の不具合,吸着装置
12の劣化,還流流路35の目詰まりなどがある。そし
て,該排気ガス浄化装置1が正常に機能するときは,図
7に示すように,HCの脱離が完了してVexとVin
が一致する時間teが,所定の範囲(tb±α)の間に
ある。
The reasons why the measurement time te does not fall within the predetermined time zone are the malfunctions of the solenoid valves 27, 28 and the opening / closing means 13, 24 constituting the switching means, the deterioration of the adsorption device 12, the reflux flow path. There are 35 clogging. When the exhaust gas purification device 1 functions normally, as shown in FIG. 7, desorption of HC is completed and Vex and Vin
The time te at which is coincident with is within a predetermined range (tb ± α).

【0049】ところが,該排気ガス浄化装置が故障し,
HC吸着量がゼロの時は,両酸素濃度センサ21,22
の出力差が表れることはなくなる。また,吸着装置12
における吸着量が正常時にくらべて少ないときは,図8
に示すように,(tb−α)以前に酸素濃度センサの出
力差はなくなってしまう。また,吸着装置12の脱離時
間が,還流流路35の目詰まりなどにより長くなると,
測定時間teは,(tb+α)よりも大きくなる。上記
のように,本例によれば,排気ガス中の有害成分の排出
を効果的に抑制し,かつ装置故障を的確に判定すること
のできる排気浄化装置1を提供することができる。
However, when the exhaust gas purifying device fails,
When the amount of adsorbed HC is zero, both oxygen concentration sensors 21, 22
The output difference will not appear. In addition, the adsorption device 12
Fig. 8 shows that the adsorption amount in
As shown in, the output difference of the oxygen concentration sensor disappears before (tb-α). Further, if the desorption time of the adsorption device 12 becomes long due to clogging of the reflux flow path 35,
The measurement time te becomes longer than (tb + α). As described above, according to this example, it is possible to provide the exhaust emission control device 1 that can effectively suppress the emission of harmful components in the exhaust gas and accurately determine the device failure.

【0050】実施例2 本例は,実施例1において,酸素濃度センサ21,22
に替えて空燃比センサを用いたもう1つの実施例であ
る。空燃比センサの出力は,一般に図9に示すように,
空燃比に対する出力値がゆるやかに変化し,図3に示す
酸素濃度センサ21,22のように狭い範囲で出力が急
変することがない。そのため,空燃比センサが検知する
ことのできる空燃比の幅が広くなり,急加速などによっ
て空燃比の変化領域が大きく変動する場合にも,これを
識別してより精度の高い故障の診断が可能となる。その
他については,実施例1と同様である。
Example 2 This example is similar to Example 1 except that the oxygen concentration sensors 21 and 22 are used.
It is another embodiment using an air-fuel ratio sensor instead of. The output of the air-fuel ratio sensor is generally as shown in FIG.
The output value with respect to the air-fuel ratio changes gently, and the output does not suddenly change in a narrow range unlike the oxygen concentration sensors 21 and 22 shown in FIG. Therefore, the width of the air-fuel ratio that can be detected by the air-fuel ratio sensor becomes wider, and even when the air-fuel ratio change area changes greatly due to sudden acceleration, etc., it can be identified and more accurate fault diagnosis can be performed. Becomes Others are the same as those in the first embodiment.

【0051】実施例3 本例は,実施例1において,酸素濃度センサ21,22
に替えてHCの濃度を検知するHC濃度センサを用いた
もう1つの実施例である。HC濃度センサの出力は,図
10に示すように,排気ガス中のHC濃度によって変化
する。それ故,空燃比の変動の影響を受けることなく,
直接HCの濃度を監視するので,実施例1及び実施例2
よりも更に高精度で装置の故障診断が可能である。その
他については,実施例1と同様である。
Example 3 This example is similar to Example 1 except that the oxygen concentration sensors 21 and 22 are used.
It is another embodiment using an HC concentration sensor that detects the concentration of HC instead of. The output of the HC concentration sensor changes according to the HC concentration in the exhaust gas, as shown in FIG. Therefore, without being affected by changes in the air-fuel ratio,
Since the concentration of HC is directly monitored, Example 1 and Example 2
It is possible to diagnose the failure of the device with higher accuracy. Others are the same as those in the first embodiment.

