JPH052813B2 - - Google Patents

Info

Publication number
JPH052813B2
JPH052813B2 JP20923982A JP20923982A JPH052813B2 JP H052813 B2 JPH052813 B2 JP H052813B2 JP 20923982 A JP20923982 A JP 20923982A JP 20923982 A JP20923982 A JP 20923982A JP H052813 B2 JPH052813 B2 JP H052813B2
Authority
JP
Japan
Prior art keywords
egr
trap
particulate
engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20923982A
Other languages
Japanese (ja)
Other versions
JPS59101519A (en
Inventor
Kyoshi Obata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57209239A priority Critical patent/JPS59101519A/en
Publication of JPS59101519A publication Critical patent/JPS59101519A/en
Publication of JPH052813B2 publication Critical patent/JPH052813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、デイーゼルエンジンの微粒子除去装
置に関し、とくにトラツプのパテイキユレート捕
集材の溶損防止をはかつたデイーゼル微粒子除去
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particulate removal device for a diesel engine, and more particularly to a diesel particulate removal device that prevents the particulate collecting material of a trap from being eroded.

[従来の技術] デイーゼルエンジンから排出された排気ガスは
その排気通路に設けたトラツプに通され、排気ガ
ス中に含まれた煤等の微粒子(以下パテイキユレ
ートという)がトラツプのセラミツクス多孔質等
からなる捕集材により捕集される。トラツプには
時間の経過につれてパテイキユレートが蓄積し、
圧力損失が増大してエンジンの出力損失を増大さ
せるので、パテイキユレートがある程度蓄積した
段階で、パテイキユレートを焼却除去してトラツ
プを再生する必要がある。
[Prior art] Exhaust gas discharged from a diesel engine is passed through a trap provided in the exhaust passage, and particulates such as soot (hereinafter referred to as particulate) contained in the exhaust gas are removed from the trap made of porous ceramics, etc. It is collected by a collection material. Particulate matter accumulates in the trap over time,
Since the pressure loss increases and the power loss of the engine increases, it is necessary to burn off the particulate and regenerate the trap once the particulate has accumulated to some extent.

この再生は、電気ヒータ等により捕集材に付着
したパテイキユレートに着火し、パテイキユレー
トを燃焼させることにより行なう。しかし、再生
時パテイキユレートの燃焼によつてトラツプの内
部の温度が高くなるが、それが異常に高くなると
捕集材の溶損が生じるので、溶損が生じないよう
に対策が講じられなければならない。
This regeneration is performed by igniting the particulate matter adhering to the collection material using an electric heater or the like and burning the particulate matter. However, the combustion of the particulate during regeneration increases the temperature inside the trap, and if this temperature becomes abnormally high, the collection material will be eroded and damaged, so measures must be taken to prevent this from occurring. .

その対策として、従来は吸気絞りによつて排気
ガス中の酸素濃度を減じて、パテイキユレートの
燃焼を緩慢にし、その燃焼温度を下げようとして
いた。しかし、あらゆるエンジン運転領域に対し
て吸気絞りを行なつて排気ガス中の酸素濃度を最
適にコントロールするためには、吸気絞り弁の応
答性を十分あげ、かつ精密にコントロールする必
要があり、実際にはかなり困難な制御法であつ
た。
As a countermeasure, conventional efforts have been to reduce the oxygen concentration in the exhaust gas by using an intake throttle to slow down the combustion of the particulate and lower its combustion temperature. However, in order to optimally control the oxygen concentration in exhaust gas by throttling the intake air in all engine operating ranges, it is necessary to sufficiently increase the responsiveness of the intake throttle valve and to control it precisely. This was a rather difficult control method.

[発明が解決しようとする課題] 本発明は、鋭敏でかつ精密な制御が難しい吸気
絞り弁を絞ることによつて排気ガス中の酸素濃度
を制御するときのような困難な制御を伴なわず、
かつ既存の装置を若干改良するだけで、容易にト
ラツプ再生時のトラツプ内燃焼温度を下げること
ができ、それによつて捕集材の溶損を防止させる
デイーゼル微粒子除去装置を提供することを目的
とする。
[Problems to be Solved by the Invention] The present invention does not involve difficult control such as when controlling the oxygen concentration in exhaust gas by throttling an intake throttle valve, which is difficult to control sensitively and precisely. ,
Another object of the present invention is to provide a diesel particulate removal device that can easily lower the combustion temperature inside the trap during trap regeneration by slightly improving the existing device, thereby preventing the collection material from being eroded. do.

[課題を解決するための手段] 上記目的を達成するための本発明に係るデイー
ゼル微粒子除去装置は、デイーゼルエンジンの排
気通路にトラツプを設置して該トラツプに電気ヒ
ータを設け、排気通路の前記トラツプより下流側
の部分からEGR導管を分岐して該EGR導管に単
一のEGR弁を設け、該EGR弁に、トラツプ再生
時に通常運転時のEGRガス量より多量のEGRガ
スを還流させるべくかつ軸トルクが大になる程通
常運転時を基準としたEGR率の増加を小とすべ
くEGR弁を制御するコンピユータを接続したも
のから成る。
[Means for Solving the Problems] A diesel particulate removal device according to the present invention for achieving the above object includes a trap installed in the exhaust passage of a diesel engine, an electric heater provided in the trap, and a trap installed in the exhaust passage of the diesel engine. The EGR pipe is branched from a more downstream part, and a single EGR valve is installed in the EGR pipe, and the EGR valve is designed to recirculate a larger amount of EGR gas than during normal operation during trap regeneration. It consists of a computer connected to the EGR valve that controls the EGR valve in order to reduce the increase in the EGR rate compared to normal operation as the torque increases.

[作用] 本発明のデイーゼル微粒子除去装置は、従来の
ような吸・排気の絞りによる燃焼温度制御を用い
たものではなく、トラツプ再生時、EGRガス量
を増加させて排気ガス中の酸素濃度を減じ、パテ
イキユレートの燃焼を緩慢にしてトラツプ内の燃
焼温度を下げる制御法を用いたものである。
EGR装置自体は従来からも存在するがEGR装置
を改良して微粒子除去装置の捕集材溶損防止手段
に用いたものは存在しない。
[Function] The diesel particulate removal device of the present invention does not use conventional combustion temperature control by throttling the intake and exhaust gases, but increases the amount of EGR gas during trap regeneration to reduce the oxygen concentration in the exhaust gas. This method uses a control method that slows down the combustion of particulate and lowers the combustion temperature in the trap.
EGR devices themselves have been in existence for some time, but there are no improved EGR devices that have been used as a means to prevent erosion of the collection material of particulate removal devices.

本発明のデイーゼル微粒子除去装置において
は、EGRガスをトラツプより下流からとるため、
トラツプ内の燃焼で酸素が消費されて酸素が少な
くなつた排気ガスが吸気系に戻されることになる
ため、再びトラツプに流入する排気ガス中の酸素
濃度を下げることができ、トラツプでの燃焼の緩
慢化が効果的に達成される。
In the diesel particulate removal device of the present invention, since EGR gas is taken from downstream of the trap,
Oxygen is consumed by combustion in the trap, and the exhaust gas with less oxygen is returned to the intake system, which reduces the oxygen concentration in the exhaust gas that flows into the trap again. Slowing is effectively achieved.

また、軸トルクが大な程EGR率の増加率を小
としたので、エンジン運転域においてほぼ一定の
排気ガス中の空気過剰率が得られ、パテイキユレ
ートの燃焼速度がほぼ一定となり、過昇温が防止
され、トラツプの溶損防止が確実となる。
In addition, since the increase rate of the EGR rate is made smaller as the shaft torque increases, an almost constant excess air ratio in the exhaust gas is obtained in the engine operating range, the combustion rate of the particulate is almost constant, and excessive temperature rise is prevented. This ensures prevention of trap erosion.

[実施例] 以下に本発明のデイーゼル微粒子除去装置の望
ましい実施例を図面を参照して説明する。
[Embodiments] Preferred embodiments of the diesel particulate removal device of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係るデイーゼル微
粒子除去装置の系統を示している。図中1はデイ
ーゼルエンジン本体で、2は吸気マニホルド、3
は排気マニホルド、4は排気管から成る排気通路
である。排気通路4の途中にはトラツプ5が設け
られており、内部に排気ガス中の煤等のパテイキ
ユレートを捕集するための捕集材6が設けられて
いる。捕集材6には排気ガス流れの上流側に電気
ヒータ7が設けられ、トラツプ再生時に電気ヒー
タ7に通電することによつてパテイキユレートに
着火する。電気ヒータ7はバツテリ8に接続さ
れ、その電気回路上にリレー9が設けられて再生
時にオンする。トラツプ5はボデーアース10さ
れている。
FIG. 1 shows a system of a diesel particulate removal device according to an embodiment of the present invention. In the diagram, 1 is the diesel engine body, 2 is the intake manifold, and 3 is the diesel engine body.
is an exhaust manifold, and 4 is an exhaust passage consisting of an exhaust pipe. A trap 5 is provided in the middle of the exhaust passage 4, and a trap 5 is provided inside thereof for collecting particulate matter such as soot in the exhaust gas. The collection material 6 is provided with an electric heater 7 on the upstream side of the exhaust gas flow, and the particulate is ignited by energizing the electric heater 7 during trap regeneration. The electric heater 7 is connected to a battery 8, and a relay 9 is provided on the electric circuit and is turned on during playback. Trap 5 has body ground 10.

排気通路4には、トラツプ5の下流側にEGR
導管11が分岐されており、吸気系へと接続して
いる。EGR導管11の途中にはEGRガス量を制
御するEGR弁12が設けられている。EGR導管
11およびEGR弁12は通常のEGRシステムに
おいて必要とされるEGR%αよりも多量の、た
とえば(α+5)%のEGRガス量を吸気系に還
流させることができるよう、大き目に作製されて
いる。EGR弁はバキユームダイアフラム13に
よつて駆動され、バキユームダイアフラム13へ
のバキユームポンプからの負圧はバキユームコン
トローラ14によつて制御される。
In the exhaust passage 4, there is an EGR on the downstream side of the trap 5.
A conduit 11 is branched off and connected to the intake system. An EGR valve 12 is provided in the middle of the EGR conduit 11 to control the amount of EGR gas. The EGR conduit 11 and the EGR valve 12 are made large so that a larger amount of EGR gas than the EGR%α required in a normal EGR system, for example (α+5)%, can be returned to the intake system. There is. The EGR valve is driven by a vacuum diaphragm 13, and the negative pressure from the vacuum pump to the vacuum diaphragm 13 is controlled by a vacuum controller 14.

バキユームコントローラ14は、たとえば第2
図に示すよう2つのバキユームスイツチングバル
ブ(VSV)14a,14bからなる。ここで一
方のVSV14aはバキユームポンプに接続し、
他方のVSV14bは大気に接続し、VSV14
a,14b切換により、バキユームダイアフラム
13に負圧または大気圧を導く。
The vacuum controller 14 is, for example, a second
As shown in the figure, it consists of two vacuum switching valves (VSV) 14a and 14b. Here, one VSV14a is connected to the vacuum pump,
The other VSV14b is connected to the atmosphere, and VSV14
By switching a and 14b, negative pressure or atmospheric pressure is introduced to the vacuum diaphragm 13.

EGR弁12は、更に詳しくはバキユームコン
トローラ14はコンピユータ15に電気的に接続
されており、コンピユータ15の指令に従つて
EGR弁12は作動される。コンピユータ15に
はエンジン水温センサ16、エンジン回転数セン
サ17、エンジン負荷センサ18が接続され、そ
れぞれからエンジン水温、エンジン回転数、エン
ジン負荷の信号が入力される。このうち、エンジ
ン水温はエンジンが冷えているときはバツテリ8
も十分に充電されていないので、再生を行ない得
る時か否かを判断するために計測される。エンジ
ン回転数はエンジン回転数を積算して再生時期に
なつたかどうかを判断するために計測される。ま
た、エンジン負荷は、通常エンジン負荷によつて
空気過剰率が変化するので、空気過剰率を制御す
るためには、時々刻々のエンジン負荷がどの状態
にあるかを知る必要があり、そのために計測され
るものである。
The EGR valve 12, more specifically the vacuum controller 14, is electrically connected to the computer 15, and operates according to instructions from the computer 15.
EGR valve 12 is activated. An engine water temperature sensor 16, an engine rotation speed sensor 17, and an engine load sensor 18 are connected to the computer 15, and signals of engine water temperature, engine rotation speed, and engine load are input from each of them. Of these, the engine water temperature is 8% when the engine is cold.
Since the battery is not sufficiently charged, it is measured to determine whether it is time to perform regeneration. The engine speed is measured in order to integrate the engine speed and determine whether it is time for regeneration. In addition, the excess air ratio usually changes depending on the engine load, so in order to control the excess air ratio, it is necessary to know the state of the engine load from moment to moment. It is something that will be done.

コンピユータ15は第3図の流れ線図に示す制
御機能を有している。すなわち、ステツプ101で
エンジン1回転毎に割込み、ステツプ102でエン
ジン回転数nを積算する。そして、ステツプ103
で積算されたエンジン回転数nが、あらかじめ定
められた再生回転数N、たとえば20万回転、以上
か否かを判断し、以下のときはステツプ112に進
んでその回の演算を終了し、以上のときは再生時
期がきたとしてステツプ104に移る。ステツプ104
で、タイマをONとし、次いでステツプ105でタ
イマのカウント時間tが予め定めたt1以下か否か
を判断し、以下ならステツプ106に進んで電気ヒ
ータ7をONとして通電すし、tがt1を超えると
電気ヒータ7への通電をOFFとする。電気ヒー
タ7の通電はリレー9をONさせることにより行
なう。ステツプ105−107の操作により、t1だけ電
気ヒータ7に通電され、その後はパテイキユレー
トの自燃によつて燃焼させる。次いで、ステツプ
108に進み、タイマのカウント時間tがt2以下か
否かを判断し、以下ならバキユームコントローラ
14に信号を送つてEGR弁12の開度を大なら
しめ、再生時のEGR%特性に変更させる。この
再生時のEGR%は、第4図に示すようなマツプ
から読みとられ、通常運転時(再生時でない時)
のEGR%より大にされており、かつ軸トルクが
大になる程導通常運時転を基準としたEGR率の
増加率が小となるように設定されている。この状
態でトラツプ5の再生を行なうが、再生時間t2
過ぎると再生が終了したものとして、ステツプ
108から110に進み、バキユームコントローラ14
に信号を送つてEGR弁12の開度を元の小開度
に復帰させる。これで再生ルーチンが終了し、ス
テツプ111でn,tをクリアし、元の状態に戻り、
次の割込みでエンジン回転数の積算を再び開始す
る。
The computer 15 has a control function shown in the flow diagram of FIG. That is, in step 101, an interrupt is made every engine revolution, and in step 102, the engine revolution number n is integrated. And step 103
It is determined whether the engine rotation speed n accumulated in step 1 is equal to or greater than a predetermined reproduction rotation speed N, for example, 200,000 rotations, and if the following is the case, proceed to step 112 to end the calculation for that time, and repeat the steps above. If so, it is assumed that the playback time has come and the process moves to step 104. Step 104
Then, the timer is turned on, and then in step 105 it is determined whether or not the count time t of the timer is less than or equal to a predetermined time t1.If it is less than or equal to the predetermined value t1 , the process proceeds to step 106, where the electric heater 7 is turned on and energized, and when t becomes t1. When the temperature exceeds 100, the power to the electric heater 7 is turned off. The electric heater 7 is energized by turning on the relay 9. By the operations in steps 105-107, the electric heater 7 is energized for only t1 , after which the particulate is combusted by self-combustion. Then step
Proceeding to step 108, it is determined whether the timer count time t is less than or equal to t2 , and if it is less than that, a signal is sent to the vacuum controller 14 to increase the opening degree of the EGR valve 12, and the EGR% characteristic during regeneration is changed. let This EGR% during regeneration is read from the map shown in Figure 4, and is determined during normal operation (not during regeneration).
It is set to be larger than the EGR% of the engine, and the increase rate of the EGR rate relative to normal operation becomes smaller as the shaft torque becomes larger. Trap 5 is played back in this state, but once the playback time t2 has passed, the playback is assumed to have ended and step 5 is started.
Proceed from 108 to 110, Vacuum Controller 14
A signal is sent to the EGR valve 12 to return the opening degree of the EGR valve 12 to the original small opening degree. This completes the playback routine, clears n and t in step 111, and returns to the original state.
Accumulation of engine speed will start again at the next interrupt.

上記の構成および制御機能を有する装置におい
て、排気ガス中のパテイキユレートの除去および
溶損防止はつぎのように行なわれる。まず、デイ
ーゼルエンジン本体1からの排気ガスはトラツプ
5を通り、そこで捕集材6によりパテイキユレー
トが捕集される。
In the apparatus having the above configuration and control function, removal of particulate in exhaust gas and prevention of melting damage are carried out as follows. First, exhaust gas from the diesel engine body 1 passes through the trap 5, where particulate matter is collected by a collection material 6.

パテイキユレートの蓄積が進んで、コンピユー
タ15により再生時期と判断され、前記の機能を
有するコンピユータ15の制御下で再生が行なわ
れる。すなわち、電気ヒータ7に通電されてパテ
イキユレートに着火され、EGR弁12が再生に
切換えられた状態でトラツプ5の再生が遂行され
る。
As the accumulation of particulates progresses, the computer 15 determines that it is time to regenerate, and the regeneration is performed under the control of the computer 15 having the above-mentioned functions. That is, the electric heater 7 is energized to ignite the particulate, and the trap 5 is regenerated with the EGR valve 12 switched to regeneration.

第4図は、再生時のEGR%を示している。同
図に示すように、再生時でない通常運転時の
EGR%(EGRガス量/新規なガス量×100)より
更に多量のEGR%が得られるように、EGRガス
量が制御される。通常時のEGR%をα%とする
と、本発明の再生時のEGR%(α+5)%以上
程度に設定される。一般にEGR%は30%程度
(第4図の曲線A)であるので、本発明における
再生時は35%以上、たとえば50%(第4図の曲線
B)程度のEGR%に制御される。すなわち第4
図の斜線領域の再生時EGR%に制御される。き
きで+5%としたのは、αより5%程度大にしな
いと十分なパテイキユレートの燃焼制御効果が得
られないためであり、また第4図で再生EGR%
の上限を70%としているのはそれ以上にすると出
力等、他に良い影響を与えないからである。
Figure 4 shows EGR% during regeneration. As shown in the figure, during normal operation, not during regeneration,
The EGR gas amount is controlled so that an EGR% larger than EGR% (EGR gas amount/new gas amount x 100) is obtained. If the normal EGR% is α%, it is set to about EGR% (α+5)% or more during regeneration according to the present invention. Generally, the EGR% is about 30% (curve A in FIG. 4), so during regeneration in the present invention, the EGR% is controlled to 35% or more, for example, about 50% (curve B in FIG. 4). That is, the fourth
Controlled by EGR% during playback in the shaded area in the diagram. The reason for setting +5% for α is that a sufficient particulate combustion control effect cannot be obtained unless the value is about 5% larger than α.
The reason why the upper limit is set at 70% is that if it is higher than that, it will not have a positive effect on other things such as output.

第4図に示すようにEGR%が制御されること
により、排気ガス中の空気過剰率は第5図に示す
ようになる。すなわち、従来はデイーゼルエンジ
ンの軸トルクに応じて空気過剰率入は変化するが
(第5図の曲線C)、本発明の場合はその変化が抑
えられ、望ましくは空気過剰率λがほぼ定、たと
えばλ=1.3に制御される(第5図の曲線D)。排
気ガス中の酸素濃度は空気過剰率に応じて大小に
なるので、本発明の場合は軸トルクが小になつて
も、排気ガス中の酸素濃度は余り変化せず小に抑
えられる。
By controlling the EGR% as shown in FIG. 4, the excess air ratio in the exhaust gas becomes as shown in FIG. 5. That is, conventionally, the excess air ratio changes depending on the shaft torque of the diesel engine (curve C in Fig. 5), but in the case of the present invention, this change is suppressed, and desirably, the excess air ratio λ is almost constant. For example, it is controlled to λ=1.3 (curve D in FIG. 5). Since the oxygen concentration in the exhaust gas increases or decreases depending on the excess air ratio, in the case of the present invention, even if the shaft torque becomes small, the oxygen concentration in the exhaust gas does not change much and can be kept low.

そのため、トラツプ5内における捕集材6に捕
集されたパテイキユレートの燃焼は酸素の過剰で
ない状態で行なわれ、燃焼が緩慢になる。したが
つて、燃焼温度もそれ程高くはならず、捕集材6
が溶損温度、たとえば1000℃、以上になることは
なく、捕集材6の溶損は生じない。
Therefore, the combustion of the particulate collected by the collection material 6 in the trap 5 is performed in a state where oxygen is not excessive, and the combustion is slow. Therefore, the combustion temperature does not become that high, and the collection material 6
does not exceed the melting temperature, for example 1000° C., and the collection material 6 does not melt.

[発明の効果] 本発明のデイーゼル微粒子除去装置によれば、
次の効果を得る。
[Effects of the Invention] According to the diesel particulate removal device of the present invention,
Obtain the following effects.

(イ) EGRガスを通常のEGR装置において必要と
されるより多量に還流させ、その還流量をコン
ピユータによつて制御するようにしたので、再
生時のパテイキユレートの燃焼を制御でき、し
たがつてトラツプ内温度の制御を通じて捕集材
の溶損防止をはかることができる。
(b) EGR gas is refluxed in a larger amount than is required in a normal EGR device, and the amount of reflux is controlled by a computer, so the combustion of particulate during regeneration can be controlled, and therefore the trap By controlling the internal temperature, it is possible to prevent the collection material from melting away.

(ロ) トラツプより下流側からEGRを行うように
したので、トラツプ内での燃焼に酸素が消費さ
れて酸素の少なくなつた排気ガスが吸気系に戻
され、再びトラツプに流入する排気ガス中の酸
素濃度を効果的に下げることができる。これに
よつてトラツプでの燃焼がより緩慢となり、養
損防止効果が大となる。
(b) Since EGR is performed from the downstream side of the trap, the exhaust gas that has become depleted due to oxygen being consumed during combustion within the trap is returned to the intake system, and the exhaust gas that flows into the trap again is reduced. Oxygen concentration can be effectively lowered. As a result, combustion in the trap becomes slower and the effect of preventing nourishment damage is increased.

(ハ) 軸トルクが大になる程通常運転時を基準とし
たEGR率の増加率を小に設定したので、エン
ジン運転域においてほぼ一定の排気ガス中空気
過剰率を得ることができ、パテイキユレートの
燃焼速度をほぼ一定にでき、過昇温を防止して
トラツプの溶損を防止することができる。
(c) As the shaft torque increases, the increase rate of the EGR rate relative to normal operation is set to be smaller, so it is possible to obtain an almost constant excess air ratio in the exhaust gas in the engine operating range, and the particulate rate is reduced. The combustion rate can be kept almost constant, excessive temperature rise can be prevented, and trap melting can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るデイーゼル微
粒子除去装置の系統図、第2図は第1図の装置の
バキユームコントローラの概略系統図、第3図は
第1図の装置のコンピユータの制御機能を示す流
れ線図、第4図は第1図の装置における軸トルク
−EGR%特性図、第5図は第1図の装置におけ
る軸トルク−空気過剰率特性図、である。 1…デイーゼルエンジン本体、4…排気通路、
5…トラツプ、6…捕集材、7…電気ヒータ、9
…リレー、11…EGR導管、12…EGR弁、1
4…バキユームコントローラ、15…コンピユー
タ。
FIG. 1 is a system diagram of a diesel particulate removal device according to an embodiment of the present invention, FIG. 2 is a schematic system diagram of the vacuum controller of the device shown in FIG. 1, and FIG. 3 is a system diagram of the computer of the device shown in FIG. FIG. 4 is a flowchart showing the control function, FIG. 4 is a shaft torque-EGR% characteristic diagram in the device shown in FIG. 1, and FIG. 5 is a shaft torque-excess air ratio characteristic diagram in the device shown in FIG. 1... Diesel engine body, 4... Exhaust passage,
5... Trap, 6... Collection material, 7... Electric heater, 9
...Relay, 11...EGR conduit, 12...EGR valve, 1
4... Vacuum controller, 15... Computer.

Claims (1)

【特許請求の範囲】[Claims] 1 デイーゼルエンジンの排気通路にトラツプを
設置して該トラツプに電気ヒータを設け、排気通
路の前記トラツプより下流側の部分からEGR導
管を分岐して該EGR導管に単一のEGR弁を設け、
該EGR弁に、トラツプ再生時に通常運転時の
EGRガス量より多量のEGRガスを環流させるべ
くかつ軸トルクが大になる程通常運転時を基準と
したEGR率の増加率を小とすべくEGR弁を制御
するコンピユータを接続したことを特徴とするデ
イーゼル微粒子除去装置。
1 A trap is installed in the exhaust passage of a diesel engine, an electric heater is provided in the trap, an EGR conduit is branched from a portion of the exhaust passage downstream of the trap, and a single EGR valve is provided in the EGR conduit;
During trap regeneration, the EGR valve is
The feature is that a computer is connected to control the EGR valve in order to circulate a larger amount of EGR gas than the amount of EGR gas, and to reduce the rate of increase in the EGR rate relative to normal operation as the shaft torque increases. Diesel particulate removal equipment.
JP57209239A 1982-12-01 1982-12-01 Diesel particulate eliminator Granted JPS59101519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209239A JPS59101519A (en) 1982-12-01 1982-12-01 Diesel particulate eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209239A JPS59101519A (en) 1982-12-01 1982-12-01 Diesel particulate eliminator

Publications (2)

Publication Number Publication Date
JPS59101519A JPS59101519A (en) 1984-06-12
JPH052813B2 true JPH052813B2 (en) 1993-01-13

Family

ID=16569660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209239A Granted JPS59101519A (en) 1982-12-01 1982-12-01 Diesel particulate eliminator

Country Status (1)

Country Link
JP (1) JPS59101519A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162762A (en) * 1986-01-10 1987-07-18 Toyota Motor Corp Exhaust gas purifier for diesel engine
DE19643053C1 (en) * 1996-10-18 1997-07-10 Daimler Benz Ag Exhaust nitrogen oxide emissions reduction method for directly fuel-injected IC engine
US6598396B2 (en) * 2001-11-16 2003-07-29 Caterpillar Inc Internal combustion engine EGR system utilizing stationary regenerators in a piston pumped boost cooled arrangement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848914B2 (en) * 1977-09-24 1983-10-31 ヤマハ株式会社 Pitch bend device for electronic musical instruments

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848914U (en) * 1981-09-30 1983-04-02 マツダ株式会社 Diesel engine exhaust purification device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848914B2 (en) * 1977-09-24 1983-10-31 ヤマハ株式会社 Pitch bend device for electronic musical instruments

Also Published As

Publication number Publication date
JPS59101519A (en) 1984-06-12

Similar Documents

Publication Publication Date Title
JPH0419315A (en) Exhaust gas processing device for internal combustion engine
EP1517027A2 (en) Filter regeneration in engine exhaust gas purification device
JP2004232496A (en) Exhaust emission control device of internal combustion engine
KR20030022043A (en) Exhaust emission control device for engine
JP2000161044A (en) Regeneration control device for particulate filter
JPH0431613A (en) Exhaust treatment system for internal combustion engine
JPS63134810A (en) Regenerative apparatus of particulate trap
JPH0511205B2 (en)
JPH052813B2 (en)
JP2861599B2 (en) Diesel engine exhaust purification system
JPH0367013A (en) Particulate catching device of diesel engine
JP2004285947A (en) Exhaust emission control device for internal combustion engine
JP4432693B2 (en) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust purification device, and more particularly to an improvement in a filter regeneration processing technique for collecting particulate matter in engine exhaust.
JP4370942B2 (en) Engine exhaust purification system
JPS62159713A (en) Exhaust gas purifying device for diesel engine
JP3257233B2 (en) Exhaust particulate processing equipment for internal combustion engines
JP2004278405A (en) Exhaust emission control device for internal combustion engine
JPH037010B2 (en)
JPH034735Y2 (en)
JPS60111013A (en) Processing device of exhaust fine particle in internal- combustion engine
JPS60216017A (en) Exhaust gas particulate processing device in internal- combustion engine provided with turbocharger
JPS5915619A (en) Processing device of exhaust fine particle in internal-combustion engine
JPH0710019Y2 (en) Particulate trap filter regeneration device
JP4300985B2 (en) Diesel engine control device
JPH0232807Y2 (en)