JPH0693840A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH0693840A
JPH0693840A JP4241018A JP24101892A JPH0693840A JP H0693840 A JPH0693840 A JP H0693840A JP 4241018 A JP4241018 A JP 4241018A JP 24101892 A JP24101892 A JP 24101892A JP H0693840 A JPH0693840 A JP H0693840A
Authority
JP
Japan
Prior art keywords
passage
air
desorption
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4241018A
Other languages
Japanese (ja)
Inventor
Tadaki Ota
忠樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4241018A priority Critical patent/JPH0693840A/en
Publication of JPH0693840A publication Critical patent/JPH0693840A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent excessive supply of secondary air and effectively purify the exhaust gas by estimating a quantity of unburnt gas adsorbed by an adsorbent, by calculating a required desorbing time from the result of the estimation, and introducing secondary air in accordance with the result of the calculation so as to desorb the unburnt gas. CONSTITUTION:In an engine body 1, a catalyst 6 is located in an exhaust gas passage 4, an adsorbent 8 for unburnt gas and a selector valve 9 are located in a bypass passage i3. Meanwhile, an air passage 13 incorporating an air pump 12 for feeding secondary air is connected to an exhaust manifold 2. A control unit 16 controls the selector valve 9 and the air pump 12 in accordance with detection signals from a catalyst temperature sensor 11, and engine operating condition detecting means 3, 10, 17 to 21. In this case, exhaust gas is introduced into the bypass passage 7 so as to be subjected predesorption during idle operation. Thereafter, a quantity of adsorbed unburnt gas is estimated in accordance with a variation in air-fuel ratio, and then a desorbing time is calculated, and thereafter, secondary air is introduced so as to carry out main desorption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特に、機関低温時の未燃HC等の未燃ガスの
低減を主とした排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to an exhaust gas purifying apparatus mainly for reducing unburned gas such as unburned HC at low engine temperature.

【0002】[0002]

【従来の技術】従来、内燃機関の排気浄化装置として、
排気通路に触媒を配設し、この触媒の化学吸着作用によ
り排気中の未燃ガスの酸化反応を促進して、排気を浄化
するようにしたものが広く知られている。しかし、この
ような排気浄化装置にあっては、機関の始動時等、排気
温度が低いときは触媒が活性化温度まで上昇せず、排気
浄化作用が著しく低下するため、排気を充分に浄化する
ことができない。
2. Description of the Related Art Conventionally, as an exhaust gas purification device for an internal combustion engine,
It is widely known that a catalyst is arranged in the exhaust passage, and the chemical adsorption of the catalyst promotes the oxidation reaction of unburned gas in the exhaust to purify the exhaust. However, in such an exhaust gas purification device, when the exhaust gas temperature is low such as when the engine is started, the catalyst does not rise to the activation temperature and the exhaust gas purification action is significantly reduced, so the exhaust gas is sufficiently purified. I can't.

【0003】このため、触媒による排気浄化能力が不十
分となる特定運転領域では、排気中の未燃ガス、例えば
未燃HCを吸着剤に吸着させるようにして、運転状態に
よらず排気を良好に浄化するようにした技術が提案され
ている(例えば特開昭55−101715号公報等参
照)。かかる技術は、具体的には、触媒上流側の排気通
路を、互いに並列な本通路とバイパス通路とにより構成
し、バイパス通路に吸着剤を配設する。そして、機関本
体からの排気流れを排気温度に応じて前記バイパス通路
側と本通路側とに切り換える通路切換弁と、吸着剤上流
側に接続する2次空気導入通路とを設けた構成である。
Therefore, in a specific operation region where the exhaust gas purification capability of the catalyst is insufficient, unburned gas in the exhaust gas, for example, unburned HC is adsorbed by the adsorbent, so that the exhaust gas can be satisfactorily discharged regardless of the operating state. There has been proposed a technique for purifying the same (see, for example, JP-A-55-101715). In this technique, specifically, the exhaust passage on the upstream side of the catalyst is configured by the main passage and the bypass passage that are parallel to each other, and the adsorbent is arranged in the bypass passage. Further, a passage switching valve for switching the exhaust flow from the engine body to the bypass passage side or the main passage side according to the exhaust temperature, and a secondary air introduction passage connected to the adsorbent upstream side are provided.

【0004】この技術においては、機関始動後の排気の
低温時(吸着剤の吸着量が脱離量より多い吸着温度域:
100 ℃以下)では、排気をバイパス通路側に流すことに
よって、排気中の未燃ガスを吸着剤に吸着させる。排気
温度が上昇して前記吸着温度域を越えると、通路切換弁
を切り換えて排気を本通路側に流すことによって、吸着
剤の脱離を防止する。更に、排気温度が触媒による浄化
作用が活発となる触媒活性化温度まで上昇した時は、通
路切換弁を再度切り換えてバイパス通路側に排気を導入
して吸着剤から未燃ガスを脱離させつつこの脱離された
未燃ガスを触媒で浄化して、吸着剤の再生を行うように
している。また、未燃ガス脱離時に2次空気を導入して
触媒における酸化反応を強化する。
In this technique, when the temperature of the exhaust gas is low after the engine is started (the adsorption temperature range in which the adsorption amount of the adsorbent is larger than the desorption amount:
At 100 ° C or lower), the unburned gas in the exhaust is adsorbed by the adsorbent by flowing the exhaust to the bypass passage side. When the exhaust gas temperature rises and exceeds the adsorption temperature range, the passage switching valve is switched to allow the exhaust gas to flow to the main passage side, thereby preventing desorption of the adsorbent. Furthermore, when the exhaust temperature rises to the catalyst activation temperature at which the purification action by the catalyst becomes active, the passage switching valve is switched again to introduce the exhaust gas to the bypass passage side while desorbing the unburned gas from the adsorbent. The desorbed unburned gas is purified by a catalyst to regenerate the adsorbent. Further, secondary air is introduced at the time of desorption of unburned gas to strengthen the oxidation reaction in the catalyst.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来装
置では、吸着剤に吸着された未燃ガスの吸着量が判って
いないため、未燃ガス脱離処理は触媒が活性化状態にあ
るときは常に実施する必要が生じる。そして、未燃ガス
の脱離処理時は、脱離した未燃ガスによって触媒上流側
の排気がリッチ雰囲気になるのを防ぎ酸化反応を促進す
るために2次空気を導入している。
However, in the conventional apparatus, the amount of unburned gas adsorbed by the adsorbent is not known, so unburned gas desorption processing is always performed when the catalyst is in the activated state. The need arises. Then, during the desorption process of the unburned gas, secondary air is introduced to prevent the desorbed unburned gas from causing the exhaust gas on the upstream side of the catalyst to become a rich atmosphere and to promote the oxidation reaction.