【0052】実施例4 本例は,第2発明の実施例にかかる排気浄化装置1であ
り,図11に示すように,実施例1において時間測定手
段41及び故障判定手段42に替えて相関算出手段45
と故障判定手段46とを設けたものである。ECU40
には,第1酸素濃度センサ21及び第2酸素濃度センサ
22の出力が入力され,相関算出手段45は還流手段1
5開路後における両酸素濃度センサ21,22の相関係
数Cを算出する。また,故障判定手段46は相関算出手
段45が算出した一定時間内における上記相関係数Cが
所定値を超えているか否かによって装置が正常か故障か
を判定する。
Embodiment 4 This embodiment is an exhaust gas purification apparatus 1 according to an embodiment of the second invention, and as shown in FIG. 11, in the embodiment 1, the correlation calculation is performed in place of the time measuring means 41 and the failure judging means 42. Means 45
And a failure determination means 46 are provided. ECU 40
The outputs of the first oxygen concentration sensor 21 and the second oxygen concentration sensor 22 are input to the
The correlation coefficient C of both oxygen concentration sensors 21 and 22 after 5 open circuits is calculated. Further, the failure determination means 46 determines whether the device is normal or failed depending on whether or not the correlation coefficient C calculated by the correlation calculation means 45 within a certain time exceeds a predetermined value.

【0053】上記相関算出手段45及び故障判定手段4
6を含む本例の排気浄化装置1の動作手順について,実
施例1との相違点を中心に,図11,図12を用いて説
明する。図12のフローチャートにおいて,還流手段1
5を作動させるステップ606までは,実施例1(図
4)と同様であるので説明を省略する。次のステップ6
08において,タイマのカウントを始動し還流手段15
作動後の時間の計測を開始する。
Correlation calculating means 45 and failure judging means 4
An operation procedure of the exhaust emission control device 1 of the present example including No. 6 will be described with reference to FIGS. 11 and 12, focusing on differences from the first embodiment. In the flowchart of FIG. 12, the reflux means 1
The steps up to step 606 for activating 5 are the same as those in the first embodiment (FIG. 4), and the description thereof will be omitted. Next step 6
At 08, the counting of the timer is started and the recirculation means 15
Start measuring time after operation.

【0054】次にステップ620において,相関算出手
段45は,タイマ作動後における第1酸素濃度センサ2
1と第2酸素濃度センサ22の出力Vex,Vinの間
の相関係数Cを算式する。相関係数Cは,例えば,両セ
ンサ21,22の出力の積(Vex×Vin)の平均値
と,第2酸素濃度センサ22の出力の2乗Vin2 の平
均値の比として簡便に次式のように算出することができ
る。 C=(Vin×Vex)(Vin×Vin)-1
Next, at step 620, the correlation calculating means 45 causes the first oxygen concentration sensor 2 after the timer is activated.
The correlation coefficient C between 1 and the outputs Vex and Vin of the second oxygen concentration sensor 22 is calculated. The correlation coefficient C is simply expressed as the ratio of the average value of the products (Vex × Vin) of the outputs of the two sensors 21 and 22 and the average value of the squared Vin 2 of the output of the second oxygen concentration sensor 22 by the following equation. Can be calculated as follows. C = (Vin × Vex) (Vin × Vin) −1

【0055】このような相関係数Cの算出は,ステップ
621に示すように吸着装置12の脱離が完了する一定
の時間tsに達するまで続けられる。そして,ステップ
621で上記時間tsに達した場合には,ステップ62
2に進む。ステップ622で,時間tsまでの相関係数
Cが所定値,例えば0.5を超えたか否かを判定し,否
ならば故障と判定しステップ612において故障フラグ
をセットしてステップ613で還流手段15を閉路し,
制御ルーチンを終了する。
The calculation of the correlation coefficient C as described above is continued until the desorption of the adsorption device 12 reaches a certain time ts as shown in step 621. When the time ts is reached in step 621, step 62
Go to 2. In step 622, it is determined whether or not the correlation coefficient C up to the time ts exceeds a predetermined value, for example, 0.5. If not, it is determined to be a failure, a failure flag is set in a step 612, and a recirculation means in a step 613. Closed 15
The control routine ends.

【0056】また,ステップ622で相関係数Cが所定
値を超える場合には,第1酸素濃度センサ21と第2酸
素濃度センサ22の出力に所定の相関性が存在し,装置
が正常であると判定し,故障フラグをセットすることな
く,ステップ613で還流手段15を閉路し,制御ルー
チンを完了する。
If the correlation coefficient C exceeds the predetermined value in step 622, there is a predetermined correlation between the outputs of the first oxygen concentration sensor 21 and the second oxygen concentration sensor 22, and the device is normal. Then, the circulation means 15 is closed in step 613 without setting the failure flag, and the control routine is completed.

