JPS60178933A - Supercharging pressure control device for exhaust turbosupercharger - Google Patents

Supercharging pressure control device for exhaust turbosupercharger

Info

Publication number
JPS60178933A
JPS60178933A JP59033341A JP3334184A JPS60178933A JP S60178933 A JPS60178933 A JP S60178933A JP 59033341 A JP59033341 A JP 59033341A JP 3334184 A JP3334184 A JP 3334184A JP S60178933 A JPS60178933 A JP S60178933A
Authority
JP
Japan
Prior art keywords
octane number
exhaust
ignition advance
fuel
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59033341A
Other languages
Japanese (ja)
Other versions
JPH0551767B2 (en
Inventor
Keiji Hatanaka
畑中 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59033341A priority Critical patent/JPS60178933A/en
Publication of JPS60178933A publication Critical patent/JPS60178933A/en
Publication of JPH0551767B2 publication Critical patent/JPH0551767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To aim at retroactively obtaining a high output power to prevent an engine from knocking, by controlling the flow of exhaust gas led to an exhaust gas in accordance with the octane number of used fuel to obtain a desired supercharging pressure control value in accordance with the octane number. CONSTITUTION:A flap drive means mainly composed of a diaphragm device 22 and a solenoid valve 23 positionally controls a flap 21. A bypass drive means mainly composed of a diaphragm device 15, a solenoid 16, etc., controls a bypass valve 14. The solenoid valve 23 for the flap and the solenoid valve 16 for the bypass valve 16 are controlled to be opened and closed in accordance with an octane number map selected corresponding to the octane number of used fuel which is delivered from an octane number detecting means.

Description

【発明の詳細な説明】 く技術分野〉 本発明は燃料のオクタン価に応じて過給圧の制御目標値
を変化させるようにした排気ターボチャージャの過給圧
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a supercharging pressure control device for an exhaust turbocharger that changes a control target value of supercharging pressure according to the octane number of fuel.

く背景技術) 内燃機関の排気エネルギにより排気タービンを回転駆動
し、該排気タービンで回転されるコンプレツサにより内
燃機関に吸気を過給するようにした排気ターボチャージ
ャ付内燃機関は、排気エネルギを利用して吸気を内燃機
関に過給するものであるため吸気充填効率が向上し、こ
の分燃料供給量も増大できるため出方向上に大いに寄与
することが知られている。しかし過給圧が過大になると
内燃機関及びその吸・排気系に過大な応力が作用し、損
傷若しくは破損に至る危険性が生じ或いはノッキングが
発生ずるようになる。
Background Art) An internal combustion engine with an exhaust turbocharger uses the exhaust energy of the internal combustion engine to rotationally drive an exhaust turbine, and uses a compressor rotated by the exhaust turbine to supercharge intake air to the internal combustion engine. It is known that since the intake air is supercharged to the internal combustion engine, the intake air filling efficiency is improved, and the amount of fuel supplied can be increased accordingly, which greatly contributes to the output direction. However, when the supercharging pressure becomes excessive, excessive stress acts on the internal combustion engine and its intake/exhaust system, leading to the risk of damage or breakage, or the occurrence of knocking.

そこでその防止手段の1つに例えば米国特許第2947
86号明細書に見られる排気流速制御装置がある。この
ものは排気ターボチャージャの排気入口部にフラップを
設け、該フラップの開度を調整することにより排気ター
ビンへ向かう排気入口流速を制御して、機関低負荷回転
領域においては排気流速を増大することにより、コンプ
レツサの回転速度を増大して過給圧を上げ、機関の高負
荷領域ではフラップの開度を増大することにより排気流
速を低減して排気タービンの過回転を防止し、もってコ
ンプレツサによる過給圧力の過昇を防止している。
Therefore, one of the preventive measures is, for example, U.S. Patent No. 2947
There is an exhaust flow rate control device found in the '86 specification. This system is equipped with a flap at the exhaust inlet of the exhaust turbocharger, and by adjusting the opening degree of the flap, the exhaust inlet flow velocity towards the exhaust turbine is controlled, and the exhaust flow velocity is increased in the engine low load rotation region. This increases the rotational speed of the compressor to increase the boost pressure, and in the high load region of the engine, increases the flap opening to reduce the exhaust flow velocity and prevent the exhaust turbine from overspeeding. Prevents excessive rise in supply pressure.

また他の1つに例えば特開昭57−108413号公報
にみられるように排気タービンの上流と下流を接続する
バイパス通路を設け、該バイパス通路にコンプレノート
下流の過給圧が所定値以上乙こ上昇しようとしたときに
、バイパス制御弁装置を開弁U7て排気エネルギを排気
タービン回転用に使用することなくバイパス通附、を介
して外部に放出し、もって排気タービンの過回転を防止
しで過給圧の過昇を防止するものも知られる。
Another method is to provide a bypass passage that connects the upstream and downstream of the exhaust turbine, as seen in Japanese Patent Application Laid-open No. 57-108413, in which the boost pressure downstream of the exhaust turbine is set to a predetermined value or more. When the exhaust gas is about to rise, the bypass control valve device opens valve U7 to release the exhaust energy to the outside via the bypass passage without using it to rotate the exhaust turbine, thereby preventing the exhaust turbine from overspeeding. There are also known devices that prevent excessive increases in boost pressure.

これら排気流速制御装置或いは排気バイパス制御弁装置
等のように排気タービンに導かれる排気の流れを制御し
て過給圧を制御する排気制御装置によると、いずれの制
御も過給圧をノンキングの発生しない範囲内で可及的に
高圧力側に設定すべく制御目標値を定めて出力の確保に
努めているものである。
According to these exhaust flow rate control devices, exhaust bypass control valve devices, etc., which control the flow of exhaust gas guided to the exhaust turbine to control the boost pressure, both controls reduce the boost pressure to the point where non-king occurs. The control target value is determined to set the pressure as high as possible within the range in which the output is maintained.

しかしかかる制御目標値では特定の種類の燃料(例えば
レギュラーガソリン)に合わせて設定しであるから、こ
れよりも高オクタン価の燃料を使用する場合には、設定
されている制御目標値よりも過給圧を増大して高出力が
得られるのにもかかわらず、低い制御目標値に制御され
て高オクタン価燃料の特性が生かせないという不都合が
生じる。
However, such control target values are set according to a specific type of fuel (for example, regular gasoline), so when using fuel with a higher octane number, supercharging may be lower than the set control target value. Although high output can be obtained by increasing the pressure, there is a problem in that the control target value is low and the characteristics of high octane fuel cannot be utilized.