【0006】このために、未燃ガスの脱離量が少なくな
っているにも拘らず2次空気が導入されると触媒上流側
が酸化雰囲気になり易く、還元雰囲気で転換されるNO
x に対する触媒の転換効率が低下し、NOx の浄化機能
が低下する虞れがある。本発明は上記の事情に鑑みなさ
れたもので、吸着剤における未燃ガスの吸着量を推定
し、その推定量に応じた適正な時間だけ脱離することに
より、2次空気の過剰供給を防止して排気の有害成分を
効果的に浄化できる内燃機関の排気浄化装置を提供する
ことを目的とする。
For this reason, when secondary air is introduced even though the amount of unburned gas desorbed is small, the upstream side of the catalyst is likely to be in an oxidizing atmosphere, and NO is converted in a reducing atmosphere.
There is a possibility that the conversion efficiency of the catalyst with respect to x will decrease and the NOx purification function will decrease. The present invention has been made in view of the above circumstances, and prevents the excessive supply of secondary air by estimating the adsorption amount of unburned gas in the adsorbent and desorbing the adsorbent for a proper time according to the estimated amount. It is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine, which can effectively purify harmful components of exhaust gas.

【0007】[0007]

【課題を解決するための手段】このため、本発明は、図
1に示すように、排気通路に排気浄化用の触媒を介装
し、該触媒の上流側排気通路に本通路から分岐して再び
合流するバイパス通路を設け、該バイパス通路に未燃ガ
スを吸着する吸着剤を介装すると共に、前記バイパス通
路と本通路との分岐部及び合流部の少なくとも一方に設
けられ排気の流れを本通路側とバイパス通路側に選択的
に切り換える通路切換弁と、吸着剤より上流側の排気通
路に2次空気を導入する2次空気導入手段と、前記触媒
の温度を検出する触媒温度検出手段と、機関運転状態検
出手段とを備え、触媒温度検出手段と機関運転状態検出
手段とに基づいて、触媒活性化温度未満の時に機関始動
時から所定期間バイパス通路側に排気を導入すべく通路
切換弁を切換制御して未燃ガスの吸着動作を行い、触媒
活性化温度以上になったときに再度バイパス通路側に排
気を導入すべく通路切換弁を切換制御すると共に2次空
気導入手段により2次空気を導入して未燃ガスの脱離動
作を行う構成の内燃機関の排気浄化装置において、前記
吸着動作後に前記触媒温度検出手段の検出値が触媒活性
化温度以上になったとき、前記運転状態検出手段が最初
のアイドル運転を検出したとき所定時間だけ排気をバイ
パス通路側に導入する位置に通路切換弁を駆動制御して
プレ脱離動作を行うプレ脱離処理手段と、前記所定時間
の間前記吸着剤下流側排気通路に介装されて空燃比を検
出する空燃比検出手段の検出値に基づいて空燃比の変化
を検出する空燃比変化検出手段と、該空燃比変化検出手
段の検出した空燃比変化状態に基づいて吸着剤に吸着さ
れた未燃ガスの吸着量を推定する吸着量推定手段と、該
吸着量推定手段の推定値に基づいて必要な脱離動作時間
を算出する脱離動作時間算出手段と、該脱離動作時間算
出手段で算出された脱離動作時間だけ2次空気導入を伴
う本脱離動作を行う本脱離処理手段とを備えて構成し
た。
Therefore, according to the present invention, as shown in FIG. 1, an exhaust gas purification catalyst is provided in an exhaust passage, and an upstream exhaust passage of the catalyst is branched from the main passage. A bypass passage which joins again is provided, an adsorbent for adsorbing unburned gas is interposed in the bypass passage, and the exhaust flow is provided at least at one of a branch portion and a joining portion between the bypass passage and the main passage. A passage switching valve for selectively switching between the passage side and the bypass passage side, a secondary air introducing means for introducing secondary air into the exhaust passage upstream of the adsorbent, and a catalyst temperature detecting means for detecting the temperature of the catalyst. , A passage switching valve for introducing exhaust gas to the bypass passage side for a predetermined period from the engine start when the temperature is lower than the catalyst activation temperature, based on the catalyst temperature detecting means and the engine operating state detecting means. Switch control An unburned gas adsorption operation is performed, and when the temperature exceeds the catalyst activation temperature, the passage switching valve is switched and controlled so that the exhaust gas is introduced again into the bypass passage side, and the secondary air is introduced by the secondary air introducing means. In an exhaust gas purification device for an internal combustion engine configured to perform desorption operation of unburned gas, when the detection value of the catalyst temperature detection means becomes equal to or higher than the catalyst activation temperature after the adsorption operation, the operating state detection means is the first When the idle operation is detected, the pre-desorption processing means for driving and controlling the passage switching valve to the position where the exhaust gas is introduced to the bypass passage side for a predetermined time, and the pre-desorption processing means for the predetermined time, and the adsorbent downstream side An air-fuel ratio change detection unit that detects a change in the air-fuel ratio based on a detection value of an air-fuel ratio detection unit that is interposed in the exhaust passage and that detects the air-fuel ratio, and an air-fuel ratio change state detected by the air-fuel ratio change detection unit. Based Adsorption amount estimating means for estimating the adsorption amount of the unburned gas adsorbed by the adsorbent, desorption operation time calculating means for calculating the necessary desorption operation time based on the estimated value of the adsorption amount estimating means, The desorption operation time calculating means calculates the desorption operation time, and the desorption operation means performs the desorption operation accompanied by the secondary air introduction.

【0008】[0008]

【作用】かかる構成においては、機関始動後の触媒低温
時に吸着剤による未燃ガスの吸着処理が行われた後、触
媒温度が活性化温度になった時に最初のアイドル運転が
検出されると、通路切換弁を駆動してバイパス通路側に
排気を所定時間だけ導入して吸着量を推定するためのプ
レ脱離処理を行う。このプレ脱離処理期間では、その期
間における空燃比の変化を検出する。そして、検出され
た空燃比の変化状態に基づいて吸着量を推定する。ここ
で、空燃比変化が大きいほど吸着量は多いと推定され
る。更に、推定した吸着量に基づいて未燃ガスを全て脱
離するのに必要とされる時間を算出する。必要脱離時間
を算出したならば、所定の脱離運転条件になった時に2
次空気を導入して本来の脱離処理を算出された必要脱離
時間だけ実行する。
In such a structure, when the first idle operation is detected when the catalyst temperature reaches the activation temperature after the unburned gas is adsorbed by the adsorbent at a low catalyst temperature after the engine is started, A pre-desorption process for estimating the adsorption amount is performed by driving the passage switching valve and introducing the exhaust gas into the bypass passage for a predetermined time. During this pre-desorption process period, changes in the air-fuel ratio during that period are detected. Then, the adsorption amount is estimated based on the detected change state of the air-fuel ratio. Here, it is estimated that the larger the change in the air-fuel ratio, the larger the adsorption amount. Further, the time required to desorb all unburned gas is calculated based on the estimated adsorption amount. Once the required desorption time has been calculated, 2
Next air is introduced to perform the original desorption process for the calculated required desorption time.

【0009】これにより、過剰な2次空気の導入が防止
でき、触媒のNOx 転換効率の低下を防止できるように
なる。
This makes it possible to prevent the introduction of an excessive amount of secondary air, and to prevent the NOx conversion efficiency of the catalyst from decreasing.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。本発明の一実施例のシステム構成を示す図2に
おいて、機関本体1の排気マニホールド2には、燃料噴
射量制御のための第1空燃比センサ3が設けられてい
る。また、排気マニホールド3に連結される排気通路4
には、排気浄化用のプリ触媒5とメイン触媒6とが介装
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2 showing the system configuration of an embodiment of the present invention, the exhaust manifold 2 of the engine body 1 is provided with a first air-fuel ratio sensor 3 for controlling the fuel injection amount. Further, the exhaust passage 4 connected to the exhaust manifold 3
A pre-catalyst 5 for purifying exhaust gas and a main catalyst 6 are interposed between the two.

【0011】前記メイン触媒6の上流側の排気通路4
は、排気通路4から分岐して再び合流するバイパス通路
7と本通路4Aとにより構成されており、バイパス通路
7には排気中の未燃ガス、例えば未燃HC等を吸着する
吸着剤8が介装される。前記本通路4Aとバイパス通路
7の合流部には、両通路を選択的に排気が流通するよう
に流路を切り換える例えば電磁式の通路切換弁9が設け
られている。この通路切換弁9は、ON−OFF制御さ
れ、ON時にバイパス通路7を開放し本通路4Aを閉塞
し、排気の全量をバイパス通路7に流す。OFF時にバ
イパス通路7を閉塞して本通路4Aを開放し、排気の全
量を本通路4Aに流す。
Exhaust passage 4 upstream of the main catalyst 6
Is composed of a bypass passage 7 that branches from the exhaust passage 4 and merges again, and a main passage 4A. In the bypass passage 7, an adsorbent 8 that adsorbs unburned gas, such as unburned HC, in the exhaust gas is provided. Intervened. At the confluence of the main passage 4A and the bypass passage 7, for example, an electromagnetic passage switching valve 9 that switches the passage so that the exhaust gas selectively flows through both passages is provided. This passage switching valve 9 is ON-OFF controlled, and when it is ON, the bypass passage 7 is opened, the main passage 4A is closed, and the entire amount of exhaust gas is allowed to flow into the bypass passage 7. At the time of OFF, the bypass passage 7 is closed and the main passage 4A is opened, and the entire amount of exhaust gas is flown into the main passage 4A.

【0012】前記通路切換弁9とメイン触媒6との間の
排気通路4には、プレ脱離時の吸着量推定に使用する空
燃比検出手段としての第2空燃比センサ10が介装されて
いる。また、メイン触媒6出口側の排気通路4には、触
媒温度検出手段としての温度センサ11が介装されてい
る。更に、排気マニホールド2には、本脱離処理動作時
にエアポンプ12を介して排気通路4中に2次空気を導入
するためのエア通路13が接続されている。前記エアポン
プ12及びエア通路13が2次空気導入手段に相当する。
A second air-fuel ratio sensor 10 is installed in the exhaust passage 4 between the passage switching valve 9 and the main catalyst 6 as an air-fuel ratio detecting means used for estimating the amount of adsorption during pre-desorption. There is. Further, a temperature sensor 11 as a catalyst temperature detecting means is provided in the exhaust passage 4 on the outlet side of the main catalyst 6. Further, the exhaust manifold 2 is connected to an air passage 13 for introducing secondary air into the exhaust passage 4 via the air pump 12 during the main desorption processing operation. The air pump 12 and the air passage 13 correspond to secondary air introducing means.

【0013】一方、機関本体1に接続される吸気通路14
には、スロットル弁15が介装されている。コントロール
ユニット16には、各種検出信号が入力されこれら各種検
出信号に基づいて、通路切換弁9及びエアポンプ12等を
駆動制御し、後述する吸着処理動作、吸着量推定のため
のプレ脱離処理動作及び本脱離処理動作等を制御する。
On the other hand, the intake passage 14 connected to the engine body 1
A throttle valve 15 is installed in the. Various detection signals are input to the control unit 16, and the passage switching valve 9 and the air pump 12 are drive-controlled on the basis of these various detection signals to perform an adsorption processing operation described later and a pre-desorption processing operation for estimating an adsorption amount. It also controls the main desorption processing operation and the like.

【0014】コントロールユニット16に入力する各種検
出信号としては以下のようなものがある。スロットル弁
15の開度を検出するスロットルセンサ17からのスロット
ル開度信号、車速センサ18からの車速信号、クランク角
センサ19からのクランク角信号に基づく機関回転速度信
号、スタータスイッチ20からのスタート信号、エアフロ
ーメータ21からの吸入空気流量信号、水温センサ22から
の機関冷却水温度信号、温度センサ11からの触媒出口側
温度信号、第1及び第2空燃比センサ3,10からの空燃
比信号がある。
The various detection signals input to the control unit 16 are as follows. Throttle valve
The throttle opening signal from the throttle sensor 17 that detects the opening of the vehicle 15, the vehicle speed signal from the vehicle speed sensor 18, the engine speed signal based on the crank angle signal from the crank angle sensor 19, the start signal from the starter switch 20, the air flow There are an intake air flow rate signal from the meter 21, an engine cooling water temperature signal from the water temperature sensor 22, a catalyst outlet side temperature signal from the temperature sensor 11, and air-fuel ratio signals from the first and second air-fuel ratio sensors 3 and 10.

【0015】そして、コントロールユニット16には、後
述するフローチャートで示されるように、吸着剤への未
燃ガス吸着量を推定するためのプレ脱離処理手段と、プ
レ脱離処理期間中におけるメイン触媒6上流側の排気空
燃比の変化を検出する空燃比変化検出手段と、空燃比変
化状態に基づいて未燃ガス吸着量を推定する吸着量推定
手段と、この推定量に基づいて必要な脱離動作時間を算
出する脱離動作時間算出手段と、脱離動作時間だけ2次
空気導入を伴う本脱離動作を行う本脱離処理手段の各機
能がソフトウエア的に備えられているものである。
The control unit 16 includes a pre-desorption treatment means for estimating the amount of unburned gas adsorbed on the adsorbent, and a main catalyst during the pre-desorption treatment period, as shown in a flowchart described later. 6 Air-fuel ratio change detection means for detecting a change in the exhaust air-fuel ratio on the upstream side, adsorption amount estimation means for estimating the unburned gas adsorption amount based on the air-fuel ratio change state, and desorption required based on this estimated amount Each function of the desorption operation time calculation means for calculating the operation time and the main desorption processing means for performing the main desorption operation accompanied by the introduction of the secondary air for the desorption operation time is provided by software. .

【0016】次に図3のフローチャートにより本実施例
の排気浄化装置の概略的な制御動作を説明する。機関が
始動されると、まず、ステップ1(図ではS1と略記す
る。以下、同様)において、通路切換弁9をONとして
本通路4Aを閉鎖して排気をバイパス通路7に導入して
吸着剤8により排気中の未燃ガスの吸着処理を実行す
る。その後、排気温度が上昇して吸着温度域を越えると
通路切換弁9をOFFとしてバイパス通路7を閉鎖し本
通路4A側を開放して排気を本通路4A側に導入してメ
イン触媒6の昇温を図る。具体的な動作は後述の図4の
フローチャートに示す。
Next, a schematic control operation of the exhaust emission control system of this embodiment will be described with reference to the flow chart of FIG. When the engine is started, first, in step 1 (abbreviated as S1 in the figure; hereinafter the same), the passage switching valve 9 is turned on to close the main passage 4A and introduce exhaust gas into the bypass passage 7 to adsorb the adsorbent. At 8, the adsorption processing of the unburned gas in the exhaust is executed. After that, when the exhaust temperature rises and exceeds the adsorption temperature range, the passage switching valve 9 is turned off to close the bypass passage 7 and open the main passage 4A side to introduce the exhaust gas to the main passage 4A side to raise the main catalyst 6. Get warm. The specific operation is shown in the flowchart of FIG. 4 described later.

【0017】ステップ2では、温度センサ11からの信号
に基づいてメイン触媒6出口側の排気温度が200 ℃以上
か否かを判定し、200 ℃以上であれば、ステップ3に進
み、後述の図5〜図7に示すフローチャートに従って吸
着量推定のためのプレ脱離処理動作を実行する。このプ
レ脱離処理動作によって必要脱離時間が算出されたらス
テップ4に進み、前記必要脱離時間だけ図8のフローチ
ャートに示す本脱離処理動作を実行して、吸着剤8を再
生する。
In step 2, it is judged based on the signal from the temperature sensor 11 whether or not the exhaust temperature at the outlet side of the main catalyst 6 is 200 ° C. or higher. If it is 200 ° C. or higher, the process proceeds to step 3 to be described later. The pre-desorption processing operation for estimating the adsorption amount is executed according to the flowcharts shown in FIGS. When the required desorption time is calculated by this pre-desorption processing operation, the routine proceeds to step 4, where the main desorption processing operation shown in the flowchart of FIG. 8 is executed for the necessary desorption time to regenerate the adsorbent 8.

【0018】次に図4〜図8のフローチャートに従っ
て、上述した吸着処理動作、プレ脱離処理動作及び本脱
離処理動作について具体的に説明する。まず、図4に示
す吸着処理動作について説明する。ステップ11でスター
タスイッチ20がONか否かを判定し、機関の始動判定を
行い、YESの時はステップ12に進む。
Next, the adsorption processing operation, the pre-desorption processing operation and the main desorption processing operation described above will be specifically described with reference to the flow charts of FIGS. First, the suction processing operation shown in FIG. 4 will be described. In step 11, it is determined whether or not the starter switch 20 is ON, and it is determined whether or not the engine is started. If YES, the process proceeds to step 12.

【0019】ステップ12では、水温センサ22からの信号
により機関冷却水温が40℃以下か否かを判定し、YES
(40℃以下)の時はステップ13に進み、吸着終了温度を
60℃に設定する。また、NO(40℃より高い)の時はス
テップ14に進み70℃以下か否か、即ちホットリスタート
で暖機終了状態か否かを判定し、YES(70℃以下)の
時はステップ15に進み、吸着終了温度を70℃に設定す
る。また、NO(70℃より高い)の時はステップ16に進
み吸着終了温度を80℃に設定する。
In step 12, it is judged from the signal from the water temperature sensor 22 whether the engine cooling water temperature is 40 ° C. or lower, and YES.
If it is (40 ° C or less), proceed to step 13 and set the adsorption end temperature.
Set to 60 ° C. If NO (higher than 40 ° C), the process proceeds to step 14 to determine whether the temperature is 70 ° C or lower, that is, whether the warm-up has been completed by hot restart. If YES (70 ° C or lower), the process proceeds to step 15 And set the adsorption end temperature to 70 ° C. If NO (higher than 70 ° C), the process proceeds to step 16 and the adsorption end temperature is set to 80 ° C.

【0020】このように、冷却水温にを基に吸着剤8へ
の排気導入期間(具体的には吸着終了設定温度)を設定
することで、未燃ガスの吸着とメイン触媒6の昇温を効
果的に図ることができる。機関始動後にスタータスイッ
チ20がOFFとなるとステップ17に進み、現在の冷却水
温がステップ13、ステップ15或いはステップ16で設定さ
れた設定温度以下か否かを判定し、設定温度以下であれ
ば未燃ガスの吸着を行うべく通路切換弁9をONとして
バイパス通路7に排気を導入する。その後、設定温度よ
り高くなると吸着処理動作を終了すべくステップ19に進
み通路切換弁9をOFFとしてバイパス通路7を閉鎖し
て排気を本通路4A側に導入してメイン触媒6の昇温を
図るようにしている。
As described above, the exhaust gas introduction period to the adsorbent 8 (specifically, the adsorption end set temperature) is set based on the cooling water temperature, so that the unburned gas is adsorbed and the temperature of the main catalyst 6 is raised. It can be effectively achieved. When the starter switch 20 is turned off after the engine is started, the routine proceeds to step 17, where it is judged whether the current cooling water temperature is below the set temperature set in step 13, step 15 or step 16, and if it is below the set temperature, it is unburned. In order to adsorb the gas, the passage switching valve 9 is turned on and the exhaust gas is introduced into the bypass passage 7. After that, when the temperature becomes higher than the set temperature, the process proceeds to step 19 to end the adsorption processing operation, the passage switching valve 9 is turned off, the bypass passage 7 is closed, and the exhaust gas is introduced into the main passage 4A side to raise the temperature of the main catalyst 6. I am trying.

【0021】次に図5〜図7のプレ脱離処理動作につい
て説明する。図5は吸着剤8の必要脱離時間の計算ルー
チンである。ステップ21では吸着剤8の未燃ガスが全て
脱離したか否かを判定する。これは、後述の本脱離処理
動作における必要脱離時間のカウント値が0か否かによ
って判断する。全て脱離されていればステップ22に進
む。
Next, the pre-detachment processing operation of FIGS. 5 to 7 will be described. FIG. 5 shows a calculation routine of the required desorption time of the adsorbent 8. In step 21, it is determined whether or not all the unburned gas in the adsorbent 8 has been desorbed. This is determined by whether or not the count value of the necessary desorption time in the main desorption processing operation described later is 0. If all have been detached, proceed to step 22.

【0022】ステップ22では前述の吸着処理動作におけ
る吸着処理動作が行われたか否かを判定する。行われた
ならばステップ23に進む。ステップ23では、吸着量の測
定が既に行われているか否かを判定する。これは、後述
の空燃比変化検出ルーチンにおける測定終了フラグがO
Nになったか否かで判定される。測定終了フラグがON
になっていなければ測定が行われいないと判断してステ
ップ24に進む。
In step 22, it is determined whether or not the suction processing operation in the above-described suction processing operation has been performed. If so, proceed to step 23. In step 23, it is determined whether or not the adsorption amount has already been measured. This is because the measurement end flag in the air-fuel ratio change detection routine described later is O.
It is determined by whether or not N has been reached. Measurement end flag is ON
If not, it is determined that the measurement is not performed and the process proceeds to step 24.

【0023】ステップ24では、吸着測定フラグをONと
して、ステップ25に進み、図6に示すプレ脱離制御ルー
チンを実行する。また、ステップ23で測定終了フラグが
OFFと判定されたならば、吸着量の測定が既に終了し
ていると判断してステップ26に進む。ステップ26では、
脱離時間の算出が終了しているか否かをフラグ判定し、
算出が終了していればフローを終了する。終了していな
ければステップ27に進む。
At step 24, the adsorption measurement flag is set to ON, and the routine proceeds to step 25, where the pre-desorption control routine shown in FIG. 6 is executed. If the measurement end flag is determined to be OFF in step 23, it is determined that the adsorption amount measurement has already been completed, and the process proceeds to step 26. In step 26,
Flag determination whether or not the desorption time has been calculated,
If the calculation is completed, the flow ends. If not completed, go to step 27.

【0024】ステップ27では、必要脱離時間及び2次空
気導入量を図9のテーブルに基づいて図7の空燃比変化
検出ルーチンで検出された空燃比変化状態から算出す
る。即ち、吸着量が多いほどプレ脱離処理動作で脱離さ
れる未燃ガス量が多く空燃比の変化率が大きくなること
から、検出した空燃比変化率が大きいほど必要脱離時間
及び2次空気導入量を大きく設定する。
In step 27, the required desorption time and the secondary air introduction amount are calculated from the air-fuel ratio change state detected by the air-fuel ratio change detection routine of FIG. 7 based on the table of FIG. That is, the larger the amount of adsorption, the larger the amount of unburned gas desorbed in the pre-desorption processing operation and the larger the rate of change of the air-fuel ratio. Therefore, the larger the detected rate of change of the air-fuel ratio, the necessary desorption time and secondary air. Set a large introduction amount.

【0025】図6のプレ脱離制御ルーチンについて説明
する。まず、ステップ31では、メイン触媒6出口側の排
気温度が未燃ガスの脱離が可能な温度(200 ℃以上)か
否かを判定し、可能な温度であればステップ32に進む。
ステップ32では、スロットルセンサ17からの信号に基づ
いて運転状態がアイドルか否かを判定する。これは、吸
着剤からの未燃ガスの脱離量は流入空気量(排気の量)
と吸着量により略一義的に決定され、また、脱離量は脱
離温度域である200 ℃以上では温度に関係なく略一定と
なるので、吸着剤への流入空気量を一定にすれば脱離量
と吸着量とは略比例する。従って、吸着剤への流入空気
が略一定となるアイドル時において脱離量を測定すれば
吸着量の推定ができるためである。アイドル時であれば
ステップ33に進む。
The pre-desorption control routine of FIG. 6 will be described. First, at step 31, it is judged whether the exhaust temperature on the outlet side of the main catalyst 6 is a temperature (200 ° C. or higher) at which the unburned gas can be desorbed, and if it is possible, the routine proceeds to step 32.
In step 32, it is determined based on the signal from the throttle sensor 17 whether the operating state is idle. This is because the amount of unburned gas desorbed from the adsorbent is the amount of inflowing air (the amount of exhaust).
The desorption amount is almost constant regardless of the temperature above the desorption temperature range of 200 ° C. Therefore, if the inflowing air amount to the adsorbent is constant, the desorption amount is almost constant. The amount of separation and the amount of adsorption are substantially proportional. Therefore, the adsorbed amount can be estimated by measuring the desorbed amount during idling when the air flowing into the adsorbent is substantially constant. If it is idle, proceed to step 33.

【0026】ステップ33では、図5の必要脱離時間計算
ルーチンにおける吸着測定フラグがONか否かを判定
し、ONであればステップ34で通路切換弁9がONか否
かを判定し、OFFになっていればステップ35に進み、
通路切換弁9をONにしてバイパス通路7側に排気を導
入してプレ脱離動作を実行すると共にプレ脱離時間を計
測するタイマを0にリセットした後スタートさせる。
In step 33, it is judged whether or not the adsorption measurement flag in the necessary desorption time calculation routine of FIG. 5 is ON, and if it is ON, it is judged in step 34 whether the passage switching valve 9 is ON or OFF. If so, proceed to step 35,
The passage switching valve 9 is turned on to introduce the exhaust gas to the bypass passage 7 side to execute the pre-desorption operation and reset the timer for measuring the pre-desorption time to 0 before starting.

【0027】そして、ステップ36に進み図7の空燃比変
化検出ルーチンを実行する。また、ステップ32で非アイ
ドル状態ならばステップ37に進み通路切換弁9がONか
否かを判定し、ONの時は吸着量推定終了と判断してス
テップ38に進み通路切換弁9をOFFとしてプレ脱離動
作を終了すると共にプレ脱離時間計測タイマを固定す
る。
Then, the routine proceeds to step 36, where the air-fuel ratio change detection routine of FIG. 7 is executed. If it is in the non-idle state at step 32, the routine proceeds to step 37, where it is judged whether the passage switching valve 9 is ON or not. When the pre-detachment operation is completed, the pre-detachment time measurement timer is fixed.

【0028】次に図7の空燃比変化検出ルーチンについ
て説明する。このルーチンは1sec 毎に実行される。図
6のプレ脱離制御ルーチンにおいてプレ脱離動作が開始
されると、ステップ41において、第2空燃比センサ10か
らの空燃比検出信号を読み込むと共にタイマをカウント
アップする。
Next, the air-fuel ratio change detection routine of FIG. 7 will be described. This routine is executed every 1 second. When the pre-desorption operation is started in the pre-desorption control routine of FIG. 6, in step 41, the air-fuel ratio detection signal from the second air-fuel ratio sensor 10 is read and the timer is counted up.

【0029】ステップ42では、タイマ値が予め設定した
設定時間経過したか否かを判定し、設定時間経過したな
らばこれ以上の吸着量推定のための未燃ガスの脱離は必
要なしとしてステップ43に進み、測定終了フラグをON
とし、吸着測定フラグをOFFとして空燃比変化の検出
を終了する。このように、プレ脱離時間を予め設定して
おくことにより、あまり短い時間では空燃比検出誤差を
含み、また、あまり長い時間行うと吸着量を検出してい
る間の未燃ガスの脱離量が多くなって吸着量の正確な検
出が困難となることを防止できる。
In step 42, it is judged whether or not the timer value has passed a preset time, and if the preset time has passed, it is determined that desorption of the unburned gas is unnecessary for further estimation of the adsorption amount. Go to 43 and turn on the measurement end flag
Then, the adsorption measurement flag is turned off, and the detection of the change in the air-fuel ratio is completed. In this way, by setting the pre-desorption time in advance, the air-fuel ratio detection error will be included if the time is too short, and if the time is too long, the desorption of the unburned gas will occur during the detection of the adsorption amount. It can be prevented that the amount increases and it becomes difficult to accurately detect the adsorption amount.

【0030】次に以上のようにして算出した必要脱離時
間を基にして行われる本脱離処理動作について図8のフ
ローチャートを参照して説明する。ステップ51では、図
5の必要脱離時間の計算ルーチンで算出された必要脱離
時間以上脱離を行ったか否かを後述の脱離時間カウント
用のタイマ値と算出された必要脱離時間値との比較に基
づいて判定し、NOであればステップ52に進む。
Next, the main desorption processing operation performed based on the required desorption time calculated as described above will be described with reference to the flowchart of FIG. In step 51, it is determined whether or not desorption has been performed for the desorption time longer than the necessary desorption time calculated by the necessary desorption time calculation routine of FIG. The determination is made based on the comparison with, and if NO, the process proceeds to step 52.

【0031】ステップ52では、温度センサ11からの信号
に基づいて触媒出口側温度が活性化温度(例えば300
℃)以上か否かを判定する。300 ℃以上であればステッ
プ53に進む。ステップ53では、スロットルセンサ17から
のスロットル弁開度信号、車速センサ18から車速信号、
クランク角センサ19からの機関回転速度信号等に基づき
減速時の燃料カット運転か否かを判定する。NOであれ
ばステップ54に進み、ISC(アイドルスピードコント
ロール)バルブがONか否かによりアイドル運転か否か
を判定する。即ち、ステップ53及びステップ54では、未
燃ガスの脱離及び2次空気の導入を行ってもNOx 等の
排出増大を招き難い運転状態かどうかを判定している。
減速時の燃料カット時では燃焼が行われなくなるために
NOx が生成されず、また、アイドル時には燃焼温度が
低下してNOx 生成量が低下する。
In step 52, the catalyst outlet side temperature is set to the activation temperature (for example, 300 ° C.) based on the signal from the temperature sensor 11.
℃) or above. If it is 300 ° C or higher, proceed to step 53. In step 53, the throttle valve opening signal from the throttle sensor 17, the vehicle speed signal from the vehicle speed sensor 18,
Based on the engine rotation speed signal from the crank angle sensor 19 or the like, it is determined whether or not the fuel cut operation during deceleration is performed. If NO, the routine proceeds to step 54, where it is determined whether or not the idle operation is performed depending on whether or not the ISC (idle speed control) valve is ON. That is, in step 53 and step 54, it is determined whether or not the operating state is such that even if the unburned gas is desorbed and the secondary air is introduced, the emission of NOx and the like is unlikely to increase.
NOx is not generated because the combustion is not performed at the time of fuel cut during deceleration, and the combustion temperature decreases at the time of idling, and the NOx generation amount decreases.

【0032】従って、ステップ53又はステップ54のいず
れかの判定がYESの時は未燃ガスの脱離が可能と判断
してステップ55に進む。ステップ55では、触媒の温度低
下率が所定値(例えば10℃/秒)以下か否かを判定す
る。これは、前述のNOx 生成量の少ない前述の運転状
態であってもこの運転状態においてメイン触媒6の温度
低下率が大きいと触媒温度が低下してメイン触媒6が非
活性となり転換効率が低下する可能性があるためであ
る。触媒の温度低下率が所定値より小さければステップ
56に進む。
Therefore, when the determination at either step 53 or step 54 is YES, it is determined that the unburned gas can be desorbed and the routine proceeds to step 55. In step 55, it is determined whether or not the temperature decrease rate of the catalyst is less than or equal to a predetermined value (for example, 10 ° C./second). This is because even in the above-mentioned operating state in which the amount of NOx produced is small, if the temperature decrease rate of the main catalyst 6 is large in this operating state, the catalyst temperature decreases, the main catalyst 6 becomes inactive, and the conversion efficiency decreases. This is because there is a possibility. If the temperature decrease rate of the catalyst is smaller than the specified value, step
Continue to 56.

【0033】ステップ56では、通路切換弁9をONとし
てバイパス通路7側を開放すると共にエアポンプ12を駆
動し、排気を吸着剤8に導入すると共に2次空気も導入
して未燃ガスの脱離を行い、且つメイン触媒6での酸化
反応を強化して良好な排気有害成分の浄化作用を行う。
ステップ57では、必要脱離時間カウント用のタイマをカ
ウントアップする。
In step 56, the passage switching valve 9 is turned on to open the bypass passage 7 side and the air pump 12 is driven to introduce the exhaust gas into the adsorbent 8 and the secondary air to release the unburned gas. In addition, the oxidation reaction in the main catalyst 6 is strengthened, and a good effect of purifying exhaust harmful components is obtained.
In step 57, the timer for counting the necessary desorption time is counted up.

【0034】ステップ53及びステップ54の判定が共にN
Oの時、或いはステップ55の判定がNOの時には、それ
ぞれステップ58,59に進み、通路切換弁9をOFFとし
てバイパス通路7側を閉鎖し本通路4A側を開放して排
気を本通路4Aに導入すると共にエアポンプ12の駆動を
停止して2次空気の導入を停止し未燃ガスの脱離を停止
する。
Both determinations in step 53 and step 54 are N.
When it is O or when the determination in step 55 is NO, the routine proceeds to steps 58 and 59, where the passage switching valve 9 is turned off to close the bypass passage 7 side and open the main passage 4A side to exhaust the exhaust gas to the main passage 4A. At the same time as the introduction, the drive of the air pump 12 is stopped, the introduction of the secondary air is stopped, and the desorption of unburned gas is stopped.

【0035】そして、必要時間カウント用のタイマ値が
計算値と一致すれば、吸着されている未燃ガスが全て脱
離したと判断し、再度吸着動作が行われるまでは脱離動
作を行わない。このように、吸着剤8に吸着されている
未燃ガスの吸着量を推定し、その推定量に応じて脱離処
理時間を設定することより、2次空気の過剰供給を防止
できるので、メイン触媒6のNOx 転換効率の低下を防
止でき、排気有害成分の排出量を効果的に低減できる。
If the timer value for counting the required time matches the calculated value, it is determined that all the unburned gas adsorbed is desorbed, and the desorption operation is not performed until the adsorption operation is performed again. . In this way, by estimating the adsorption amount of the unburned gas adsorbed on the adsorbent 8 and setting the desorption processing time according to the estimated amount, it is possible to prevent the excessive supply of the secondary air. The NOx conversion efficiency of the catalyst 6 can be prevented from lowering, and the emission amount of exhaust harmful components can be effectively reduced.

【0036】尚、本実施例では、プレ脱離処理時の空燃
比変化率から吸着量を推定するようにしたが、これに限
らず、例えば、空燃比センサに代わりにリーン、リッチ
で出力の反転する酸素センサを用いて、プレ脱離時に予
め空燃比を5〜10%程度リーン側に設定しておき、酸素
センサの出力をリーン側に固定させた状態で、プレ脱離
を開始し、この開始から酸素センサの出力がリッチにな
るまでの時間を計測してこの計測時間に基づいて予め求
めたデータを利用して未燃ガスの吸着量を推定するよう
にしてもよい。
In this embodiment, the adsorbed amount is estimated from the air-fuel ratio change rate during the pre-desorption process, but the present invention is not limited to this. For example, instead of the air-fuel ratio sensor, a lean or rich output is obtained. Using the oxygen sensor that reverses, set the air-fuel ratio to the lean side by about 5 to 10% in advance during pre-desorption, and start the pre-desorption with the output of the oxygen sensor fixed to the lean side. It is also possible to measure the time from the start to the time when the output of the oxygen sensor becomes rich and estimate the adsorption amount of the unburned gas by using the data obtained in advance based on this measurement time.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、吸
着剤の未燃ガス吸着量を推定し、その推定量に基づいて
必要脱離処理時間を算出し、算出した脱離時間だけ未燃
ガスの脱離動作を行う構成としたので、2次空気供給量
の過剰供給を防止でき、メイン触媒のNOx 転換効率の
低下を防止でき、NOx の排出量の増大を招くことがな
い。
As described above, according to the present invention, the unburned gas adsorption amount of the adsorbent is estimated, the necessary desorption treatment time is calculated based on the estimated amount, and the calculated desorption time is not calculated. Since the fuel gas desorption operation is performed, it is possible to prevent the excessive supply of the secondary air supply amount, prevent the reduction of the NOx conversion efficiency of the main catalyst, and prevent the increase of the NOx emission amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排気浄化装置の構成を説明するブロッ
ク図
FIG. 1 is a block diagram illustrating a configuration of an exhaust emission control device of the present invention.

【図2】本発明の一実施例を示すシステム図FIG. 2 is a system diagram showing an embodiment of the present invention.

【図3】同上実施例の全体的な作用を説明するフローチ
ャート
FIG. 3 is a flowchart for explaining the overall operation of the above embodiment.

【図4】吸着処理動作を具体的に説明するフローチャー
FIG. 4 is a flowchart specifically illustrating a suction processing operation.

【図5】プレ脱離処理動作における必要脱離時間の算出
フローチャート
FIG. 5 is a flowchart for calculating a necessary desorption time in the pre-desorption processing operation.

【図6】プレ脱離処理動作における脱離制御フローチャ
ート
FIG. 6 is a desorption control flowchart in a pre-desorption processing operation.

【図7】ブレ脱離処理動作における空燃比検出フローチ
ャート
FIG. 7 is an air-fuel ratio detection flowchart in a shake desorption processing operation.

【図8】本脱離処理動作を具体的に説明するフローチャ
ート
FIG. 8 is a flowchart specifically explaining the main desorption processing operation.

【図9】必要脱離時間の算出に用いるデータを示す図FIG. 9 is a diagram showing data used to calculate a required desorption time.

【符号の説明】[Explanation of symbols]

1 機関本体 4 排気通路 4A 本通路 6 メイン触媒 7 バイパス通路 8 吸着剤 9 通路切換弁 10 第2空燃比センサ 11 温度センサ 15 スロットル弁 16 コントロールユニット 17 スロットルセンサ 20 スタータスイッチ 1 Engine Main Body 4 Exhaust Passage 4A Main Passage 6 Main Catalyst 7 Bypass Passage 8 Adsorbent 9 Passage Switching Valve 10 Second Air-Fuel Ratio Sensor 11 Temperature Sensor 15 Throttle Valve 16 Control Unit 17 Throttle Sensor 20 Starter Switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 F F02D 45/00 368 G 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F01N 3/24 F F02D 45/00 368 G 7536-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排気通路に排気浄化用の触媒を介装し、該
触媒の上流側排気通路に本通路から分岐して再び合流す
るバイパス通路を設け、該バイパス通路に未燃ガスを吸
着する吸着剤を介装すると共に、前記バイパス通路と本
通路との分岐部及び合流部の少なくとも一方に設けられ
排気の流れを本通路側とバイパス通路側に選択的に切り
換える通路切換弁と、吸着剤より上流側の排気通路に2
次空気を導入する2次空気導入手段と、前記触媒の温度
を検出する触媒温度検出手段と、機関運転状態検出手段
とを備え、触媒温度検出手段と機関運転状態検出手段と
に基づいて、触媒活性化温度未満の時に機関始動時から
所定期間バイパス通路側に排気を導入すべく通路切換弁
を切換制御して未燃ガスの吸着動作を行い、触媒活性化
温度以上になったときに再度バイパス通路側に排気を導
入すべく通路切換弁を切換制御すると共に2次空気導入
手段により2次空気を導入して未燃ガスの脱離動作を行
う構成の内燃機関の排気浄化装置において、前記吸着動
作後に前記触媒温度検出手段の検出値が触媒活性化温度
以上になったとき、前記運転状態検出手段が最初のアイ
ドル運転を検出したとき所定時間だけ排気をバイパス通
路側に導入する位置に通路切換弁を駆動制御してプレ脱
離動作を行うプレ脱離処理手段と、前記所定時間の間前
記吸着剤下流側排気通路に介装されて空燃比を検出する
空燃比検出手段の検出値に基づいて空燃比の変化を検出
する空燃比変化検出手段と、該空燃比変化検出手段の検
出した空燃比変化状態に基づいて吸着剤に吸着された未
燃ガスの吸着量を推定する吸着量推定手段と、該吸着量
推定手段の推定値に基づいて必要な脱離動作時間を算出
する脱離動作時間算出手段と、該脱離動作時間算出手段
で算出された脱離動作時間だけ2次空気導入を伴う本脱
離動作を行う本脱離処理手段とを備えて構成したことを
特徴とする内燃機関の排気浄化装置。
1. An exhaust gas purification catalyst is provided in an exhaust passage, and a bypass passage is provided in an upstream exhaust passage of the catalyst to branch from the main passage and join again. An unburned gas is adsorbed in the bypass passage. A passage switching valve that interposes an adsorbent and that is provided in at least one of a branch portion and a merging portion between the bypass passage and the main passage and that selectively switches the flow of exhaust gas between the main passage side and the bypass passage side; 2 in the exhaust passage on the upstream side
A secondary air introducing means for introducing secondary air, a catalyst temperature detecting means for detecting the temperature of the catalyst, and an engine operating state detecting means are provided, and the catalyst is based on the catalyst temperature detecting means and the engine operating state detecting means. When the temperature is lower than the activation temperature, the passage switching valve is switched and controlled to introduce exhaust gas to the bypass passage for a predetermined period from the engine start, and the unburned gas adsorption operation is performed. In the exhaust gas purifying apparatus for an internal combustion engine, the passage switching valve is switch-controlled to introduce the exhaust gas to the passage side, and the secondary air is introduced by the secondary air introducing means to desorb the unburned gas. After the operation, when the detected value of the catalyst temperature detecting means becomes equal to or higher than the catalyst activation temperature, when the operating state detecting means detects the first idle operation, the exhaust gas is introduced to the bypass passage side for a predetermined time. Pre-desorption processing means for driving and controlling the passage switching valve to perform pre-desorption operation, and detection by the air-fuel ratio detection means interposed in the adsorbent downstream exhaust passage for the predetermined time to detect the air-fuel ratio Air-fuel ratio change detection means for detecting a change in the air-fuel ratio based on the value, and adsorption for estimating the adsorption amount of unburned gas adsorbed by the adsorbent based on the air-fuel ratio change state detected by the air-fuel ratio change detection means The amount estimation means, the desorption operation time calculation means for calculating the necessary desorption operation time based on the estimated value of the adsorption amount estimation means, and the desorption operation time calculated by the desorption operation time calculation means 2 An exhaust gas purification apparatus for an internal combustion engine, comprising: a main desorption processing means for performing a main desorption operation involving the introduction of secondary air.
JP4241018A 1992-09-09 1992-09-09 Exhaust emission control device for internal combustion engine Pending JPH0693840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241018A JPH0693840A (en) 1992-09-09 1992-09-09 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241018A JPH0693840A (en) 1992-09-09 1992-09-09 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0693840A true JPH0693840A (en) 1994-04-05

Family

ID=17068114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241018A Pending JPH0693840A (en) 1992-09-09 1992-09-09 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0693840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253547B1 (en) 1999-02-12 2001-07-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining amount of unburned fuel component adsorbed by an adsorbent in an internal combustion engine
WO2007123011A1 (en) * 2006-04-10 2007-11-01 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
DE112009000112T5 (en) 2008-03-03 2010-12-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Method and device for exhaust gas purification
US8468805B2 (en) 2007-10-25 2013-06-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253547B1 (en) 1999-02-12 2001-07-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining amount of unburned fuel component adsorbed by an adsorbent in an internal combustion engine
WO2007123011A1 (en) * 2006-04-10 2007-11-01 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
US8056321B2 (en) 2006-04-10 2011-11-15 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
US8468805B2 (en) 2007-10-25 2013-06-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method for internal combustion engine
DE112009000112T5 (en) 2008-03-03 2010-12-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Method and device for exhaust gas purification
US8627650B2 (en) 2008-03-03 2014-01-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method
DE112009000112B4 (en) * 2008-03-03 2014-04-30 Toyota Jidosha Kabushiki Kaisha Method and device for exhaust gas purification

Similar Documents

Publication Publication Date Title
JP3564966B2 (en) Failure diagnosis device for exhaust gas purification device
JP3596168B2 (en) Exhaust gas purification device for internal combustion engine
JP3154110B2 (en) Engine emission control device
JP2982440B2 (en) Exhaust gas purification device for internal combustion engine
JPH09324622A (en) Exhaust emission control device of internal combustion engine
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JP2000110553A (en) Exhaust gas emission control device of internal combustion engine
JP4273797B2 (en) Exhaust gas purification device for internal combustion engine
JP2016109026A (en) Exhaust emission control device for internal combustion engine
JPH11343832A (en) Exhaust emission control device for internal combustion engine
JP3610740B2 (en) Air-fuel ratio control device for internal combustion engine
JP3128873B2 (en) Exhaust gas purification device for internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JP2543736Y2 (en) Exhaust gas purification device for internal combustion engine
JP2800581B2 (en) Exhaust gas purification device for internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JP2806170B2 (en) Exhaust gas purification device for internal combustion engine
JP4233144B2 (en) Exhaust gas purification device for turbocharged engine and control method thereof
JP2850657B2 (en) Exhaust gas purification device for internal combustion engine
JPH11159321A (en) Exhaust emission control device for automobile
JP3401955B2 (en) Exhaust gas purification device for internal combustion engine
JP3764193B2 (en) Exhaust purification device