【0057】次に,排気浄化装置1の故障の場合には,
上記相関係数Cが大幅に低下すること,即ち相関係数C
の低下が装置故障と密接に結びついていることを実測値
に基づいて示す。図13は,上記相関係数Cの実例を正
常時とリード弁26の2つの故障モードについて図示し
たものである。正常時の相関係数Cは,0.7であり所
定値0.5よりも大幅に大きいが,リード弁26が常時
開故障(弁部の折損など)のときはCは0.16に低下
し,またリード弁26が常時閉故障(弁部の固着など)
のときはCは0.41に低下する。
Next, in the case of failure of the exhaust purification system 1,
The correlation coefficient C is significantly reduced, that is, the correlation coefficient C
It is shown based on the measured value that the decrease of the is closely related to the device failure. FIG. 13 shows an example of the correlation coefficient C in the normal state and two failure modes of the reed valve 26. The correlation coefficient C in the normal state is 0.7, which is significantly larger than the predetermined value 0.5, but when the reed valve 26 has a normally open failure (breakage of the valve portion, etc.), C decreases to 0.16. Also, the reed valve 26 has a normally closed failure (valve sticking, etc.)
At that time, C drops to 0.41.

【0058】即ち,リード弁26の弁部が折損し還流手
段15が開放状態に陥った場合には,正常時の排気ガス
の還流とは逆方向の流れ,即ちエンジンの排気マニホー
ルド52から吸着装置12の下流に向かう排気ガスの流
れが支配的となる。そのため,第1酸素濃度センサの出
力Vexは,触媒装置11下流の酸素濃度と切り離され
た状態となり,Vex>VinとなるがVinとの相関
係数Cは大きく低下する(C=0.16)。
That is, when the valve portion of the reed valve 26 is broken and the recirculation unit 15 is opened, the flow of the exhaust gas in the direction opposite to the normal recirculation of exhaust gas, that is, from the exhaust manifold 52 of the engine to the adsorption device. The flow of exhaust gas downstream of 12 becomes dominant. Therefore, the output Vex of the first oxygen concentration sensor is separated from the oxygen concentration downstream of the catalyst device 11 and Vex> Vin, but the correlation coefficient C with Vin is greatly reduced (C = 0.16). .

【0059】また,例えばリード弁26の第2開閉手段
24が全閉状態に陥った場合には,還流手段15の排気
ガスの流れは遮断され,第1酸素濃度センサ21は吸着
装置12から拡散された排気ガスの酸素濃度を検知する
ため,出力Vexは第2酸素濃度センサ22の出力Vi
nとの相関係数Cが低下する(C=0.41)。上記の
ように,相関係数Cを監視することにより,装置の故障
を的確に判定することができる。その他については,実
施例1と同様である。
Further, for example, when the second opening / closing means 24 of the reed valve 26 falls into the fully closed state, the flow of the exhaust gas of the recirculation means 15 is interrupted, and the first oxygen concentration sensor 21 diffuses from the adsorption device 12. In order to detect the oxygen concentration of the discharged exhaust gas, the output Vex is the output Vi of the second oxygen concentration sensor 22.
The correlation coefficient C with n decreases (C = 0.41). As described above, by monitoring the correlation coefficient C, it is possible to accurately determine the device failure. Others are the same as those in the first embodiment.

【0060】上記のように,本例によれば,正常時にお
ける排気ガス中の有害成分の排出を効果的に抑制し,か
つ装置故障を的確に判断することのできる排気浄化装置
1を得ることができる。なお,本例では,フローチャー
ト621における所定の時間tsを吸着装置12が完全
に脱離する迄の時間としたが,この時間tsは,もっと
短くしてもよい。例えば,上記tsを数10秒とし,数
10秒間隔でステップ622における相関係数のチェッ
クを行い,条件を満足すれば,直ちに故障フラグをセッ
トし故障情報を送出(表示)してもよい。
As described above, according to this example, it is possible to obtain the exhaust emission control device 1 which can effectively suppress the emission of harmful components in the exhaust gas under normal conditions and can accurately judge the device failure. You can In this example, the predetermined time ts in the flowchart 621 is the time until the adsorption device 12 is completely desorbed, but this time ts may be shorter. For example, the above-mentioned ts may be set to several tens of seconds, the correlation coefficient in step 622 may be checked at intervals of several tens of seconds, and if the condition is satisfied, the failure flag may be immediately set and the failure information may be transmitted (displayed).

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の排気浄化装置のシステム構成図。FIG. 1 is a system configuration diagram of an exhaust emission control device according to a first embodiment.

【図2】実施例1の吸着装置の分解斜視図。FIG. 2 is an exploded perspective view of the adsorption device according to the first embodiment.

【図3】実施例1の酸素濃度センサの特性図。FIG. 3 is a characteristic diagram of the oxygen concentration sensor according to the first embodiment.

【図4】実施例1の排気浄化装置の動作手順を示すフロ
ーチャート。
FIG. 4 is a flowchart showing an operation procedure of the exhaust emission control device of the first embodiment.

【図5】実施例1の排気浄化装置の吸着装置の脱離完了
前における2つの酸素濃度センサの出力(Vex,Vi
n)の変化を示す特性図。
FIG. 5 shows the outputs (Vex, Vi) of the two oxygen concentration sensors before the completion of desorption of the adsorption device of the exhaust gas purification device of the first embodiment.
The characteristic diagram which shows the change of n).

【図6】実施例1の排気浄化装置の吸着装置の脱離完了
後における2つの酸素濃度センサの出力(Vex,Vi
n)の変化を示す特性図。
FIG. 6 shows the outputs (Vex, Vi) of the two oxygen concentration sensors after the desorption of the adsorption device of the exhaust gas purification device of the first embodiment is completed.
The characteristic diagram which shows the change of n).

【図7】実施例1の排気浄化装置の正常時における2つ
の酸素濃度センサの出力の変化を示す特性図。
FIG. 7 is a characteristic diagram showing changes in outputs of two oxygen concentration sensors when the exhaust emission control device of the first embodiment is normal.

【図8】実施例1の排気浄化装置の吸着装置異常時にお
ける2つの酸素濃度センサの出力の変化を示す特性図。
FIG. 8 is a characteristic diagram showing changes in outputs of two oxygen concentration sensors when the adsorption device of the exhaust gas purification device of the first embodiment is abnormal.

【図9】実施例2の排気浄化装置の空燃比センサの特性
図。
FIG. 9 is a characteristic diagram of the air-fuel ratio sensor of the exhaust emission control device according to the second embodiment.

【図10】実施例3の排気浄化装置のHCセンサの特性
図。
FIG. 10 is a characteristic diagram of the HC sensor of the exhaust purification system of the third embodiment.

【図11】実施例4の排気浄化装置のシステム構成図。FIG. 11 is a system configuration diagram of an exhaust emission control device according to a fourth embodiment.

【図12】実施例4の動作手順を示すフローチャート。FIG. 12 is a flowchart showing the operation procedure of the fourth embodiment.

【図13】実施例4において還流手段の正常時と異常時
における排気ガスセンサ出力の相関係数Cの値を示すグ
ラフ。
FIG. 13 is a graph showing the value of the correlation coefficient C of the exhaust gas sensor output when the recirculation unit is normal and when it is abnormal in Example 4.

【符号の説明】[Explanation of symbols]

1・・・排気浄化装置, 11・・・触媒装置, 12・・・吸着装置, 15・・・還流手段, 21,22・・・酸素濃度センサ, 31・・・第1流路, 32・・・第2流路, 1 ... Exhaust gas purification device, 11 ... Catalyst device, 12 ... Adsorption device, 15 ... Reflux means, 21, 22 ... Oxygen concentration sensor, 31 ... the first flow path, 32 ... second flow path,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 41/14 310 F02D 41/14 310F 310J 310K (56)参考文献 特開 平6−257424(JP,A) 特開 平6−66131(JP,A) 特開 平6−93829(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/24 F02D 41/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI F02D 41/14 310 F02D 41/14 310F 310J 310K (56) Reference JP-A-6-257424 (JP, A) JP-A-6-257424 -66131 (JP, A) JP-A-6-93829 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F01N 3/08-3/24 F02D 41/14

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エンジンの排気通路の上流側に配置され
排気ガスを浄化する触媒装置と,該触媒装置の下流側に
配置され排気ガス中の有害ガス成分を吸着する吸着装置
と,該吸着装置の下流側を上記触媒装置の上流側に接続
する開閉可能な還流手段と,上記触媒装置の下流側を上
記吸着装置を経由することなく直接排気口側に連通させ
る第1流路と,触媒装置の下流側を上記吸着装置を経て
排気口側に連通させる第2流路と,排気ガスの温度が所
定値以下の場合には上記第2流路に排気ガスを流通さ
せ,排気ガスの温度が所定値を越えた場合には上記第1
流路に排気ガスを流通させると共に上記還流手段を開路
させる切り換え手段とを有するエンジンの排気浄化装置
において, 上記還流手段と,上記吸着装置の上流側の排気通路とに
は,上記吸着装置の作動によって変動する排気ガス中の
ガス成分等を検知する排気ガスセンサがそれぞれ設けら
れており, 上記排気ガスセンサの出力信号を受け還流手段の開路直
後から上記二つの排気ガスセンサの出力が一致するまで
の時間teを測定する時間測定手段と,上記測定時間t
eが所定の範囲を外れた場合に装置故障であると判定す
る故障判定手段とを設けたことを特徴とするエンジンの
排気浄化装置。
1. A catalyst device disposed upstream of an exhaust passage of an engine for purifying exhaust gas, an adsorption device disposed downstream of the catalyst device for adsorbing harmful gas components in exhaust gas, and the adsorption device. An openable / closable reflux means connecting the downstream side of the catalyst device to the upstream side of the catalyst device; a first flow path that directly connects the downstream side of the catalyst device to the exhaust port side without passing through the adsorption device; A second flow path communicating the downstream side of the exhaust gas with the exhaust port side through the adsorption device, and when the temperature of the exhaust gas is below a predetermined value, the exhaust gas is circulated through the second flow path so that the temperature of the exhaust gas is If the specified value is exceeded, the above first
An exhaust emission control device for an engine, comprising: a switching device that allows exhaust gas to flow through a flow path and opens the recirculation device. In the exhaust gas purification device for an engine, the recirculation device and an exhaust passage on an upstream side of the adsorption device operate in the adsorption device. Exhaust gas sensors for detecting the gas components in the exhaust gas that fluctuate due to the exhaust gas sensor are provided respectively, and the time te from when the output of the recirculation means is opened to when the outputs of the two exhaust gas sensors match each other is received. For measuring time, and the measuring time t
An exhaust emission control device for an engine, comprising: failure determination means for determining that the device has failed when e is out of a predetermined range.
【請求項2】 エンジンの排気通路の上流側に配置され
排気ガスを浄化する触媒装置と,該触媒装置の下流側に
配置され排気ガス中の有害ガス成分を吸着する吸着装置
と,該吸着装置の下流側を上記触媒装置の上流側に接続
する開閉可能な還流手段と,上記触媒装置の下流側を上
記吸着装置を経由することなく直接排気口側に連通させ
る第1流路と,触媒装置の下流側を上記吸着装置を経て
排気口側に連通させる第2流路と,排気ガスの温度が所
定値以下の場合には上記第2流路に排気ガスを流通さ
せ,排気ガスの温度が所定値を越えた場合には上記第1
流路に排気ガスを流通させると共に上記還流手段を開路
させる切り換え手段とを有するエンジンの排気浄化装置
において, 上記還流手段と,上記吸着装置の上流側の排気通路とに
は,上記吸着装置の作動によって変動する排気ガス中の
ガス成分を検知する排気ガスセンサがそれぞれ設けられ
ており, 上記排気ガスセンサの出力信号を入力し,上記還流手段
を開路後の,上記吸着手段から上記有害ガス成分を脱離
させている時間内における上記2つの排気ガスセンサの
出力の相関関係の程度を算出する相関算出手段と,上記
相関関係の程度が一定水準に達しない場合に装置故障で
あると判定する故障判定手段とを設けたことを特徴とす
る排気浄化装置。
2. A catalyst device disposed upstream of an exhaust passage of an engine for purifying exhaust gas, an adsorption device disposed downstream of the catalyst device for adsorbing harmful gas components in exhaust gas, and the adsorption device. An openable / closable reflux means connecting the downstream side of the catalyst device to the upstream side of the catalyst device; a first flow path that directly connects the downstream side of the catalyst device to the exhaust port side without passing through the adsorption device; A second flow path communicating the downstream side of the exhaust gas with the exhaust port side through the adsorption device, and when the temperature of the exhaust gas is below a predetermined value, the exhaust gas is circulated through the second flow path so that the temperature of the exhaust gas is If the specified value is exceeded, the above first
An exhaust emission control device for an engine, comprising: a switching device that allows exhaust gas to flow through a flow path and opens the recirculation device. In the exhaust gas purification device for an engine, the recirculation device and an exhaust passage on an upstream side of the adsorption device operate in the adsorption device. An exhaust gas sensor for detecting a gas component in the exhaust gas that fluctuates due to the exhaust gas sensor is provided, and the output signal of the exhaust gas sensor is input to desorb the harmful gas component from the adsorption means after the recirculation means is opened.
Correlation calculating means for calculating the degree of correlation between the outputs of the two exhaust gas sensor in a time that is, the determining failure determining means that the device failure when the degree of the correlation does not reach a certain level An exhaust emission control device characterized by being provided with.
【請求項3】 請求項2において,上記相関算出手段は
上記相関関係の程度を相関係数によって算出することを
特徴とする排気浄化装置。
3. The exhaust emission control device according to claim 2, wherein the correlation calculating means calculates the degree of the correlation by a correlation coefficient.
【請求項4】 請求項1,請求項2又は請求項3におい
て,前記排気ガスセンサは,酸素センサであることを特
徴とするエンジンの排気浄化装置。
4. The exhaust gas purifying apparatus for an engine as claimed in claim 1, wherein the exhaust gas sensor is an oxygen sensor.
【請求項5】 請求項1,請求項2,又は請求項3にお
いて,前記排気ガスセンサは,空燃比センサであること
を特徴とするエンジンの排気浄化装置。
5. The exhaust gas purifying apparatus for an engine according to claim 1, claim 2, or claim 3, wherein the exhaust gas sensor is an air-fuel ratio sensor.
【請求項6】 請求項1,請求項2,又は請求項3にお
いて,前記排気ガスセンサは,HCセンサであることを
特徴とするエンジンの排気浄化装置。
6. The exhaust gas purifying apparatus for an engine according to claim 1, claim 2, or claim 3, wherein the exhaust gas sensor is an HC sensor.
JP05062995A 1994-07-27 1995-02-14 Exhaust gas purification device Expired - Fee Related JP3379267B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05062995A JP3379267B2 (en) 1995-02-14 1995-02-14 Exhaust gas purification device
DE19527490A DE19527490B4 (en) 1994-07-27 1995-07-27 exhaust gas purification device
US08/508,090 US5765369A (en) 1994-07-27 1995-07-27 Exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05062995A JP3379267B2 (en) 1995-02-14 1995-02-14 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH08218850A JPH08218850A (en) 1996-08-27
JP3379267B2 true JP3379267B2 (en) 2003-02-24

Family

ID=12864279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05062995A Expired - Fee Related JP3379267B2 (en) 1994-07-27 1995-02-14 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3379267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297628A (en) 1999-04-16 2000-10-24 Honda Motor Co Ltd Deterioration determining device for exhaust emission purification device of internal combustion engine
JP2000297629A (en) 1999-04-16 2000-10-24 Honda Motor Co Ltd Deterioration determining device for exhaust emission purification device of internal combustion engine
JP2000297630A (en) 1999-04-16 2000-10-24 Honda Motor Co Ltd Deterioration determining device for exhaust emission purification device of internal combustion engine

Also Published As

Publication number Publication date
JPH08218850A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US5315824A (en) Cold HC adsorption and removal apparatus for an internal combustion engine
US5765369A (en) Exhaust gas purifying apparatus
US6763655B2 (en) Catalyst state detector for exhaust gas purifying catalyst
US20020011066A1 (en) Fault determining apparatus for exhaust passage switching valve
JP2518696B2 (en) Diagnostic device for exhaust purification system of internal combustion engine
US6883307B2 (en) Diagnosis apparatus for internal combustion engine
US6758033B2 (en) State determining apparatus for exhaust gas purifier
US6792749B2 (en) Exhaust gas purifying apparatus for internal combustion engine
EP1431539B1 (en) Adsorbent degradation-determining system
JP3739876B2 (en) Exhaust purification device
US6945034B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US6378296B1 (en) Degradation discrimination system of internal combustion engine exhaust gas purification system
JP3379267B2 (en) Exhaust gas purification device
JP3648792B2 (en) Exhaust purification device
JPH06101452A (en) Adsorbent self-diagnosing device for internal combustion engine
JP3587670B2 (en) Exhaust gas purification equipment for automobiles
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JP3588662B2 (en) Catalyst self-diagnosis device
JP3409647B2 (en) Degradation diagnosis device for HC adsorbent of engine
JP3128873B2 (en) Exhaust gas purification device for internal combustion engine
JP2894135B2 (en) Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine
JP3116588B2 (en) Exhaust gas purification device for internal combustion engine
JP3622654B2 (en) Exhaust gas purification device for internal combustion engine
JP2005061335A (en) Failure diagnosis control device for intake air quantity detecting means for engine
JPH0693840A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees