JP2894135B2 - Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine - Google Patents

Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine

Info

Publication number
JP2894135B2
JP2894135B2 JP5018459A JP1845993A JP2894135B2 JP 2894135 B2 JP2894135 B2 JP 2894135B2 JP 5018459 A JP5018459 A JP 5018459A JP 1845993 A JP1845993 A JP 1845993A JP 2894135 B2 JP2894135 B2 JP 2894135B2
Authority
JP
Japan
Prior art keywords
adsorbent
exhaust gas
dew point
temperature
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5018459A
Other languages
Japanese (ja)
Other versions
JPH06229235A (en
Inventor
忠樹 太田
幹雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5018459A priority Critical patent/JP2894135B2/en
Publication of JPH06229235A publication Critical patent/JPH06229235A/en
Application granted granted Critical
Publication of JP2894135B2 publication Critical patent/JP2894135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特に排気中のHCを一時的に吸着する吸着剤
を備えた装置において吸着剤の劣化を診断する技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to a technique for diagnosing deterioration of an adsorbent in an apparatus provided with an adsorbent for temporarily adsorbing HC in exhaust gas.

【0002】[0002]

【従来の技術】車両用の内燃機関においては排気浄化の
ため、排気通路中に排気中のHC (未燃ガス) ,COを
2 O,CO2 に酸化する一方、NOX をN2 に還元し
て浄化する三元浄化触媒と称される排気浄化用触媒が介
装されている。ところで前記排気中の有害成分の中、H
Cの排出量は特に排気温度に影響されやすい。即ち、貴
金属触媒を使用する場合でも、HCの浄化には一般に3
00°C以上の触媒温度を必要とする。そのため、前記
三元触媒を備えただけの排気浄化装置では、機関の冷温
始動直後など排気温度の低い時には、HCは前記触媒に
よって浄化されがたい。
2. Description of the Related Art In an internal combustion engine for a vehicle, HC (unburned gas) and CO in exhaust gas are oxidized to H 2 O and CO 2 in an exhaust passage, while NO X is converted to N 2 for purifying exhaust gas. An exhaust purification catalyst called a three-way purification catalyst for reducing and purifying is interposed. By the way, among the harmful components in the exhaust gas, H
The amount of C discharged is particularly susceptible to the exhaust gas temperature. In other words, even when a noble metal catalyst is used, generally 3
Requires a catalyst temperature of 00 ° C or higher. Therefore, in an exhaust gas purifying apparatus provided only with the three-way catalyst, it is difficult to purify HC by the catalyst when the exhaust gas temperature is low, such as immediately after a cold start of the engine.

【0003】このため、車両用の排気浄化装置として、
特開昭63−68713号公報に示されるように、前記
排気浄化用触媒の上流側の排気通路にHCを吸着するた
めの吸着剤を介装したものが提案されている。このもの
では、吸着剤が低温時にはHCを吸着し、高温になると
吸着されたHCを脱離する特性があることを利用し、排
気浄化用触媒の上流の排気通路の一部に前記吸着剤を介
装したバイパス通路を並列に接続して主通路とバイパス
通路とを選択的に開閉自由な構成とし、排気浄化用触媒
が活性化される前の低温時に前記バイパス通路を開いて
吸着剤にHCを吸着しておき、一旦バイパス通路を閉じ
た後、高温になって排気浄化用触媒が活性化してから再
度バイパス通路を開いて吸着されたHCを脱離させて排
気浄化用触媒で浄化するようになっている。吸着剤とし
ては、ゼオライトが吸着性に優れていることから例えば
モノリス担体にゼオライトをコーティングしたものが提
案されている。
[0003] Therefore, as an exhaust purification device for vehicles,
As disclosed in JP-A-63-68713, there has been proposed a catalyst in which an adsorbent for adsorbing HC is interposed in an exhaust passage upstream of the exhaust purification catalyst. In this device, the adsorbent adsorbs HC at a low temperature and desorbs the adsorbed HC at a high temperature, and utilizes the adsorbent in a part of an exhaust passage upstream of an exhaust purification catalyst. The interposed bypass passages are connected in parallel to selectively open and close the main passage and the bypass passage. The bypass passage is opened at a low temperature before the exhaust purification catalyst is activated, and HC is added to the adsorbent. After the bypass passage is once closed, the exhaust gas purifying catalyst is activated after the temperature becomes high, and then the bypass passage is opened again so that the adsorbed HC is desorbed and purified by the exhaust gas purifying catalyst. It has become. As the adsorbent, for example, a monolithic carrier coated with zeolite has been proposed because zeolite has excellent adsorbability.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
吸着剤は排気熱に曝されること等により劣化が進むと、
吸着能力が低下し、脱離される温度が低温側に移行して
くる。そのため、劣化していない新品時と同一の脱離条
件で脱離を開始すると、吸着剤内のHCが一気に排気浄
化触媒に流入してしまい、排気浄化触媒では処理しきれ
ず、HC排出量が増大することがあった。脱離開始の排
気温度を低下させても、今度は排気浄化触媒の活性化が
不十分であるため、やはり、HC浄化性能は低下する。
そこで、逆に脱離開始温度を高めて排気浄化触媒の活性
化を充分に促進して浄化性能を高めたり、それでも浄化
しきれない場合には、排気中に空気を導入して酸化の促
進を行うことを併用したりすることが要求される。ま
た、それでもHCを浄化しきれなくなるほど劣化が進行
した場合には、吸着剤を交換する他ない。
However, when such an adsorbent deteriorates due to exposure to exhaust heat, etc.,
The adsorption capacity decreases, and the desorption temperature shifts to a lower temperature side. Therefore, if desorption is started under the same desorption conditions as a new product that has not deteriorated, HC in the adsorbent will flow into the exhaust purification catalyst at a stretch, and the exhaust purification catalyst will not be able to process the exhaust gas, resulting in an increase in HC emission. There was something to do. Even if the exhaust temperature at the start of desorption is lowered, the activation of the exhaust purification catalyst is insufficient this time, so that the HC purification performance also falls.
Therefore, conversely, the desorption start temperature is increased to sufficiently promote the activation of the exhaust gas purification catalyst to enhance the purification performance. If the purification is still not possible, air is introduced into the exhaust gas to promote the oxidation. It is required to use what is done together. Further, if the deterioration has progressed to a point where HC cannot be completely purified, the adsorbent must be replaced.