又逆に、前記特定の燃料よりも低オクタン価燃料を使用
する場合には、この燃料用のノッキングの発生しない過
給圧よりも高い制御目標値として設定されているから当
然ノンキングが発生してしまうという不都合が生じる。
Conversely, when using a lower octane fuel than the specific fuel, the control target value is set higher than the boost pressure at which knocking does not occur for this fuel, so non-king naturally occurs. This inconvenience arises.

〈発明の目的〉 本発明は上記従来の排気制御装置の不都合に鑑み、使用
燃料のオクタン価に応じて排気タービンに導かれる排気
の流れを制御し、もって前記オクタン価に応じた過給圧
の制御目標値を得て、可及的に高出力を図りかつノンキ
ングを防止するようにした排気ターボチャージャの過給
圧制御装置を提供することを目的とする。
<Object of the Invention> In view of the above-mentioned disadvantages of the conventional exhaust control device, the present invention controls the flow of exhaust gas guided to the exhaust turbine according to the octane number of the fuel used, thereby achieving a control target of boost pressure according to the octane number. It is an object of the present invention to provide a supercharging pressure control device for an exhaust turbocharger that obtains the highest possible output and prevents non-king.

〈発明の構成〉 そのために本発明では、第1図に示すように、オクタン
価検出手段により現在使用燃料のオクタン価を検出し、
該オクタン価と機関運転状態検出手段による検出値に応
じて排気制御弁を制御手段により制御し、もってオクタ
ン価に応じた目標過給圧を得る。
<Structure of the Invention> For this purpose, in the present invention, as shown in FIG. 1, the octane number of the currently used fuel is detected by the octane number detection means,
The exhaust control valve is controlled by the control means according to the octane number and the value detected by the engine operating state detection means, thereby obtaining a target supercharging pressure corresponding to the octane number.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図に示す実施例において、内燃機関lの吸気は吸気
通路2を通じて燃焼室に供給される。その間、吸入空気
は、エアフローメータ3により吸人後気量Qaが測定さ
れ、排気ターボチャージャ4のコンプレッサ5により加
圧圧送(過給)され、吸気絞弁6により調量される。そ
して燃料噴射弁7から噴射供給される燃料と混合されて
燃焼室内に導入され、ここで燃焼されて出力を得る。そ
のときの機関回転速度Nはクランク角センザ等の回転セ
ンサ8によって検出される。
In the embodiment shown in FIG. 2, the intake air of the internal combustion engine l is supplied to the combustion chamber through an intake passage 2. In the embodiment shown in FIG. During this period, the air flow Qa of the intake air is measured by the air flow meter 3, the intake air is pressurized (supercharged) by the compressor 5 of the exhaust turbocharger 4, and the intake air is regulated by the intake throttle valve 6. Then, it is mixed with fuel injected from the fuel injection valve 7 and introduced into the combustion chamber, where it is combusted to obtain output. The engine rotation speed N at that time is detected by a rotation sensor 8 such as a crank angle sensor.

コンプレッサ5と吸気絞弁6との間の吸気通路2には過
給圧力Psを検出する圧力センサ9が設けられる。
A pressure sensor 9 is provided in the intake passage 2 between the compressor 5 and the intake throttle valve 6 to detect supercharging pressure Ps.

一方、内燃機関1の燃焼室から排気通路11に排1出さ
れた燃焼排気は、排気ターボチャージャ4の排気タービ
ン12を回転駆動し、外部に放出される。
On the other hand, the combustion exhaust discharged from the combustion chamber of the internal combustion engine 1 into the exhaust passage 11 rotates the exhaust turbine 12 of the exhaust turbocharger 4 and is discharged to the outside.

排気タービン12は前記コンプレッサ5と軸4aにより
連結されており、排気タービン12の回転は同時にコン
プレッサ5を回転駆動する。
The exhaust turbine 12 is connected to the compressor 5 by a shaft 4a, and the rotation of the exhaust turbine 12 simultaneously drives the compressor 5 to rotate.

ここにおいて排気通路11には排気タービン12をバイ
パスして排気を導くバイパス通路13が設けられ、該バ
イパス通路13にこれを開閉するバイパス弁14が介装
される。
Here, the exhaust passage 11 is provided with a bypass passage 13 for guiding the exhaust gas by bypassing the exhaust turbine 12, and a bypass valve 14 for opening and closing the bypass passage 13 is interposed.

バイパス弁14はダイヤフラム装置15及び電磁弁16
等を主要素とするバイパス弁駆動手段によってその回動
が制御される。即ちダイヤフラム装置15のダイヤフラ
ム15aにはリンク15bを介してバイパス弁14が連
結され、前記ダイヤフラム15aの一側に設けた圧力作
動室15cにコンプレッサ5下流の過給圧が圧力通路1
7を介して導かれる。圧力通路17には三方切換式の電
磁弁16が介装されており、大気ボート16aを開弁す
ることにより圧力通路17内の過給圧力を大気にリリー
フすることになっていて、この大気ボート16aの開閉
時間の割合を制御して圧力作動室15C内の圧力を増減
し、ダイヤフラム15aを介してバイパス弁14の弁開
度制御を行うのである。“ バイパス弁14とタービン12との間の排気通路11、
好ましくは排気タービン12のスクロール入口部に排気
流速を制御するフラップ21を設ける。該フラップ21
はその上流側端部が排気タービン12のスクロール入口
部におけるケーシングに揺動自由に軸支されており、そ
の下流側端部が揺動して排気クービン12の入口開口面
積を増減する構成となってる。開口面積が増大すれば(
図で実線示位置b)排気流速は減少し、開度が減少すれ
ば(図で点線水位置a)排気流速は増大する。
The bypass valve 14 includes a diaphragm device 15 and a solenoid valve 16.
Its rotation is controlled by a bypass valve driving means whose main elements are: That is, the bypass valve 14 is connected to the diaphragm 15a of the diaphragm device 15 via a link 15b, and the supercharging pressure downstream of the compressor 5 is transferred to the pressure working chamber 15c provided on one side of the diaphragm 15a.
7. A three-way switching type solenoid valve 16 is installed in the pressure passage 17, and the supercharging pressure in the pressure passage 17 is relieved to the atmosphere by opening the atmospheric boat 16a. The opening/closing time ratio of the bypass valve 16a is controlled to increase or decrease the pressure in the pressure working chamber 15C, and the opening degree of the bypass valve 14 is controlled via the diaphragm 15a. "Exhaust passage 11 between bypass valve 14 and turbine 12,
Preferably, a flap 21 is provided at the scroll inlet of the exhaust turbine 12 to control the exhaust flow rate. The flap 21
The upstream end of the exhaust turbine 12 is rotatably supported by a casing at the scroll inlet of the exhaust turbine 12, and the downstream end thereof swings to increase or decrease the inlet opening area of the exhaust turbine 12. Teru. If the aperture area increases (
The exhaust flow velocity decreases (indicated by the solid line at position b in the figure), and increases as the opening degree decreases (indicated by the dotted line at position a in the figure).

フラップ21はダイヤフラム装置22及び電磁弁23等
を主構成要素とするフラップ駆動手段によって位置制御
される。即ちダイヤフラム装置22のダイヤフラム24
にはリンク25を介してフラップ21が連結されており
、該ダイヤフラム24の一側に設けた圧力作動室26に
圧力通路27を介してコンプレッサ5と吸気絞弁6との
間の過給圧が導かれる。そして該圧力通路27には大気
ボー)23aを有する三方切換式の電磁弁23が介装さ
れ、大気ボート23aを開閉する時間的割合を制御する
ことにより圧力作動室26内に導入される過給圧力を増
減制御する。
The position of the flap 21 is controlled by a flap drive means whose main components include a diaphragm device 22, a solenoid valve 23, and the like. That is, the diaphragm 24 of the diaphragm device 22
A flap 21 is connected to the diaphragm 24 via a link 25, and the supercharging pressure between the compressor 5 and the intake throttle valve 6 is transmitted to a pressure operating chamber 26 provided on one side of the diaphragm 24 via a pressure passage 27. be guided. A three-way switching electromagnetic valve 23 having an atmospheric boat 23a is installed in the pressure passage 27, and supercharging is introduced into the pressure working chamber 26 by controlling the time ratio of opening and closing the atmospheric boat 23a. Controls pressure increase/decrease.

前記フラップ21の上流側排気通路11内の圧力(排気
圧力Pe)は排気圧力検出手段である排圧センサによっ
て検出される。尚図中6aは吸気絞弁6の開度θを検出
するスロットルセンサ、28は内燃機関の冷却水温度T
Wを検出する水温センサである。
The pressure in the upstream exhaust passage 11 of the flap 21 (exhaust pressure Pe) is detected by an exhaust pressure sensor serving as exhaust pressure detection means. In the figure, 6a is a throttle sensor that detects the opening degree θ of the intake throttle valve 6, and 28 is the internal combustion engine cooling water temperature T.
This is a water temperature sensor that detects W.

これら燃料噴射弁7、電磁弁16.23は、機関運転状
態検出手段として作用する前記圧力セン−11−9、ス
ロットルセンサ6a、エアフローメータ3、回転センサ
8、水温センサ28及び図示していないがスタータモー
タの作動を検出するスタータスイッチ等から出力される
各種検出信号に基づいてコントロールユニット30で演
算された最適値に指令制御される。
These fuel injection valves 7, electromagnetic valves 16 and 23 are connected to the pressure sensor 11-9, throttle sensor 6a, air flow meter 3, rotation sensor 8, water temperature sensor 28, which acts as an engine operating state detection means, and the water temperature sensor 28 (not shown). The command is controlled to an optimum value calculated by the control unit 30 based on various detection signals output from a starter switch or the like that detects the operation of the starter motor.

また内燃機関1にはノッキングセンサを検出するノッキ
ングセンサ31が設けである。
Further, the internal combustion engine 1 is provided with a knocking sensor 31 for detecting a knocking sensor.

面上記実施例においては、排気タービン12に導入され
る排気の流れを制御するだめの排気制御装置として、排
気タービンへ供給する排気流速を制御する弁装置即ち前
記フラップ21及びその駆動手段とバイパス弁14及び
その駆動手段との双方を開示したが、これらは少なくと
もいずれか一方であってもよい。
In the above-mentioned embodiment, the exhaust control device that controls the flow of exhaust gas introduced into the exhaust turbine 12 includes a valve device that controls the flow rate of exhaust gas supplied to the exhaust turbine, that is, the flap 21, its driving means, and a bypass valve. 14 and its driving means have been disclosed, however, at least one of these may be used.

前記コントロールユニット30は第3図に示すように制
御される。
The control unit 30 is controlled as shown in FIG.

即ちエアフローメータ3及び回転センサ8の検出信号が
吸入空気量検出手段41及び回転速度検出手段42に入
力され、ここで吸入空気1i1Qa及び機関回転速度N
が読め込まれて噴射パルス演算手段43に入力される。
That is, the detection signals of the air flow meter 3 and the rotation sensor 8 are input to the intake air amount detection means 41 and the rotation speed detection means 42, where the intake air 1i1Qa and the engine rotation speed N are input.
is read and input to the injection pulse calculation means 43.

噴射パルス演算手段43ではTP=に−Qa/Nなる関
係式で機関1回転当たりの燃料噴射量に相当する基本噴
射パルス中Telが演算され、その出力信号が噴射パル
ス補正手段44に入力されて、ここで基本噴射パルス中
′I″Pに前記その他の機関運転状態信号、例えばスロ
ットル開度θ、機関冷却水温TL−1、スタータスイン
チのオン・オフ等の入力を受けて各種補正を加えること
により噴射弁駆動パルスを噴射弁駆動手段45に出力す
る。噴射弁駆動手段45は入力した噴射パルスrpに応
じて噴射弁7の開閉の時間的割合を制御して機関運転状
態に応じた最適な量の燃料を噴射供給する。
The injection pulse calculating means 43 calculates Tel in the basic injection pulse corresponding to the amount of fuel injected per engine rotation using the relational expression TP=-Qa/N, and the output signal thereof is input to the injection pulse correcting means 44. , here, various corrections are made to 'I''P during the basic injection pulse in response to inputs of the other engine operating status signals, such as throttle opening θ, engine cooling water temperature TL-1, starter inch on/off, etc. outputs an injector drive pulse to the injector drive means 45.The injector drive means 45 controls the opening/closing time ratio of the injector 7 according to the input injection pulse rp to achieve the optimum timing according to the engine operating state. The amount of fuel is injected and supplied.

基本噴射パルスrtJTP及び機関回転速度Nはフラ・
7ブ制御デユ一テイ比設定手段46、バイパス弁制御デ
ユーティ比設定手段52、オクタン価検出手段57にそ
れぞれ入力される。
The basic injection pulse rtJTP and engine rotation speed N are
The bypass valve control duty ratio setting means 46, the bypass valve control duty ratio setting means 52, and the octane number detection means 57 are inputted, respectively.

フラップ制御デユーティ比設定手段46においては、基
本噴射パルス中TPと機関回転速度Nとで割り付けられ
たマツプを有するメモリ49から制御デユーティ比を読
み出し、その値をフラップ用電磁弁23の駆動手段47
に出力する。電磁弁駆動手段47は設定されたデユーテ
ィ比の駆動電流を出力し、フラップ用電磁弁23を駆動
する。
The flap control duty ratio setting means 46 reads out the control duty ratio from the memory 49 having a map assigned by the basic injection pulse TP and the engine rotational speed N, and uses the value as the driving means 47 of the flap solenoid valve 23.
Output to. The electromagnetic valve driving means 47 outputs a driving current with a set duty ratio to drive the flap electromagnetic valve 23.

フラップ制御デユーティ比設定手段46が読み出ずマツ
プは使用燃料のオクタン価、例えば91オクタン価〜9
8オクタン価に応じて予め記憶した複数個のマツプ48
81〜4.8anからなり、オクタン価検出手段57か
ら出力される現在使用燃料のオクタン価に対応するいず
れか1つのマツプをマツプ選択手段46aにより選択し
て読み取るようになっている。
The flap control duty ratio setting means 46 cannot read out the map, and the map shows the octane number of the fuel used, for example, 91 octane number to 9.
8 Multiple maps 48 stored in advance according to octane rating
81 to 4.8an, and the map selection means 46a selects and reads one of the maps corresponding to the octane number of the currently used fuel outputted from the octane number detection means 57.

電磁弁23の作動は、例えばデユーティ比0%で制御さ
れるときは大気ボーt・23aを開いて圧力通路27の
圧力を大気に放出し、圧力作動室26の圧力を低減して
リンク25を介しフラップ21を図示点線位置aに変位
させ、排気タービン12の入Iコ開ロ面積を小さくし、
もって排気流速を増大して排気タービン12の回転を増
速する。又デユーティ比10ozでは電磁弁23が大気
ボート23aを閉じて圧力作動室26の圧力を増大し、
ダイヤフラム24を介してフラップ21を図示実線位置
すの開弁位置に変位させ排気タービン12の入口開口面
積を大きくして排気流速を低減し、排気タービン12の
回転を減速する。
For example, when the solenoid valve 23 is controlled with a duty ratio of 0%, the atmospheric port 23a is opened to release the pressure in the pressure passage 27 to the atmosphere, and the pressure in the pressure operating chamber 26 is reduced to open the link 25. Displace the intervening flap 21 to the dotted line position a in the figure to reduce the opening area of the inlet I of the exhaust turbine 12,
This increases the exhaust flow velocity and speeds up the rotation of the exhaust turbine 12. When the duty ratio is 10 oz, the solenoid valve 23 closes the atmospheric boat 23a and increases the pressure in the pressure working chamber 26.
The flap 21 is moved to the open position shown by the solid line via the diaphragm 24 to increase the inlet opening area of the exhaust turbine 12 to reduce the exhaust flow velocity and decelerate the rotation of the exhaust turbine 12.

従って電磁弁23の制御デユーティ比を制御することに
より所望のフラップ21の弁開度を得ることができ、も
って排気タービン12へ供給する排気流速ひいては過給
圧力を機関運転状態に応じて自由に制御することができ
る。
Therefore, by controlling the control duty ratio of the electromagnetic valve 23, a desired valve opening degree of the flap 21 can be obtained, thereby freely controlling the exhaust gas flow rate supplied to the exhaust turbine 12 and the boost pressure according to the engine operating state. can do.

バイパス弁制御デユーティ比設定手段52は前記基本噴
射パルス巾TPと機関回転速度Nとで予め割り付けられ
た異なる燃料のオクタン価に対応する複数のマツプ53
a1〜53anを備えたメモリ54から制御デユーティ
比を読み出す。この場合、フラップ制御と同様にオクタ
ン価検出手段57から出力される現在使用燃料のオクタ
ン価に応じて、マツプ選択手段52aが、対応するオク
タン価のマツプ5381〜53anのいずれか1つを選
択して読み出す。そしてその読み出した値をバイパス弁
用電磁弁16の駆動手段55へ出力して電磁弁16の大
気ポー1−16a開閉の時間的割合を制御する。これに
より、前記フラップ制御の場合と同様にしてバイパス弁
14の弁開度を制御する。バイパス弁14の開度が増大
ずれば排気タービン12を回転駆動せずにバイパス通路
13に向かう排気流が生じて排気タービン12の回転エ
ネルギが低減し、コンプレツサ5の過回転が防止されて
過給圧の過昇を防止できる。
The bypass valve control duty ratio setting means 52 has a plurality of maps 53 corresponding to different fuel octane numbers assigned in advance based on the basic injection pulse width TP and the engine rotational speed N.
The control duty ratio is read from the memory 54 provided with a1 to 53an. In this case, in accordance with the octane number of the currently used fuel outputted from the octane number detection means 57, similarly to the flap control, the map selection means 52a selects and reads out one of the corresponding octane number maps 5381-53an. Then, the read value is output to the driving means 55 of the bypass valve solenoid valve 16 to control the time ratio of opening and closing of the atmospheric port 1-16a of the solenoid valve 16. Thereby, the valve opening degree of the bypass valve 14 is controlled in the same manner as in the case of flap control. If the opening degree of the bypass valve 14 increases, an exhaust flow is generated toward the bypass passage 13 without rotating the exhaust turbine 12, reducing the rotational energy of the exhaust turbine 12, preventing the compressor 5 from over-rotating, and supercharging. Can prevent excessive pressure rise.

このようにして前記フラップ制御デユーティ比設定手段
46、メモリ49、電磁弁23の駆動手段47がフラッ
プ制御手段を構成し、バイパス弁制御デユーティ比設定
手段52、電磁弁16の駆動手段55及びメモリ54が
バイパス弁制御手段を構成し、これら全体がフラップ2
1とバイパス弁14とからなる排気制御装置の制御手段
Mを構成している。
In this way, the flap control duty ratio setting means 46, the memory 49, and the driving means 47 of the solenoid valve 23 constitute a flap control means, and the bypass valve control duty ratio setting means 52, the driving means 55 of the solenoid valve 16, and the memory 54 constitutes the bypass valve control means, and these as a whole constitute the flap 2
1 and a bypass valve 14 constitute a control means M of the exhaust control device.

次に前記オクタン価検出手段57の具体例を第4図のブ
ロック図に示し、その作動を第5図のフローチャートを
用いて説明する。
Next, a specific example of the octane number detection means 57 is shown in the block diagram of FIG. 4, and its operation will be explained using the flow chart of FIG.

本実施1夕1農こおけるオクタン価検出手段57は、機
関の点火回路59を制御する点火進角制御手段60を用
いたものである。即ち点火進角制御手段60ば基本噴射
パルス中TPと機関回転速度Nとに基づいて基本点火進
角設定手段61が基本点火進角をメモリ63から読み取
り、点火進角変更手段64に出力する。
The octane number detection means 57 used in this embodiment uses an ignition advance control means 60 that controls the ignition circuit 59 of the engine. That is, the ignition advance control means 60 reads the basic ignition advance angle from the memory 63 based on the basic injection pulse TP and the engine speed N, and outputs it to the ignition advance change means 64.

メモリ63は燃料のオクタン価に応じた複数の基本点火
進角マンプロ2a1〜62anを予め基本噴射パルス中
1哩と機関回転速度Nに応じて有しており、後述するオ
クタン価判別手段65から出力される現在使用燃料のオ
クタン価に対応する基本点火進角マツプ61a1〜62
anの1つをマツプ選択手段61aを介して選択する。
The memory 63 has in advance a plurality of basic ignition advance angle manipulators 2a1 to 62an corresponding to the octane number of the fuel, one in the basic injection pulse and the engine rotational speed N, and is outputted from the octane number determining means 65, which will be described later. Basic ignition advance angle map 61a1 to 62 corresponding to the octane number of the currently used fuel
One of an is selected via the map selection means 61a.

かかる構成の点火進角制御手段手段60によりまず91
オクタン用の基本点火進角マツプ62a1を選択し、点
火回路59の制御を行うと共にフラップ制御デユーティ
比設定手段46及びバイパス弁制御デユーティ比設定手
段52においても同様に91オクタン用のマツプ48a
l、 53alを選択してそれぞれフラップ開度及びバ
イパス弁開度を制御して過給圧を制御する( 571)
By the ignition advance control means 60 having such a configuration, first 91
The basic ignition advance angle map 62a1 for octane is selected, and the ignition circuit 59 is controlled, and the flap control duty ratio setting means 46 and the bypass valve control duty ratio setting means 52 also use the map 48a for 91 octane.
1 and 53al to control the flap opening and bypass valve opening, respectively, to control the boost pressure (571)
.

かかる運転条件で機関を運転し暖機すると、水温センサ
28から出力される機関冷却水温度′r四により暖機判
定手段66が、暖機完了と判断しく572)、判定開始
制御手段67にこれを出力する。
When the engine is operated and warmed up under such operating conditions, the warm-up determining means 66 determines that warm-up is complete based on the engine cooling water temperature 'r4 outputted from the water temperature sensor 28 (572), and the determination start control means 67 determines this. Output.

判定開始制御手段67においては基本噴射パルス)11
 T Pと機関回転速度Nとに基づいて、S73で機関
回転速度Nが2.000rpmと4.00Orpmとの
間にあり、S74で基本噴射パルス中が7 mn+八よ
り人である第6図に示すオクタン価判定ゾーンZにある
ことを判定する。該オクタン価判定ゾーンZはノンキン
グが発生し易い高速高負荷運転状態にある。かかる運転
状態になると、点火進角変更手段64とオクタン価判別
手段65にそのことを知らせ、点火進角変更手段64で
ばS75で点火進角制御手段60から出力される基本点
火進角(91オクタン用の点火進角)を93オクタン用
基本点火進角に相当するよ・うに4度進め(S 75)
これをオクタン価判別手段65に入力する。オクタン価
判別手段65はマツプ選択手段61aに93オクタン用
マツプを用いるべき旨の指令信号を出力し、これにより
対応するマツプから93オクタン用マツプの基本点火進
角を読み取って点火回路59を93オクタン用基本点火
進角で制御する。そしてその点火進角条件で376にお
いてノンキングが発注するかどうかを検出する。Wlち
ノッキングセンサ31はノンキングが発生するとこれを
ノッキングレベル検出手段68に出力し、これをオクタ
ン価判別手段65に出力する。もしノッキングが発生し
た場合には、点火進角制御手段60において93オクタ
ン用基本点火進角を選択したことが誤りであると判断し
、現在使用燃料が91オクタン価を有する燃料であるこ
とを判別する。そしてマツプ選択手段61aにS78で
91オクタン用マツプを用いるべき旨の指令信号を出力
し、基本点火進角、フラップ制御デユーティ比、バイパ
ス弁制御デユーティ比共に91オクタン用のマツプを選
択し”ζそれぞれの制御を行わしめる。
In the judgment start control means 67, the basic injection pulse) 11
Based on T P and the engine rotational speed N, in S73 the engine rotational speed N is between 2.000 rpm and 4.00Orpm, and in S74 the basic injection pulse is 7 mn + 8 more than Fig. 6. It is determined that the octane number is in the octane determination zone Z shown in FIG. The octane number determination zone Z is in a high speed, high load operating state where non-king is likely to occur. When such an operating state is reached, the ignition advance changing means 64 and the octane number determining means 65 are notified of this, and the ignition advance changing means 64 changes the basic ignition advance (91 octane) output from the ignition advance control means 60 in S75. Advance the ignition advance angle by 4 degrees to correspond to the basic ignition advance angle for 93 octane (S75).
This is input to the octane number determining means 65. The octane number determination means 65 outputs a command signal to the map selection means 61a to the effect that the 93 octane map should be used, thereby reading the basic ignition advance angle of the 93 octane map from the corresponding map, and changing the ignition circuit 59 to the 93 octane map. Controlled by basic ignition advance angle. Then, in step 376, it is detected whether or not non-king is ordered under the ignition advance condition. When a non-king occurs, the knocking sensor 31 outputs this to the knocking level detecting means 68, and outputs this to the octane number determining means 65. If knocking occurs, it is determined that the selection of the basic ignition advance angle for 93 octane in the ignition advance control means 60 is an error, and it is determined that the currently used fuel is a fuel having an octane number of 91. . Then, in S78, a command signal indicating that the map for 91 octane should be used is output to the map selection means 61a, and the map for 91 octane is selected for the basic ignition advance angle, flap control duty ratio, and bypass valve control duty ratio. control.

もしS76でノッキングが発生しない場合には、更にノ
ッキングに対して厳しい条件となる95オククン価に対
する点火進角即ち初期設定の基本点火進角よりも8度進
めるように点火進角変更手段64がオクタン価判別手段
65に出力する( S 77)。
If knocking does not occur in S76, the ignition advance changing means 64 changes the octane advance so that the ignition advance is 8 degrees further than the initially set basic ignition advance angle for the 95 octane rating, which is an even more severe condition for knocking. It is output to the determining means 65 (S77).

そしてS79でノッキングが発生ずるか否かを検出し、
もしノッキングが発生したらこれよりオクタン価が小さ
い93オクタン価の燃料を現在使用しているものである
と判別する。その判別結果を点火進角制御手段60、フ
ラップ制御デユーティ比設定手段46、バイパス弁制御
デユーティ比設定手段52にそれぞれ出力し、対応する
93オクタン用のマツプを用いて制御するようにする(
S80)。
Then, in S79, it is detected whether or not knocking occurs.
If knocking occurs, it is determined that the currently used fuel has a lower octane number of 93. The determination results are outputted to the ignition advance control means 60, the flap control duty ratio setting means 46, and the bypass valve control duty ratio setting means 52, respectively, and the control is performed using the corresponding map for 93 octane (
S80).

379でもノ、りが発生しなかった場合には、更に点火
進角を4度進め、初期設定の基準点火進角よりも12度
進めて(381) 、S82でノッキングが発生ずるか
どうかを検出する。そしてノッキングが生じればそれよ
りオクタン価の小さい95オクタン用の燃料を現在使用
していると1′す断じて制御ゴ一段Mと点火進角制御手
段6oに95オクタン用のマツプを用いて制御すべき旨
を出力する。
If knocking does not occur in step 379, the ignition advance angle is further advanced by 4 degrees and advanced by 12 degrees from the initial setting reference ignition advance angle (381), and it is detected in step S82 whether or not knocking occurs. do. If knocking occurs, if you are currently using 95 octane fuel with a lower octane number, you should definitely use the 95 octane map in the control gear M and the ignition advance control means 6o. Outputs the message.

S82でノッキングが発生しなかった場合には、95オ
クタン価の燃料より1ランク上の98オクタン価の燃料
を用いているものと判断する。
If knocking does not occur in S82, it is determined that fuel with an octane rating of 98, which is one rank higher than fuel with an octane rating of 95, is used.

このようにしてオクタン価検出手段57が検出した現在
使用燃料のオクタン価に応して排気制御手段Mと点火進
角制御手段60とが制御されるので、現在使用燃料のオ
クタン価に合致した最適な過給圧制御及び点火進角制御
が可能となる。
In this way, the exhaust control means M and the ignition advance control means 60 are controlled according to the octane number of the currently used fuel detected by the octane number detection means 57, so that the optimum supercharging that matches the octane number of the currently used fuel is achieved. Pressure control and ignition advance control are possible.

このようにして例えば91オクタン価の燃料(レギュラ
ーガソリン)に対応して過給圧制御目標値を350+n
m11gに設定した場合には、同一の機関を用いて98
オクタン価の燃料(ハイオク)を用いて機関を運転すれ
ば該オクタン価に対応して過給圧を465mmt1gま
で上昇させることができるから、機関出力は約16χ増
もの大幅な増大を実現できるのである。
In this way, for example, the boost pressure control target value can be set to 350+n in response to 91 octane fuel (regular gasoline).
If set to m11g, use the same engine to
If the engine is operated using fuel with an octane number (high octane), the supercharging pressure can be increased to 465mmt1g in accordance with the octane number, so the engine output can be significantly increased by about 16χ.

オクタン価検出手段57によって現在使用燃料のオクタ
ン価を判定した後は、所定時間内その判定結果を保持す
る。所定時間内とは設定された時間巾でもよく、キーオ
フされるまでもしくはガソリン補給時までであってもよ
い。
After the octane number detection means 57 determines the octane number of the currently used fuel, the determination result is held for a predetermined period of time. The predetermined period of time may be a set period of time, or may be until the key is turned off or until gasoline is refilled.

もし先の説明で判定した使用燃料のオクタン価が誤って
なされた場合を考慮して、オクタン価判別手段65の出
力を補正手段69によって補正する。
In consideration of the case where the octane number of the fuel used was determined in error as described above, the output of the octane number determining means 65 is corrected by the correcting means 69.

その作用は第7図に示すように、一旦検出されたオクタ
ン価に対応して点火進角制御及び排気制御がなされて運
転が継続されたときに°、ノノキングセンザ31が39
1においてのノッキングが発生したことを検出すると5
1点火進角制御手段60に進角値を2度ずつ遅らせるよ
うに指令信号を出す(S92)。
As shown in FIG. 7, once the ignition advance control and exhaust gas control are performed in accordance with the detected octane number and the operation is continued, the non-noking sensor 31 reaches 39°.
5 when it is detected that knocking has occurred in 1.
A command signal is issued to the ignition advance angle control means 60 to delay the advance value by 2 degrees (S92).

そして393でカウントアンプした結果394で点火進
角の遅角量RETが4度を越した場合には、各デユーテ
ィ比設定手段46.52の制御マツプを1ランク低いオ
クタン価のものを選択するように指令する(S95. 
596)。そして397でフラッグを点火進角遅れ量R
ET、 Oにたて、再び第5図に示すオクタン価検出作
用を行わしめる。これによってもS91でノンキングが
発生したことが検出されれば、上記作動を繰り返して順
次オクタン価を繰り下げる。
Then, as a result of count amplification in 393, if the ignition advance retardation amount RET exceeds 4 degrees in 394, the control map of each duty ratio setting means 46.52 is selected to have an octane number one rank lower. Command (S95.
596). Then, at 397, the flag is set to the ignition advance delay amount R.
At ET and O, the octane number detection action shown in FIG. 5 is performed again. If the occurrence of non-king is detected in S91 even in this manner, the above-mentioned operation is repeated to lower the octane number one by one.

尚オクタン価検出手段57のオクタン価判定しヘルは最
低限2レヘル(レギュラーガソリンとハイオクガソリン
)があればよいが、中間レベルの判定と対応する制御マ
ツプを用いることにより中間オクタン価のガソリンの使
用時、或いは高低2種のオクタン価のガソリンを混合使
用したときにもそれぞれ最適な過給圧制御が行えるもの
である。
The octane number of the octane number detection means 57 should be at least 2 levels (regular gasoline and high-octane gasoline), but by using the intermediate level judgment and the corresponding control map, it can be used when using intermediate octane number gasoline, or Even when two types of gasoline with high and low octane numbers are mixed and used, optimal supercharging pressure control can be performed for each.

尚オクタン価検出手段57は本実施例に限らず燃料供給
時にその使用燃料のオクタン価を手動的にセントするよ
うにしてもよいし、燃料そのもののオクタン価を電気的
若しくは化学的に検出するような方法を採用してもよい
ことは言うまでもない。
Note that the octane number detection means 57 is not limited to this embodiment, and may be such that the octane number of the fuel used is manually detected at the time of fuel supply, or a method of electrically or chemically detecting the octane number of the fuel itself may be used. Needless to say, you can adopt it.

尚第8図に本実施例におけるオクタン価検出手段57の
大略機能を表示したブロック図を示しである。
FIG. 8 is a block diagram showing the general functions of the octane number detection means 57 in this embodiment.

〈発明の効果〉 以上述べたように本発明によれば、排気ターボチャージ
ャの排気タービンへ供給される排気の流れを制御する排
気制御装置を、運転状態と使用燃料のオクタン価に応じ
て制御し、該オクタン価に応じた目標過給圧を得るよう
にしたので、燃料のオクタン価に応じて最適な過給圧制
御ができ、低オクタン価燃料使用時には過給制御圧を下
げてノッキングの発生成いは機関の焼(=Jを防止でき
、また高オクタン価燃料使用時には過給制御圧を最大限
に高めて高出力を得ることができる。また燃料のオクタ
ン価に応じて過給圧を変えることはオクタン価のバラツ
キを考慮することなく、機関の圧縮比を高くでき、燃費
及び出方向上を図ることが可能となる。
<Effects of the Invention> As described above, according to the present invention, the exhaust control device that controls the flow of exhaust gas supplied to the exhaust turbine of the exhaust turbocharger is controlled according to the operating state and the octane number of the fuel used, Since the target boost pressure is obtained according to the octane number, optimal boost pressure control can be performed according to the octane number of the fuel, and when low octane fuel is used, the boost control pressure is lowered to prevent knocking or engine knocking. It is possible to prevent burnout (=J), and when using high octane fuel, it is possible to maximize the boost control pressure and obtain high output.Also, changing the boost pressure depending on the octane number of the fuel reduces the variation in octane number. It is possible to increase the compression ratio of the engine without considering the above, and it is possible to improve fuel efficiency and engine output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す概略構成図、第3図は同上におけるコント
ロールユニット30の作動を示すブロック図、第4図は
同上におけるオクタン価検出手段を示すブロック図、第
5図は同じくオクタン価検出手段の作用を示すフローチ
ャート、第6図はオクタン価判定ゾーンZを示すグラフ
、第7図は第4図におりる補正手段69の作用を説明す
るフローチャート、第8図は第4図に示すオクタン価検
出手段の実施例の基本的構成を示すブロック図である。 ■・・・内燃機関 2・・・吸気通路 4・・・排気タ
ーボチャージャ 5・・・コンプレッサ 8・・・回転
センサ 11・・・排気通路 12・・・排気タービン
13・・・バイパス通路 14・・・バイパス弁 16
.23・・・i ljf 弁21・・・フラップ 30
・・・コントロールユニット 31・・・ノンキングセ
ンサ 46・・・フラップ制御デユーティ比設定手段 
46a・・・マツプ選択手段 48a1〜48an・・
・マツプ 52・・・バイパス弁制御デユーティ比設定
手段 52a・・・マツプ選択手段 53a1〜53a
n・・・マ/プ M・・・排気制御手段 60・・・点
火進角制御手段 61・・・基本点火進角設定手段 6
1a・・・マ・ノブ選択手段 62a1〜62an・・
・基本点火進角マツプ 64・・・点火進角変更手段 
65・・・オクタン価判別手段 67・・・判定開始制
御手段 69・・・補正手段 特許出願人 日産自動車株式会社 代理人 弁理士 笹島 冨二雄
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 3 is a block diagram showing the operation of the control unit 30 in the above, and Fig. 4 is an octane rating diagram in the same. A block diagram showing the detection means, FIG. 5 is a flowchart showing the operation of the octane number detection means, FIG. 6 is a graph showing the octane number determination zone Z, and FIG. 7 explains the action of the correction means 69 shown in FIG. 4. FIG. 8 is a block diagram showing the basic configuration of an embodiment of the octane number detection means shown in FIG. 4. ■... Internal combustion engine 2... Intake passage 4... Exhaust turbocharger 5... Compressor 8... Rotation sensor 11... Exhaust passage 12... Exhaust turbine 13... Bypass passage 14. ...Bypass valve 16
.. 23...i ljf Valve 21...Flap 30
... Control unit 31 ... Non-king sensor 46 ... Flap control duty ratio setting means
46a... Map selection means 48a1 to 48an...
- Map 52...Bypass valve control duty ratio setting means 52a...Map selection means 53a1 to 53a
n...Ma/p M...Exhaust control means 60...Ignition advance angle control means 61...Basic ignition advance angle setting means 6
1a... Ma knob selection means 62a1 to 62an...
・Basic ignition advance angle map 64...Ignition advance angle changing means
65...Octane number determination means 67...Judgment start control means 69...Amendment means patent applicant Fujio Sasashima, agent for Nissan Motor Co., Ltd., patent attorney

Claims (1)

【特許請求の範囲】 (1)機関運転状態検出手段と、現在使用燃料のオクタ
ン価を検出する手段と、排気ターボチャージャの排気タ
ービンへ供給される排気の流れを制御する排気制御装置
と、該排気制御装置を機関運転状態と前記オクタン価検
出手段から与えられた使用燃料のオクタン価とに応じて
制御し目標過給圧を得る制御手段と、を備えたことを特
徴とする排気ターボチャージャの過給圧制御装置。 ′
(2)排気制御装置は、排気ターボチャージャの排気タ
ービンへ供給する排気流速を制御する弁装置と、排気タ
ービンをバイパスする装置に設けたバイパス弁と、の少
なくとも一方であることを特徴とする特許請求の範囲第
1項に記載の排気ターボチャージャの過給圧制御装置。 (3)オクタン価検出手段は、機関運転状態に応じた基
本点火進角を燃料のオクタン価に応じて制御する点火進
角制御手段と、機関運転状態検出手段が所定の運転領域
を検出したときに前記基本点火進角を燃料の特定のオク
タン価に対応して変更する基本点火進角変更手段と、機
関のノッキングレベルを検出する手段と、前記変更され
た基本点火進角と検出されたノンキングレベルに基づい
て現在使用燃料のオクタン価を判別するオクタン価判別
手段と、を備えたことを特徴とする特許請求の範囲第1
項又は第2項に記載の排気ターボチャージャの過給圧制
御装置。 (4)オクタン価検出手段は、前記オクタン価判別手段
によって判別された現在使用燃料のオクタン価に対応し
て点火進角制御手段により制御された基本点火進角と検
出されたノッキングレベルとに基づいて、前記判別した
オクタン価を補正する補正手段を備えたことを特徴とす
る特許請求の範囲愼1項に記載の排気ターボチャージャ
の過給圧制御装置。 (5)オクタン価検出手段は前記点火進角制御手段に検
出結果を出力する手段であることを特徴とずる特許請求
の範囲第1項〜第4項のいずれか1つに記載の排気ター
ボチャージャの過給圧制御装置。
[Scope of Claims] (1) An engine operating state detection means, a means for detecting the octane number of the currently used fuel, an exhaust control device for controlling the flow of exhaust gas supplied to the exhaust turbine of the exhaust turbocharger, and the exhaust gas A supercharging pressure for an exhaust turbocharger, comprising: control means for controlling a control device according to an engine operating state and an octane number of the fuel used given from the octane number detection means to obtain a target supercharging pressure. Control device. ′
(2) A patent characterized in that the exhaust control device is at least one of a valve device that controls the flow rate of exhaust gas supplied to an exhaust turbine of an exhaust turbocharger, and a bypass valve provided in a device that bypasses the exhaust turbine. A supercharging pressure control device for an exhaust turbocharger according to claim 1. (3) The octane number detection means includes an ignition advance control means that controls the basic ignition advance angle according to the octane number of the fuel according to the engine operating state, and an ignition advance angle control means that controls the basic ignition advance angle according to the octane number of the fuel, and a basic ignition advance changing means for changing the basic ignition advance in accordance with a specific octane number of fuel; means for detecting a knocking level of the engine; octane number determination means for determining the octane number of the currently used fuel based on the present invention.
The supercharging pressure control device for an exhaust turbocharger according to item 1 or 2. (4) The octane number detection means detects the knocking level based on the basic ignition advance controlled by the ignition advance control means corresponding to the octane number of the currently used fuel determined by the octane number determination means and the detected knocking level. The supercharging pressure control device for an exhaust turbocharger according to claim 1, further comprising a correction means for correcting the determined octane number. (5) The exhaust turbocharger according to any one of claims 1 to 4, wherein the octane number detection means is a means for outputting a detection result to the ignition advance control means. Boost pressure control device.
JP59033341A 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger Granted JPS60178933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033341A JPS60178933A (en) 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033341A JPS60178933A (en) 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger

Publications (2)

Publication Number Publication Date
JPS60178933A true JPS60178933A (en) 1985-09-12
JPH0551767B2 JPH0551767B2 (en) 1993-08-03

Family

ID=12383860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033341A Granted JPS60178933A (en) 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger

Country Status (1)

Country Link
JP (1) JPS60178933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119939A (en) * 1984-07-06 1986-01-28 Mazda Motor Corp Supercharged pressure control device in engine provided with supercharger
JPH01195921A (en) * 1988-01-31 1989-08-07 Mazda Motor Corp Supercharger for engine
JPH01318722A (en) * 1988-06-16 1989-12-25 Honda Motor Co Ltd Control device for supercharging pressure of internal combustion engine with supercharger
WO2008078162A2 (en) * 2006-12-21 2008-07-03 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
JP4897809B2 (en) * 2005-08-04 2012-03-14 サムスン エレクトロニクス カンパニー リミテッド Image button input device and portable electronic device having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111031A (en) * 1983-11-22 1985-06-17 Toyota Motor Corp Controlling method of internal-combustion engine with supercharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111031A (en) * 1983-11-22 1985-06-17 Toyota Motor Corp Controlling method of internal-combustion engine with supercharger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119939A (en) * 1984-07-06 1986-01-28 Mazda Motor Corp Supercharged pressure control device in engine provided with supercharger
JPH01195921A (en) * 1988-01-31 1989-08-07 Mazda Motor Corp Supercharger for engine
JPH01318722A (en) * 1988-06-16 1989-12-25 Honda Motor Co Ltd Control device for supercharging pressure of internal combustion engine with supercharger
JP4897809B2 (en) * 2005-08-04 2012-03-14 サムスン エレクトロニクス カンパニー リミテッド Image button input device and portable electronic device having the same
WO2008078162A2 (en) * 2006-12-21 2008-07-03 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
WO2008078162A3 (en) * 2006-12-21 2008-08-28 Toyota Motor Co Ltd Control device and control method for internal combustion engine
US7962275B2 (en) 2006-12-21 2011-06-14 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JPH0551767B2 (en) 1993-08-03

Similar Documents

Publication Publication Date Title
US5261236A (en) Turbocharged engine control system
JPS6329098B2 (en)
EP0238144B1 (en) Device for the governing of the supercharging pressure of an internal combustion engine
JPH0656106B2 (en) Intake device for supercharged engine
JP2012229666A (en) Internal combustion engine control device
US4685435A (en) Safety device for a supercharged internal combustion engine
US4727719A (en) Apparatus for controlling inlet air flow in a turbocharged internal combustion engine
JPS60178933A (en) Supercharging pressure control device for exhaust turbosupercharger
JPH04191445A (en) Fuel supplying control device of internal combustion engine with super charger
JPH01182577A (en) Combustion control device for engine
JPS6056126A (en) Nozzle opening degree control device in variable displacement type turbo-charger
JPS6363730B2 (en)
JP3824375B2 (en) Diesel engine control device
JPH10196381A (en) Control device of internal combustion engine mounted with variable nozzle type turbocharger
JPH01318728A (en) Fuel feeding device for engine with supercharger
JP2019173578A (en) Engine control device
JP2530647B2 (en) Ignition timing control device for supercharged engine
JP2018044495A (en) Engine with turbocharger and operation method of engine with turbocharger
JPS6056128A (en) Control device for variable displacement type turbo-charger
JP3320765B2 (en) Air-fuel ratio control method for sequential turbo engine
JPS6252144B2 (en)
JPS6238544B2 (en)
JP3377573B2 (en) Control method of supercharged engine
JP2526264B2 (en) Exhaust turbocharged engine
JPH0227160Y2 (en)