【0005】しかしながら、いかなるフェールセーフ処
理を行うにしても、吸着剤の劣化の程度を知る必要があ
るが、従来かかる吸着剤の劣化を診断することは行われ
ていなかった。本発明は、このような従来の問題点に鑑
みなされたもので、吸着剤の劣化状態を高精度に診断で
きるようにした内燃機関の排気浄化装置におけるHC吸
着剤の劣化診断装置を提供することを目的とする。
However, it is necessary to know the degree of deterioration of the adsorbent when performing any fail-safe processing. However, diagnosis of such deterioration of the adsorbent has not been conventionally performed. The present invention has been made in view of such conventional problems, and provides an apparatus for diagnosing deterioration of an HC adsorbent in an exhaust gas purification apparatus of an internal combustion engine, which is capable of highly accurately diagnosing the state of deterioration of the adsorbent. With the goal.

【0006】[0006]

【課題を解決するための手段】このため、本発明にかか
る内燃機関の排気浄化装置におけるHC吸着剤の劣化診
断装置は、図1に示すように、機関運転状態を検出する
運転状態検出手段と、吸着剤の入口及び出口側の排気温
度を夫々検出する排気温度検出手段と、吸着剤出口側の
排気温度状態に基づいて排気の露点期間中に吸着剤入口
側の排気温度と排気流量とに基づいて排気から吸着剤に
供給される実供給熱量に相当する値を演算する実供給熱
量相当値演算手段と、機関運転状態に基づいて所定の吸
着条件で吸着剤に吸着されるHCの総量を推定するHC
吸着総量推定手段と、該推定されたHC吸着総量に基づ
いて前記排気の露点期間中に排気から非劣化状態の吸着
剤に供給されると推定される標準供給熱量に相当する値
を演算する標準供給熱量相当値演算手段と、前記演算さ
れた標準供給熱量相当値と実供給熱量相当値に基づいて
吸着剤の劣化度を検出する劣化度検出手段と、を含んで
構成した。とする。
Therefore, an apparatus for diagnosing deterioration of an HC adsorbent in an exhaust gas purifying apparatus for an internal combustion engine according to the present invention comprises, as shown in FIG. Exhaust temperature detecting means for detecting the exhaust gas temperature on the inlet and outlet sides of the adsorbent, and the exhaust gas temperature on the adsorbent inlet side and the exhaust flow rate during the dew point period of the exhaust based on the exhaust gas temperature state on the adsorbent outlet side. An actual supply calorie equivalent value computing means for computing a value corresponding to the actual supply calorie supplied from the exhaust gas to the adsorbent, and the total amount of HC adsorbed on the adsorbent under predetermined adsorption conditions based on the engine operating state. Estimated HC
A total adsorption amount estimating means, and a standard for calculating a value corresponding to a standard supply heat amount estimated to be supplied from the exhaust gas to the non-degraded adsorbent during the dew point period of the exhaust gas based on the estimated total HC adsorption amount. The apparatus includes a supply heat amount equivalent value calculating means, and a deterioration degree detection means for detecting the degree of deterioration of the adsorbent based on the calculated standard supply heat amount equivalent value and the actual supply heat amount equivalent value. And

【0007】また、前記実供給熱量相当値演算手段及び
標準熱量相当値演算手段は、夫々の供給熱量によって同
一運転条件で露点状態に維持される実露点時間と標準露
点時間とを演算し、劣化度検出手段は、実露点時間の標
準露点時間に対する短縮時間によって吸着剤の劣化度を
検出する構成としてもよい。
In addition, the actual supply heat amount equivalent value calculation means and the standard heat amount equivalent value calculation means calculate the actual dew point time and the standard dew point time maintained in the dew point state under the same operating condition by the respective supply heat amounts, and The degree detecting means may be configured to detect the degree of deterioration of the adsorbent by shortening the actual dew point time with respect to the standard dew point time.

【0008】[0008]

【作用】HC吸着総量推定手段は、機関冷却水温度一定
の始動時等所定の条件でHCの吸着が行われるときに機
関運転状態検出手段により検出される負荷や回転速度等
の機関運転状態に基づいてHCの吸着総量を推定演算す
る。標準供給熱量相当値演算手段は、例えば予めHCの
異なる吸着総量に対して吸着剤に吸着された水分による
排気露点期間中に吸着剤に供給される熱量 (標準供給熱
量) 或いはそれに相当する値として一定条件下での露点
時間 (標準露点時間) 等を求めておいて、前記推定され
たHC吸着総量に対する標準供給熱量或いは露点時間等
の値を演算する。
The HC adsorbing total amount estimating means detects the engine operating state such as the load and the rotational speed detected by the engine operating state detecting means when the HC adsorbing is performed under predetermined conditions such as when the engine coolant temperature is constant. The total amount of adsorption of HC is estimated and calculated based on this. The standard supply calorie equivalent value calculation means calculates, for example, a calorie (standard supply calorie) or a value corresponding to the calorie (standard supply calorie) supplied to the adsorbent during the exhaust dew point period due to the moisture adsorbed by the adsorbent with respect to the different total adsorption amounts of HC in advance. The dew point time under standard conditions (standard dew point time) and the like are obtained, and values such as the standard heat supply amount or the dew point time with respect to the estimated HC adsorption amount are calculated.

【0009】一方、吸着剤の入口温度と排気流量 (吸入
空気流量或いは負荷等で代用できる) とに基づいて露点
期間中に吸着剤に供給される実供給熱量或いはそれに相
当する値として前記と同一の一定条件下での露点時間
(実露点時間) を演算する。そして、劣化度検出手段
は、前記実供給熱量の標準供給熱量に対する比率或いは
実露点時間の標準露点時間に対する短縮時間等に基づい
て吸着剤の劣化度を検出する。
On the other hand, the actual amount of heat supplied to the adsorbent during the dew point period based on the inlet temperature of the adsorbent and the exhaust flow rate (which can be substituted by the intake air flow rate or load, etc.) or a value corresponding thereto is the same as above. Dew point time under certain conditions
(Actual dew point time) is calculated. The deterioration degree detecting means detects the degree of deterioration of the adsorbent based on the ratio of the actual supply heat amount to the standard supply heat amount or the shortened time of the actual dew point time with respect to the standard dew point time.

【0010】[0010]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。本発明の一実施例の構成を示す図2において、内燃
機関1の排気通路2には、所定の高温度条件で排気中の
汚染成分を浄化する機能を有した排気浄化用触媒 (三元
触媒) 3が介装され、該排気浄化用触媒3より上流側の
排気通路2の一部が主通路4と、該主通路4と並列に接
続され所定の低温度条件でHCを吸着する機能を有した
吸着剤5を介装したバイパス通路6とで構成されてい
る。前記主通路4とバイパス通路6との上流側の分岐点
には、これら主通路4とバイパス通路6との開度比を連
続的に連動制御して排気の分流比を制御する電磁式の制
御弁7が介装されている。尚、制御弁7は下流側の分岐
点に設けてもよく、或いは上流側と下流側の双方に設け
てもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2 showing the configuration of one embodiment of the present invention, an exhaust gas purifying catalyst (three-way catalyst) having a function of purifying pollutants in exhaust gas under a predetermined high temperature condition is provided in an exhaust passage 2 of an internal combustion engine 1. 3) is interposed, and a part of the exhaust passage 2 upstream of the exhaust gas purifying catalyst 3 is connected to the main passage 4 in parallel with the main passage 4 and has a function of adsorbing HC at a predetermined low temperature condition. And a bypass passage 6 having an adsorbent 5 interposed therebetween. At the branch point on the upstream side between the main passage 4 and the bypass passage 6, an electromagnetic control for continuously controlling the degree of opening of the main passage 4 and the bypass passage 6 in conjunction with each other to control the split ratio of exhaust gas. Valve 7 is interposed. The control valve 7 may be provided at a branch point on the downstream side, or may be provided on both the upstream side and the downstream side.

【0011】また、機関1には、吸気通路8に吸入空気
流量Qを検出するエアフローメータ9が装着されると共
に、ウォータージャケットに機関冷却水温度 (水温) T
W を検出する水温センサ10が装着され、更にディストリ
ビュータ等に機関回転速度Nを検出する回転速度センサ
11が装着されている。これらセンサ類は運転状態検出手
段を構成する。また、前記吸着剤5の入口側と出口側と
に夫々排気温度TE を検出する排気温度検出手段として
の温度センサ12,13が装着され、これらセンサ類からの
各検出信号はコントロールユニット14に入力される。
The engine 1 is equipped with an air flow meter 9 for detecting an intake air flow rate Q in an intake passage 8 and an engine cooling water temperature (water temperature) T in a water jacket.
A water temperature sensor 10 for detecting W is mounted, and a rotational speed sensor for detecting an engine rotational speed N to a distributor or the like.
11 is installed. These sensors constitute operating state detecting means. Further, the temperature sensor 12 as an exhaust temperature detection means for detecting the respective exhaust temperature T E is mounted on the inlet side and the outlet side of the adsorbent 5, the detection signals from these sensors to the control unit 14 Is entered.

【0012】更に、バイパス通路6と排気浄化用触媒3
との間に電動ポンプ15から吐出される2次空気を供給す
る2次空気供給通路16が接続されている。そして、前記
コントロールユニット14は、前記各種センサ類からの検
出信号に基づいて排気中HCの吸着及び脱離制御を行う
と共に、吸着剤5の劣化度を検出し、該劣化度に応じて
脱離開始条件や前記電動ポンプ15の駆動を制御して2次
空気量を調整している。
Further, the bypass passage 6 and the exhaust purification catalyst 3
A secondary air supply passage 16 for supplying the secondary air discharged from the electric pump 15 is connected between the second air supply path and the second air supply path. The control unit 14 controls the adsorption and desorption of HC in the exhaust gas based on the detection signals from the various sensors, detects the degree of deterioration of the adsorbent 5, and desorbs the adsorbent 5 in accordance with the degree of deterioration. The start condition and the drive of the electric pump 15 are controlled to adjust the amount of secondary air.

【0013】前記コントロールユニット14による吸着剤
5の劣化度の検出動作を図3〜図5に示したフローチャ
ートに従って説明する。ここで吸着剤5の特性について
説明すると、吸着剤はHC,水分共に吸着し、吸着剤の
劣化が進むとHC吸着量が減少する。この時、水分に対
する吸着性能もHC吸着量と同様に減少する。このた
め、吸着剤下流の排気温度を観察すると、吸着剤内にお
ける水分吸着量が劣化度合いによって大きく異なる結
果、吸着剤下流の排気露点期間に違いが発生する。
The operation of detecting the degree of deterioration of the adsorbent 5 by the control unit 14 will be described with reference to the flowcharts shown in FIGS. Here, the characteristics of the adsorbent 5 will be described. The adsorbent adsorbs both HC and moisture, and as the adsorbent deteriorates, the amount of adsorbed HC decreases. At this time, the performance of adsorbing moisture also decreases as does the amount of adsorbed HC. For this reason, when observing the exhaust temperature downstream of the adsorbent, the amount of water adsorbed in the adsorbent varies greatly depending on the degree of deterioration, resulting in a difference in the exhaust dew point period downstream of the adsorbent.

【0014】一般に、低温度の吸着剤中を高温度の排気
が通過した場合、最初は排気温度の低下分過飽和状態を
迎えた排気中の水分の吸着剤への凝縮が進行しつつ排気
の昇温が見られるが、排気中の水分の露点まで温度が上
昇すると排気温度は略一定となる。つまり、吸着剤に吸
着された水分の露点まで温度が上昇すると排気温度は略
一定となる。つまり、吸着剤に吸着された水分の気化潜
熱と排気熱量とがバランスし、排気温度が変化しなくく
なる。その後吸着水分が気化し終わると排気温度は再び
上昇する。
In general, when high-temperature exhaust gas passes through a low-temperature adsorbent, the moisture in the exhaust gas, which is initially in a supersaturated state due to a decrease in the exhaust temperature, is condensed on the adsorbent while the exhaust gas rises. Although the temperature is observed, when the temperature rises to the dew point of the moisture in the exhaust gas, the exhaust gas temperature becomes substantially constant. That is, when the temperature rises to the dew point of the moisture adsorbed by the adsorbent, the exhaust temperature becomes substantially constant. That is, the latent heat of vaporization of the moisture adsorbed by the adsorbent and the calorific value of the exhaust gas are balanced, and the exhaust gas temperature does not change. Thereafter, when the adsorbed moisture has been vaporized, the exhaust gas temperature rises again.

【0015】したがって、劣化度合いによって吸着剤へ
の吸着水分量が異なる結果、吸着剤下流の排気温度の露
点からの昇温不感帯時間 (排気露点期間) が異なること
となる。図3は吸着剤5へのHC吸着総量の推定と、そ
れに基づいて標準露点時間を演算するルーチンを示す。
即ち、このルーチンがHC吸着総量推定手段と標準供給
熱量相当値演算手段に相当する。
Therefore, as a result of the amount of water adsorbed on the adsorbent depending on the degree of deterioration, the temperature rise dead zone time (exhaust dew point period) from the dew point of the exhaust temperature downstream of the adsorbent differs. FIG. 3 shows a routine for estimating the total amount of HC adsorbed on the adsorbent 5 and calculating the standard dew point time based on the estimation.
That is, this routine corresponds to the HC adsorption total amount estimating means and the standard supply heat amount equivalent value calculating means.

【0016】ステップ (図ではSと記す。以下同様) 1
では、検出された機関回転速度N,基本燃料噴射量TP
及び水温TW を読み込む。ステップ2では、水温TW
HC吸着の開始温度である40°Cと比較する。そして、
W =40°Cと判定された場合はステップ3へ進み、該
40°C用のマップから機関回転速度Nと基本燃料噴射量
P で定まる現在の運転領域 (x) のHC吸着予測係数
HCを求める。ここで、HC吸着予測係数KHCとは、当
該運転領域に単位時間留まった時に吸着剤5に吸着する
と予測されるHC量の基本燃料噴射量TP に対する比率
に相当する値であって予め実験的に求められてマップの
対応する運転領域毎に記憶されている。また、かかるマ
ップが前記水温40°C用の他20°C用のものが用意され
ている。
Step (S in the figure; hereinafter the same) 1
Now, the detected engine speed N and the basic fuel injection amount T P
And read the water temperature T W. In step 2, the water temperature T W is compared with HC start temperature of 40 ° C. And
If it is determined that T W = 40 ° C., the process proceeds to step 3, and
The HC adsorption prediction coefficient K HC in the current operating region (x) determined by the engine speed N and the basic fuel injection amount TP is determined from the map for 40 ° C. Here, the HC adsorption prediction coefficient K HC, advance a value corresponding to the ratio for the basic fuel injection quantity T P of the amount of HC is predicted to adsorb to the adsorbent 5 when remained in the operating region unit time experiments And is stored for each corresponding operating region of the map. Further, such maps are prepared for the water temperature of 40 ° C. and for the temperature of 20 ° C.

【0017】ステップ2で40°Cより低いと判定された
場合にはステップ4へ進み、水温T W が20°C以下か否
かを判別する。ステップ4で20°Cより高いと判定され
た場合はステップ5へ進み、前記20°C用と40°C用と
の2種類のマップから対応する運転領域のHC吸着予測
係数K HCを夫々検索し、検出された水温TW に応じたH
C吸着予測係数KHCを前記2つの検索値を補間演算する
ことにより求める。
In step 2, it is determined that the temperature is lower than 40 ° C.
In this case, the process proceeds to step 4 where the water temperature T WIs below 20 ° C
Is determined. It is determined that it is higher than 20 ° C in step 4.
If so, proceed to step 5 and use the above for 20 ° C and 40 ° C
Of HC adsorption in the corresponding operating region from two types of maps
Coefficient K HC, And the detected water temperature TWH according to
C adsorption prediction coefficient KHCIs interpolated between the two search values
We ask by doing.

【0018】また、前記ステップ4で水温TW が20°C
以下と判定された場合はステップ6へ進み、20°C用の
マップからHC吸着予測係数KHCを検索する。次いでス
テップ7へ進み、HC吸着予測係数KHCの積算値SUM
を運転領域毎にRAMに書き換え自由に記憶しマップか
ら、対応する運転領域 (x) の積算値SUMX を検索す
る。
In step 4, the water temperature T W is 20 ° C.
If it is determined as follows, the process proceeds to step 6, where the HC adsorption prediction coefficient K HC is searched from the map for 20 ° C. Next, the routine proceeds to step 7, where the integrated value SUM of the HC adsorption prediction coefficient K HC
Is freely rewritten and stored in the RAM for each operation area, and the integrated value SUM X of the corresponding operation area (x) is retrieved from the map.

【0019】ステップ8では、ステップ7で求めたHC
予測係数KHCの前回までの積算値SUMX に今回求めた
HC吸着予測係数KHCの値を加算することにより、積算
値SUMX を更新する。かかるHC吸着動作を行ってい
る間に水温TW が上昇し、ステップ2で水温T W が40°
Cより高いと判定されるとステップ9へ進み、吸着動作
直後つまり吸着動作が前回行われていたか否かを判定す
る。
In step 8, the HC determined in step 7
Prediction coefficient KHCIntegrated value SUM up to the previous timeXI asked this time
HC adsorption prediction coefficient KHCBy adding the values of
Value SUMXTo update. This HC adsorption operation is performed.
Water temperature TWRises, and in step 2, the water temperature T WIs 40 °
If it is determined to be higher than C, the process proceeds to step 9 where the suction operation is performed.
Immediately after, that is, determine whether or not the suction operation was performed last time.
You.

【0020】そして、吸着直後と判定された場合はステ
ップ10へ進み、前記RAMのマップの全ての運転領域に
記憶されたHC吸着予測係数KHCの積算値SUMX の総
和を算出する。この積算値SUMX の総和は、HCの吸
着が開始されてから終了するまでに吸着されたHCの総
量に相当する。最後に、ステップ11に進み、ステップ10
で求められた総HC吸着量に対応する標準供給熱量Qst
と標準露点時間Tstとを予め実験的に求められROMに
記憶されたマップから検索する。ここで、標準供給熱量
stとは、総HC吸着量に対して吸着剤5が劣化してい
ない時に一定の負荷条件で吸着剤5下流側の排気温度が
HCの露点温度にある期間中に排気から吸着剤5に供給
されると予測される熱量であり、また、標準露点時間T
stとは、前記排気露点温度にある期間の予測時間であ
る。
If it is determined that the adsorption has just been performed, the process proceeds to step 10, where the total sum of the integrated value SUM X of the HC adsorption prediction coefficient K HC stored in all the operation regions of the RAM map is calculated. The total sum of the integrated value SUM X corresponds to the total amount of HC adsorbed from the start of the adsorption of HC to the end thereof. Finally, go to step 11 and step 10
Calorific value Q st corresponding to the total amount of adsorbed HC obtained in
The standard dew point time T st and the standard dew point time T st are retrieved experimentally in advance from a map stored in the ROM. Here, the standard supply heat quantity Qst is defined as a time period during which the exhaust gas temperature downstream of the adsorbent 5 is at the dew point temperature of HC under a constant load condition when the adsorbent 5 has not deteriorated with respect to the total HC adsorption amount. The amount of heat expected to be supplied from the exhaust gas to the adsorbent 5, and the standard dew point time T
“st” is a predicted time of a period at the exhaust dew point temperature.

【0021】次に、吸着剤5に吸着されたHCを脱離す
る時に排気から吸着剤5に供給される熱量を演算するル
ーチンを図4に示したフローチャートに従って説明す
る。即ち、このルーチンが実供給熱量相当値演算手段に
相当する。ステップ21では、水温TW がHCの脱離を開
始する温度に達しているか否かを判定する。
Next, a routine for calculating the amount of heat supplied from the exhaust gas to the adsorbent 5 when desorbing the HC adsorbed by the adsorbent 5 will be described with reference to the flowchart shown in FIG. That is, this routine corresponds to the actual supply heat amount equivalent value calculation means. In step 21, it is determined whether or not the water temperature T W has reached a temperature at which the desorption of HC starts.

【0022】脱離開始温度に達していると判定された場
合、つまり脱離が開始された場合はステップ22へ進み、
吸着剤5下流の排気温度が排気中の水分による排気露点
温度以下であるか否かを判定する。露点温度以下に保持
されていると判定された場合はステップ23へ進み、温度
センサ12で検出された吸着剤5の入口温度tin及び基本
燃料噴射量TP を読み込む。
If it is determined that the desorption start temperature has been reached, that is, if desorption has started, the process proceeds to step 22,
It is determined whether or not the exhaust temperature downstream of the adsorbent 5 is equal to or lower than the exhaust dew point temperature due to moisture in the exhaust. If it is determined to be kept below the dew point temperature proceeds to step 23, it reads the inlet temperature t in and the basic fuel injection quantity T P of the adsorbent 5 detected by the temperature sensor 12.

【0023】ステップ24では、前記入口温度tinと基本
燃料噴射量TP とに基づいて毎回吸着剤5に供給される
熱量を積算する。つまり、入口温度tinは吸着剤5に導
入される排気の温度であり、基本燃料噴射量TP は毎回
毎に吸着剤5に導入される排気の量に相当する値である
ため、これらの値の積によって毎回供給される熱量が求
められ、それらを積算することで脱離開始時から供給さ
れた熱量の総和が求められる。尚、このルーチンは機関
回転に同期して行われる場合に適用され、単位時間毎に
実行される場合は基本燃料噴射量TP の代わりにエアフ
ローメータで検出される吸入空気流量Qを用いればよ
い。
[0023] At step 24, accumulating the amount of heat supplied to the adsorbent 5 each time on the basis of said inlet temperature t in the basic fuel injection quantity T P. That is, the inlet temperature t in the temperature of the exhaust gas introduced into the adsorbent 5, since the basic fuel injection quantity T P is a value corresponding to the amount of exhaust gas introduced into the adsorbent 5 per each time, these The amount of heat supplied each time is determined by the product of the values, and the total amount of the amount of heat supplied from the start of desorption is determined by integrating them. Note that this routine is applied when it is performed in synchronization with engine rotation, it may be used intake air flow rate Q detected by the air flow meter in place of the basic fuel injection quantity T P when executed every unit time .

【0024】そして、吸着剤5への総供給熱量の増大に
伴い、吸着されたHCが過飽和状態となってステップ22
で吸着剤5下流側の排気温度が露点温度を超えていると
判定されると、ステップ25へ進んで、それまでの総供給
熱量つまり露点期間中に吸着剤5に供給された総熱量を
求める。具体的には、ステップ24で求められた最新の値
がそれに相当するからこの値を読み込めばよい。
Then, as the total amount of heat supplied to the adsorbent 5 increases, the adsorbed HC becomes supersaturated, and
When it is determined that the exhaust gas temperature downstream of the adsorbent 5 exceeds the dew point temperature, the routine proceeds to step 25, where the total heat quantity supplied up to that time, that is, the total heat quantity supplied to the adsorbent 5 during the dew point period is determined. . Specifically, since the latest value obtained in step 24 corresponds to this value, this value may be read.

【0025】ステップ26では、前記ステップ25で求めた
総供給熱量と吸着剤5の入口温度とに基づいて実露点時
間Tr を演算する。この実露点時間Tr は以下のように
して求められる。前記ステップ25で演算された総供給熱
量Qt を露点温度以下であるときの時間Tinで除算する
ことにより、実単位時間供給熱量Qtan を求める。一
方、図3のフローチャートで求められた標準供給熱量Q
stを標準露点時間Tstで除算して標準単位時間供給熱量
sttan を求める。その場合、吸着剤5からの放熱分を
考慮すると、供給熱量に単位時間当りの供給熱量を乗じ
た値が露点期間中に実際にHCの加熱に寄与する値に近
い値であるため、実際に吸着されたHCの加熱に寄与し
たと予測される熱量予測値はk・Qt ・Qtan として求
められ、一方、吸着剤5が非劣化状態である時に吸着さ
れるHCの露点期間中に加熱に寄与される値としての比
較熱量値はk・Qst・Qsttan として求められる。吸着
剤5の劣化度に対応して減少する実露点時間Tr を前記
標準露点時間Tstに前記予測熱量値を比較熱量値で除算
した値( Qt ・Qtan)) / (Qst・Qsttan ) を乗算し
て求める。
In step 26, the actual dew point time Tr is calculated based on the total amount of heat supplied and the inlet temperature of the adsorbent 5 obtained in step 25. This actual dew point time Tr is obtained as follows. By dividing the time T in the case of total heat supplied Q t calculated in step 25 is the dew point temperature or less, determining an actual unit time supplied heat quantity Q tan. On the other hand, the standard supply heat quantity Q obtained by the flowchart of FIG.
By dividing st by the standard dew point time T st , a standard unit time supply heat quantity Q sttan is obtained. In that case, considering the amount of heat released from the adsorbent 5, the value obtained by multiplying the supplied heat amount by the supplied heat amount per unit time is a value close to the value that actually contributes to the heating of HC during the dew point period, and The predicted calorific value that is predicted to have contributed to the heating of the adsorbed HC is obtained as k · Q t · Q tan. Is obtained as k · Q st · Q sttan . Value real dewpoint time T r divided by comparing heat value the predicted heat value to the standard dew point time T st to decrease in response to the deterioration of the adsorbent 5 (Q t · Q tan) ) / (Q st · Qsttan ).

【0026】次に、これらの演算結果に基づいて吸着剤
5の劣化度を判定し、かつ、判定結果に基づくHC脱離
開始条件の調整を行うルーチンを図5に基づいて説明す
る。即ち、このルーチンに劣化度検出手段が含まれる。
ステップ31では、前記実露点時間Tr の標準露点時間T
stに対する短縮時間ΔT (=Tst−Tr ) を演算する。
Next, a routine for judging the degree of deterioration of the adsorbent 5 based on the calculation results and adjusting the HC desorption start condition based on the judgment results will be described with reference to FIG. That is, this routine includes deterioration degree detecting means.
In step 31, the standard dew point time T of the actual dew point time Tr is calculated.
calculating a shortened time ΔT (= T st -T r) for st.

【0027】ステップ32では、前記短縮時間ΔTに基づ
いて予め短縮時間ΔTと劣化度との関係を求めて記憶し
たROMのマップからの検索により劣化度を求める。そ
して、劣化が殆どないと判定された場合は、それまで同
様の非劣化時における脱離下限負荷つまり脱離を開始す
るときの負荷例えば吸気負圧の下限値を維持し、2次空
気の導入も行わない(ステップ33)。
In step 32, the degree of deterioration is obtained by searching a ROM map stored in advance by obtaining the relationship between the reduced time ΔT and the degree of deterioration based on the shortened time ΔT. When it is determined that there is almost no deterioration, the same desorption lower limit load at the time of non-deterioration, that is, the load at the time of starting desorption, for example, the lower limit of the intake negative pressure, is maintained, and the secondary air is introduced. Is not performed (step 33).

【0028】また、劣化がある場合は、判定された劣化
度に応じて、夫々脱離下限負荷と2次空気の導入量の設
定を行う (ステップ34〜ステップ38) 。具体的には劣化
度の最も小さい劣化度1の場合は、脱離下限負荷が−45
0mmHg, 2次空気導入量が20リットル/min、以下順次劣
化度が増大するにつれて、劣化度2では脱離下限負荷が
−400mmHg , 2次空気導入量が25リットル/min、劣化度
3では脱離下限負荷が−300mmHg , 2次空気導入量が35
リットル/min、劣化度4では脱離下限負荷が−270mmHg
, 2次空気導入量が50リットル/min、劣化度5では脱
離下限負荷が−250mmHg , 2次空気導入量が50リットル
/minというように、脱離下限負荷, 2次空気導入量共に
増大するように調整する。
If there is any deterioration, the desorption lower limit load and the amount of secondary air introduced are set in accordance with the determined degree of deterioration (steps 34 to 38). Specifically, in the case of the deterioration degree 1 having the smallest deterioration degree, the desorption lower limit load is -45.
0 mmHg, the secondary air introduction rate is 20 l / min, and as the degree of deterioration increases, the lower limit of desorption is -400 mmHg at the deterioration degree 2, 25 l / min at the secondary air introduction rate, and Separation lower limit load is -300mmHg, secondary air introduction amount is 35
Liters / min, Degradation level 4-270mmHg
, The secondary air introduction rate is 50 liters / min, the degradation lower limit load is -250mmHg and the secondary air introduction quantity is 50 liters at the deterioration degree 5.
Adjust so as to increase both the lower desorption load and the amount of secondary air introduced, such as / min.

【0029】かかる構成とすれば、吸着剤5に供給され
た熱量と吸着剤5にHCと比例的に吸着される水分によ
る排気露点時間とに基づいて、HCの吸着量を推定して
吸着剤5の劣化度を高精度に検出することができ、劣化
度が高くなるほど脱離開始負荷を大きくして排気温度が
高く、かつ2次空気導入量を大きくして排気浄化用触媒
3でのHC酸化機能が高い状態でHCを脱離させる構成
としたため、常にHC排出量を良好に規制することがで
きる。
With this configuration, the amount of adsorbed HC is estimated based on the amount of heat supplied to the adsorbent 5 and the exhaust dew point time due to moisture adsorbed on the adsorbent 5 in proportion to HC. 5 can be detected with high accuracy, and the higher the degree of deterioration, the greater the desorption start load, the higher the exhaust gas temperature, and the larger the amount of secondary air introduced to increase the amount of HC in the exhaust gas purifying catalyst 3. Since HC is desorbed in a state where the oxidizing function is high, the amount of HC emission can always be well controlled.

【0030】尚、吸着剤の劣化を警告し、更には劣化度
に応じて異なる警告を発するようにしてもよい。また、
本実施例では熱量予測値を比較熱量値で除算した値を露
点時間に乗じた値の標準露点時間からの短縮時間によっ
て劣化度を検出する方式としたが、熱量予測値を比較熱
量値で除算した値そのものも吸着剤5の劣化度の指標と
なるため、これによって劣化度を検出する方式としても
よい。
It should be noted that a warning may be issued for the deterioration of the adsorbent, and further different warnings may be issued according to the degree of deterioration. Also,
In this embodiment, the degree of deterioration is detected by a shortened time from the standard dew point time obtained by dividing the predicted calorie value by the comparative calorie value and multiplying the dew point time, but the calorie predicted value is divided by the comparative calorie value. Since the value itself is also an index of the degree of deterioration of the adsorbent 5, a method of detecting the degree of deterioration may be used.

【0031】[0031]

【発明の効果】以上説明してきたように本発明によれ
ば、吸着剤の劣化度を高精度に検出することができ、以
て、該劣化度に見合ったHC脱離条件の変更や警告を発
することが可能となる。
As described above, according to the present invention, the degree of deterioration of the adsorbent can be detected with high accuracy, and accordingly, a change in HC desorption conditions or a warning corresponding to the degree of deterioration can be issued. It is possible to emit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成,機能を示すブロック図FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】本発明の一実施例のシステム構成を示す図FIG. 2 is a diagram showing a system configuration according to an embodiment of the present invention;

【図3】同上実施例のHCの吸着総量及び標準露点時間
算出のルーチンを示すフローチャート
FIG. 3 is a flowchart showing a routine for calculating the total amount of adsorbed HC and the standard dew point time in the embodiment.

【図4】同じく実露点時間算出のルーチンを示すフロー
チャート
FIG. 4 is a flowchart showing a routine for calculating an actual dew point time.

【図5】同じく吸着剤の劣化度判定のルーチンを示すフ
ローチャート
FIG. 5 is a flowchart showing a routine for determining the degree of deterioration of the adsorbent.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 排気通路 3 排気浄化用触媒 4 主通路 5 吸着剤 6 バイパス通路 7 制御弁 9 エアフローメータ 10 水温センサ 11 回転速度センサ 12,13 温度センサ 14 コントロールユニット Reference Signs List 1 internal combustion engine 2 exhaust passage 3 exhaust purification catalyst 4 main passage 5 adsorbent 6 bypass passage 7 control valve 9 air flow meter 10 water temperature sensor 11 rotation speed sensor 12, 13 temperature sensor 14 control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/24 F01N 3/24 E 3/32 301 3/32 301A (58)調査した分野(Int.Cl.6,DB名) F01N 3/08 - 3/32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 identification code FI F01N 3/24 F01N 3/24 E 3/32 301 3/32 301A (58) Investigated field (Int.Cl. 6 , DB name ) F01N 3/08-3/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関の排気系に所定の低温度条件で排気中
のHCを吸着する機能を有した吸着剤と所定の高温度条
件でHCを含む排気中の汚染成分を浄化する機能を有し
た排気浄化用触媒とを備え、前記排気浄化用触媒の活性
化前の低温状態で前記吸着剤にHCを吸着させ、排気浄
化触媒活性化後の高温状態で吸着剤に吸着されたHCを
脱離して排気浄化用触媒により浄化させるようにした内
燃機関の排気浄化装置において、機関運転状態を検出す
る運転状態検出手段と、吸着剤の入口及び出口側の排気
温度を夫々検出する排気温度検出手段と、吸着剤出口側
の排気温度状態に基づいて検出される排気の露点期間中
に吸着剤入口側の排気温度と排気流量とに基づいて排気
から吸着剤に供給される実供給熱量に相当する値を演算
する実供給熱量相当値演算手段と、機関運転状態に基づ
いて所定の吸着条件で吸着剤に吸着されるHCの総量を
推定するHC吸着総量推定手段と、該推定されたHC吸
着総量に基づいて前記排気の露点期間中に排気から非劣
化状態の吸着剤に供給されると推定される標準供給熱量
に相当する値を演算する標準供給熱量相当値演算手段
と、前記演算された標準供給熱量相当値と実供給熱量相
当値に基づいて吸着剤の劣化度を検出する劣化度検出手
段と、を含んで構成したことを特徴とする内燃機関の排
気浄化装置におけるHC吸着剤の劣化診断装置
An exhaust system of an engine has an adsorbent having a function of adsorbing HC in exhaust gas at a predetermined low temperature condition and a function of purifying pollutants in exhaust gas containing HC at a predetermined high temperature condition. An exhaust gas purifying catalyst, wherein the HC is adsorbed to the adsorbent in a low temperature state before the activation of the exhaust gas purifying catalyst, and the HC adsorbed by the adsorbent in a high temperature state after the exhaust gas purifying catalyst is activated is removed. In an exhaust gas purifying apparatus for an internal combustion engine, wherein the exhaust gas purifying catalyst is separated and separated, an operating state detecting means for detecting an engine operating state, and an exhaust temperature detecting means for detecting an exhaust gas temperature at an inlet and an outlet of an adsorbent, respectively. And the actual amount of heat supplied to the adsorbent from the exhaust gas based on the exhaust gas temperature on the adsorbent inlet side and the exhaust gas flow rate during the dew point period of the exhaust gas detected based on the exhaust gas temperature state on the adsorbent outlet side. Actual supply calorie phase to calculate the value Value calculating means, HC total adsorbing amount estimating means for estimating the total amount of HC adsorbed on the adsorbent under predetermined adsorption conditions based on the engine operating state, and the dew point period of the exhaust gas based on the estimated total HC adsorbing amount. Standard supply calorie equivalent value computing means for computing a value corresponding to the standard supply calorie value estimated to be supplied from the exhaust gas to the non-degraded adsorbent; and the calculated standard supply calorie equivalent value and the actual supply calorie value. A deterioration degree detecting means for detecting the degree of deterioration of the adsorbent based on the equivalent value; and a deterioration diagnosis apparatus for the HC adsorbent in the exhaust gas purifying apparatus for the internal combustion engine, comprising:
【請求項2】前記実供給熱量相当値演算手段及び標準熱
量相当値演算手段は、夫々の供給熱量によって同一運転
条件で露点状態に維持される実露点時間と標準露点時間
とを演算し、劣化度検出手段は、実露点時間の標準露点
時間に対する短縮時間によって吸着剤の劣化度を検出し
てなる請求項1に記載のHC吸着剤の劣化診断装置。
2. The actual supply heat amount equivalent value calculating means and the standard heat amount equivalent value operation means calculate an actual dew point time and a standard dew point time maintained in a dew point state under the same operating condition by respective supply heat amounts, and The HC adsorbent deterioration diagnosis apparatus according to claim 1, wherein the degree detecting means detects the degree of deterioration of the adsorbent by shortening the actual dew point time with respect to the standard dew point time.
JP5018459A 1993-02-05 1993-02-05 Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine Expired - Fee Related JP2894135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018459A JP2894135B2 (en) 1993-02-05 1993-02-05 Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018459A JP2894135B2 (en) 1993-02-05 1993-02-05 Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06229235A JPH06229235A (en) 1994-08-16
JP2894135B2 true JP2894135B2 (en) 1999-05-24

Family

ID=11972221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018459A Expired - Fee Related JP2894135B2 (en) 1993-02-05 1993-02-05 Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2894135B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021090A1 (en) * 2001-08-31 2003-03-13 Honda Giken Kogyo Kabushiki Kaisha Deteriorated state evaluation device of exhaust emission control equipment
JP4538175B2 (en) * 2001-09-07 2010-09-08 本田技研工業株式会社 Exhaust gas purification device state determination device
JP2003083042A (en) 2001-09-07 2003-03-19 Hitachi Ltd Diagnosis device for internal combustion engine
DE102005059055A1 (en) 2005-12-08 2007-06-14 Robert Bosch Gmbh Method for diagnosing a catalytic converter arranged in an exhaust gas flow, and device for carrying out the method
JP6229542B2 (en) * 2014-02-28 2017-11-15 マツダ株式会社 Exhaust purification catalyst deterioration diagnosis method and deterioration diagnosis apparatus

Also Published As

Publication number Publication date
JPH06229235A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US20100307141A1 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP2001323811A (en) State detecting device of exhaust emission control catalyst
JP2003083042A (en) Diagnosis device for internal combustion engine
US6401451B1 (en) Degradation discrimination system of internal combustion engine exhaust gas purification system
JP2894135B2 (en) Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine
JP2006169997A (en) Deterioration determining device of catalyst
US6378296B1 (en) Degradation discrimination system of internal combustion engine exhaust gas purification system
US6945034B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US6792749B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP3739876B2 (en) Exhaust purification device
JP3010927B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JP2950077B2 (en) Exhaust gas purification device for internal combustion engine
JPH09324622A (en) Exhaust emission control device of internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JP3413997B2 (en) Degradation diagnosis device for HC adsorbent in internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JP2894141B2 (en) Adsorption amount estimation device for hydrocarbon adsorption / desorption device of internal combustion engine
JP3409647B2 (en) Degradation diagnosis device for HC adsorbent of engine
JP3116588B2 (en) Exhaust gas purification device for internal combustion engine
JP3360568B2 (en) Adsorbent HC adsorption amount detection device and engine exhaust purification device using this detection device
JP2806170B2 (en) Exhaust gas purification device for internal combustion engine
JPH0666131A (en) Self-diagnosis device of adsorbent for internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP3379267B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees