JPH0551767B2 - - Google Patents

Info

Publication number
JPH0551767B2
JPH0551767B2 JP59033341A JP3334184A JPH0551767B2 JP H0551767 B2 JPH0551767 B2 JP H0551767B2 JP 59033341 A JP59033341 A JP 59033341A JP 3334184 A JP3334184 A JP 3334184A JP H0551767 B2 JPH0551767 B2 JP H0551767B2
Authority
JP
Japan
Prior art keywords
octane number
exhaust
ignition advance
control
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59033341A
Other languages
Japanese (ja)
Other versions
JPS60178933A (en
Inventor
Keiji Hatanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59033341A priority Critical patent/JPS60178933A/en
Publication of JPS60178933A publication Critical patent/JPS60178933A/en
Publication of JPH0551767B2 publication Critical patent/JPH0551767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

【発明の詳細な説明】 〈技術分野〉 本発明は燃料のオクタン価に応じて過給圧の制
御目標値を変化させるようにした排気ターボチヤ
ージヤの過給圧制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a supercharging pressure control device for an exhaust turbocharger that changes a control target value of supercharging pressure in accordance with the octane number of fuel.

〈背景技術〉 内燃機関の排気エネルギにより排気タービンを
回転駆動し、該排気タービンで回転されるコンプ
レツサにより内燃機関に吸気を過給するようにし
た排気ターボチヤージヤ付内燃機関は、排気エネ
ルギを利用して吸気を内燃機関に過給するもので
あるため吸気充填効率が向上し、この分燃料供給
量も増大できるため出力向上に大いに寄与するこ
とが知られている。しかし過給圧が過大になると
内燃機関及びその吸・排気系に過大な応力が作用
し、損傷若しくは破損に至る危険性が生じ或いは
ノツキングが発生するようになる。
<Background Art> An internal combustion engine with an exhaust turbocharger uses the exhaust energy of the internal combustion engine to rotationally drive an exhaust turbine, and uses a compressor rotated by the exhaust turbine to supercharge intake air to the internal combustion engine. It is known that since the intake air is supercharged to the internal combustion engine, the intake air filling efficiency is improved, and the amount of fuel supplied can be increased accordingly, which greatly contributes to improving the output. However, when the boost pressure becomes excessive, excessive stress acts on the internal combustion engine and its intake/exhaust system, creating a risk of damage or breakage or knocking.

そこでその防止手段の1つに例えば米国特許第
294786号明細書に見られる排気流速制御装置があ
る。このものは排気ターボチヤージヤの排気入口
部にフラツプを設け、該フラツプの開度を調整す
ることにより排気タービンへ向かう排気入口流速
を制御して、機関低負荷回転領域においては排気
流速を増大することにより、コンプレツサの回転
速度を増大して過給圧を上げ、機関の高負荷領域
ではフラツプの開度を増大することにより排気流
速を低減して排気タービンの過回転を防止し、も
つてコンプレツサによる過給圧力の過昇を防止し
ている。
Therefore, one of the preventive measures is, for example, U.S. Patent No.
There is an exhaust flow rate control device found in US Pat. No. 2,947,86. This system is equipped with a flap at the exhaust inlet of the exhaust turbocharger, and by adjusting the degree of opening of the flap, the flow velocity at the exhaust inlet toward the exhaust turbine is controlled, and the exhaust flow velocity is increased in the engine low load rotation region. , the rotational speed of the compressor is increased to increase the boost pressure, and in the high load region of the engine, the opening degree of the flap is increased to reduce the exhaust flow velocity and prevent the exhaust turbine from overspeeding. Prevents excessive rise in supply pressure.

また他の1つに例えば特開昭57−108413号公報
にみられるように排気タービンの上流と下流を接
続するバイパス通路を設け、該バイパス通路にコ
ンプレツサ下流の過給圧が所定値以上に上昇しよ
うとしたときに、バイパス制御弁装置を開弁して
排気エネルギを排気タービン回転用に使用するこ
となくバイパス通路を介して外部に放出し、もつ
て排気タービンの過回転を防止して過給圧の過昇
を防止するものも知られる。
Another method is to provide a bypass passage that connects the upstream and downstream of the exhaust turbine, as seen in Japanese Patent Application Laid-open No. 57-108413, in which the boost pressure downstream of the compressor increases to a predetermined value or higher. When this happens, the bypass control valve device is opened and the exhaust energy is released to the outside via the bypass passage without being used to rotate the exhaust turbine, thereby preventing the exhaust turbine from overspeeding and providing supercharging. Devices that prevent excessive pressure rise are also known.

これら排気流速制御装置或いは排気バイパス制
御弁装置等のように排気タービンに導かれる排気
の流れを制御して過給圧を制御する排気制御装置
によると、いずれの制御も過給圧をノツキングの
発生しない範囲内で可及的に高圧力側に設定すべ
く制御目標値を定めて出力の確保に努めているも
のである。
According to these exhaust flow rate control devices, exhaust bypass control valve devices, etc., which control the flow of exhaust gas led to the exhaust turbine to control the boost pressure, both types of control can cause knocking of the boost pressure. The control target value is determined to set the pressure as high as possible within the range in which the output is maintained.

しかしかかる制御目標値では特定の種類の燃料
(例えばレギユラーガソリン)に合わせて設定し
てから、これよりも高オクタン価の燃料を使用す
る場合には、設定されている制御目標値よりも過
給圧を増大して高出力が得られるのにもかかわら
ず、低い制御目標値に制御されて高オクタン価燃
料の特性が生かせないという不都合が生じる。又
逆に、前記特定の燃料よりも低オクタン価燃料を
使用する場合には、この燃料用のノツキングの発
生しない過給圧よりも高い制御目標値として設定
されているから当然ノツキングが発生してしまう
という不都合が生じる。
However, such control target values are set according to a specific type of fuel (for example, regular gasoline), and when using fuel with a higher octane number than this, supercharging will be lower than the set control target value. Although high output can be obtained by increasing the pressure, there is a problem in that the control target value is low and the characteristics of high octane fuel cannot be utilized. Conversely, if a fuel with a lower octane value than the specific fuel is used, knocking will naturally occur since the control target value is set higher than the supercharging pressure for this fuel at which knocking does not occur. This inconvenience arises.

〈発明の目的〉 本発明は上記従来の排気制御装置の不都合に鑑
み、使用燃料のオクタン価に応じて排気タービン
に導かれる排気の流れを制御し、もつて前記オク
タン価に応じたきめの細かい過給圧の制御目標値
を短時間に得て、可及的に高出力を図りかつノツ
キングを防止するようにした排気ターボチヤージ
ヤの過給圧制御装置を提供することを目的とす
る。
<Object of the Invention> In view of the above-mentioned disadvantages of the conventional exhaust control device, the present invention controls the flow of exhaust gas guided to the exhaust turbine according to the octane number of the fuel used, thereby achieving fine-grained supercharging according to the octane number. It is an object of the present invention to provide a supercharging pressure control device for an exhaust turbocharger that obtains a pressure control target value in a short time, achieves as high output as possible, and prevents knocking.

〈発明の構成〉 そのために本発明では、第1図に示すように、
オクタン価検出手段により現在使用燃料のオクタ
ン価を短時間にきめ細かく検出し、該オクタン価
と機関運転状態検出手段による検出値に応じて排
気制御弁を制御手段により制御し、もつてオクタ
ン価に応じた目標過給圧を得る。
<Structure of the Invention> For this purpose, the present invention has the following features as shown in FIG.
The octane number detection means precisely detects the octane number of the currently used fuel in a short time, and the control means controls the exhaust control valve according to the octane number and the value detected by the engine operating state detection means, thereby achieving target supercharging according to the octane number. Get pressure.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明す
る。
<Example> Examples of the present invention will be described below based on the drawings.

第2図に示す実施例において、内燃機関1の吸
気は通路2を通じて燃焼室に供給される。その
間、吸入空気は、エアフローメータ3により吸入
吸気量Qaが測定され、排気ターボチヤージヤ4
のコンプレツサ5により加圧圧送(過給)され、
吸気絞弁6により調量される。そして燃料噴射弁
7から噴射供給される燃料と混合されて燃焼室内
に導入され、ここで燃焼されて出力を得る。その
ときの機関回転速度Nはクランク角センサ等の回
転センサ8によつて検出される。
In the embodiment shown in FIG. 2, the intake air of the internal combustion engine 1 is supplied to the combustion chamber through a passage 2. In the embodiment shown in FIG. During this period, the intake air amount Qa is measured by the air flow meter 3, and the exhaust turbocharger 4
is pressurized (supercharged) by the compressor 5 of
The amount is adjusted by the intake throttle valve 6. Then, it is mixed with fuel injected from the fuel injection valve 7 and introduced into the combustion chamber, where it is combusted to obtain output. The engine rotational speed N at that time is detected by a rotation sensor 8 such as a crank angle sensor.

コンプレツサ5と吸気絞弁6との間の吸気通路
2には過給圧力Psを検出する圧力センサ9が設
けられる。
A pressure sensor 9 is provided in the intake passage 2 between the compressor 5 and the intake throttle valve 6 to detect supercharging pressure Ps.

一方、内燃機関1の燃焼室から排気通路11に
排出された燃焼排気は、排気ターボチヤージヤ4
の排気タービン12を回転駆動し、外部に放出さ
れる。排気タービン12は前記コンプレツサ5と
軸4aにより連結されており、排気タービン12
の回転は同時にコンプレツサ5を回転駆動する。
On the other hand, the combustion exhaust discharged from the combustion chamber of the internal combustion engine 1 into the exhaust passage 11 is transferred to the exhaust turbocharger 4.
The exhaust gas turbine 12 is driven to rotate, and the exhaust gas is discharged to the outside. The exhaust turbine 12 is connected to the compressor 5 by a shaft 4a.
The rotation of the compressor 5 simultaneously drives the compressor 5 to rotate.

ここにおいて排気通路11には排気タービン1
2をバイパスして排気を導くバイパス通路13が
設けられ、該バイパス通路13にこれを開閉する
バイパス弁14が介装される。
Here, the exhaust passage 11 has an exhaust turbine 1
A bypass passage 13 is provided to guide exhaust gas by bypassing 2, and a bypass valve 14 for opening and closing the bypass passage 13 is interposed.

バイパス弁14はダイヤフラム装置15及び電
磁弁16等を主要素とするバイパス弁駆動手段に
よつてその回動が制御される。即ちダイヤフラム
装置15のダイヤフラム15aにはリンク15b
を介してバイパス弁14が連結され、前記ダイヤ
フラム15aの一側に設けた圧力作動室15cに
コンプレツサ5下流の過給圧が圧力通路17を介
して導かれる。圧力通路17には三方切換式の電
磁弁16が介装されており、大気ポート16aを
開弁することにより圧力通路17内の過給圧力を
大気にリリーフすることになつていて、この大気
ポート16aの開閉時間の割合を制御して圧力作
動室15c内の圧力を増減し、ダイヤフラム15
aを介してバイパス弁14の弁開度制御を行うの
である。
The rotation of the bypass valve 14 is controlled by a bypass valve driving means whose main elements include a diaphragm device 15, a solenoid valve 16, and the like. That is, the diaphragm 15a of the diaphragm device 15 has a link 15b.
A bypass valve 14 is connected through the diaphragm 15a, and supercharging pressure downstream of the compressor 5 is guided through a pressure passage 17 to a pressure working chamber 15c provided on one side of the diaphragm 15a. A three-way switching type solenoid valve 16 is installed in the pressure passage 17, and the supercharging pressure in the pressure passage 17 is relieved to the atmosphere by opening the atmospheric port 16a. The pressure inside the pressure working chamber 15c is increased or decreased by controlling the ratio of opening/closing time of the diaphragm 15.
The valve opening degree of the bypass valve 14 is controlled via the valve a.

バイパス弁14とタービン12との間の排気通
路11、好ましくは排気タービン12のスクロー
ル入口部に排気流速を制御するフラツプ21を設
ける。該フラツプ21はその上流側端部が排気タ
ービン12のスクロール入口部におけるケーシン
グに摺動自在に軸支されており、その下流側端部
が揺動して排気タービン12の入口開口面積を増
減する構成となつてる。開口面積が増大すれば
(図で実線示位置b)排気流速は減少し、開度が
減少すれば(図で点線示位置a)排気流速は増大
する。
A flap 21 is provided in the exhaust passage 11 between the bypass valve 14 and the turbine 12, preferably at the scroll inlet of the exhaust turbine 12, for controlling the exhaust flow rate. The upstream end of the flap 21 is slidably supported by a casing at the scroll inlet of the exhaust turbine 12, and the downstream end swings to increase or decrease the inlet opening area of the exhaust turbine 12. It has become a composition. As the opening area increases (position b shown by the solid line in the figure), the exhaust flow rate decreases, and as the opening degree decreases (position a shown as the dotted line in the figure), the exhaust flow rate increases.

フラツプ21はダイヤフラム装置22及び電磁
弁23等を主構成要素とするフラツプ駆動手段に
よつて位置制御される。即ちダイヤフラム装置2
2のダイヤフラム24にはリンク25を介してフ
ラツプ21が連結されており、該ダイヤフラム2
4の一側に設けた圧力作動室26に圧力通路27
を介してコンプレツサ5と吸気絞弁6との間の過
給圧が導かれる。そして該圧力通路27には大気
ポート23aを有する三方切換式の電磁弁23が
介装され、大気ポート23aを開閉する時間的割
合を制御することにより圧力作動室26内に導入
される過給圧力を増減制御する。
The position of the flap 21 is controlled by a flap drive means whose main components include a diaphragm device 22, a solenoid valve 23, and the like. That is, the diaphragm device 2
A flap 21 is connected to the diaphragm 24 of No. 2 via a link 25, and the diaphragm 2
A pressure passage 27 is provided in a pressure working chamber 26 provided on one side of the
The supercharging pressure is introduced between the compressor 5 and the intake throttle valve 6 via the compressor 5 and the intake throttle valve 6. A three-way switching electromagnetic valve 23 having an atmospheric port 23a is interposed in the pressure passage 27, and supercharging pressure is introduced into the pressure operating chamber 26 by controlling the time ratio of opening and closing the atmospheric port 23a. Control the increase/decrease.

前記フラツプ21の上流側排気通路11内の圧
力(排気圧力Pe)は排気圧力検出手段である排
圧センサによつて検出される。尚図中6aは吸気
絞弁6の開度θを検出するスロツトルセンサ、2
8は内燃機関の冷却水温度TWを検出する水温セ
ンサである。
The pressure in the exhaust passage 11 on the upstream side of the flap 21 (exhaust pressure Pe) is detected by an exhaust pressure sensor serving as exhaust pressure detection means. In addition, 6a in the figure is a throttle sensor 2 that detects the opening degree θ of the intake throttle valve 6.
8 is a water temperature sensor that detects the cooling water temperature TW of the internal combustion engine.

これら燃料噴射弁7、電磁弁16,23は、機
関運転状態検出手段として作用する前記圧力セン
サ9、スロツトルセンサ6a、エアフローメータ
3、回転センサ8、水温センサ28及び図示して
いないがスタータモータの作動を検出するスター
タスイツチ等から出力される各種検出信号に基づ
いてコントロールユニツト30で演算された最適
値に指令制御される。
These fuel injection valves 7, electromagnetic valves 16, 23 are connected to the pressure sensor 9, which acts as an engine operating state detection means, the throttle sensor 6a, the air flow meter 3, the rotation sensor 8, the water temperature sensor 28, and the starter motor (not shown). The control unit 30 commands and controls the optimum value calculated based on various detection signals output from a starter switch or the like that detects the operation of the starter switch.

また内燃機関1にはノツキングレベルを検出す
るノツキングセンサ31が設けてある。
Further, the internal combustion engine 1 is provided with a knocking sensor 31 for detecting a knocking level.

尚上記実施例においては、排気タービン12に
導入される排気の流れを制御するための排気制御
装置として、排気タービンへ供給する排気流速を
制御する弁装置即ち前記フラツプ21及びその駆
動手段とバイパス弁14及びその駆動手段との双
方を開示したが、これらは少なくともいずれか一
方であつてもよい。
In the above embodiment, the exhaust control device for controlling the flow of exhaust gas introduced into the exhaust turbine 12 includes a valve device for controlling the flow rate of exhaust gas supplied to the exhaust turbine, that is, the flap 21, its driving means, and a bypass valve. 14 and its driving means have been disclosed, however, at least one of these may be used.

前記コントロールユニツト30は第3図に示す
ように制御される。
The control unit 30 is controlled as shown in FIG.

即ちエアフローメータ3及び回転センサ8の検
出信号が吸入空気量検出手段41及び回転速度検
出手段42に入力され、ここで吸入空気量をQa
及び機関回転速度Nが読み込まれて噴射パルス演
算手段43に入力される。
That is, the detection signals of the air flow meter 3 and the rotation sensor 8 are inputted to the intake air amount detection means 41 and the rotation speed detection means 42, where the intake air amount is determined as Qa.
and engine rotational speed N are read and input to the injection pulse calculation means 43.

噴射パルス演算手段43ではTP=K・Qa/N
なる関係式で機関1回転当たりの燃料噴射量に相
当する基本噴射パルス巾TPが演算され、その出
力信号が噴射パルス補正手段44に入力されて、
ここで基本噴射パルス巾TPに前記その他の機関
運転状態信号、例えばスロツトル開度θ、機関冷
却水温Tw、スタータスイツチのオン・オフ等の
入力を受けて各種補正を加えることにより噴射弁
駆動パルスを噴射弁駆動手段45に出力する。噴
射弁駆動手段45は入力した噴射パルス巾に応じ
て噴射弁7の開閉の時間的割合を制御して機関運
転状態に応じた最適な量の燃料を噴射供給する。
In the injection pulse calculation means 43, TP=K・Qa/N
A basic injection pulse width TP corresponding to the amount of fuel injected per engine revolution is calculated using the following relational expression, and the output signal is input to the injection pulse correction means 44,
Here, the injector drive pulse is determined by adding various corrections to the basic injection pulse width TP in response to the other engine operating status signals, such as throttle opening θ, engine cooling water temperature Tw, starter switch on/off, etc. It is output to the injection valve driving means 45. The injection valve driving means 45 controls the time ratio of opening and closing of the injection valve 7 according to the input injection pulse width, and injects and supplies the optimum amount of fuel according to the engine operating state.

基本噴射パルス巾TP及び機関回転速度Nはフ
ラツプ制御デユーテイ比設定手段46、バイパス
弁制御デユーテイ比設定手段52、オクタン価検
出手段57にそれぞれ入力される。
The basic injection pulse width TP and the engine rotational speed N are input to the flap control duty ratio setting means 46, the bypass valve control duty ratio setting means 52, and the octane number detection means 57, respectively.

フラツプ制御デユーテイ比設定手段46におい
ては、基本噴射パルス巾TPと機関回転速度Nと
で割り付けられたマツプを有するメモリ49から
制御デユーテイ比を読み出し、その値をフラツプ
用電磁弁23の駆動手段47に出力する。電磁弁
駆動手段47は設定されたデユーテイ比の駆動電
流を出力し、フラツプ用電磁弁23を駆動する。
The flap control duty ratio setting means 46 reads out the control duty ratio from the memory 49 having a map assigned by the basic injection pulse width TP and the engine rotational speed N, and transmits the value to the driving means 47 of the flap solenoid valve 23. Output. The solenoid valve driving means 47 outputs a driving current having a set duty ratio to drive the flap solenoid valve 23.

フラツプ制御デユーテイ比設定手段46が読み
出すマツプは使用燃料のオクタン価、例えば91オ
クタン価〜98オクタン価に応じて記憶した複数個
のマツプ48a1〜48anからなり、オクタン
価検出手段57から出力される現在使用燃料のオ
クタン価に対応するいずれか一つのマツプをマツ
プ選択手段46aにより選択して読み取るように
なつている。
The map read by the flap control duty ratio setting means 46 consists of a plurality of maps 48a1 to 48an stored according to the octane number of the fuel used, for example, 91 octane number to 98 octane number, and the octane number of the currently used fuel output from the octane number detection means 57. The map selection means 46a selects and reads one of the maps corresponding to the map.

電磁弁23の作動は、例えばデユーテイ比0%
で制御されるときは大気ポート23aを開いて圧
力通路27の圧力を大気に放出し、圧力作動室2
6の圧力を低減してリンク25を介してフラツプ
21を図示点線位置aに変位させ、排気タービン
12の入口開口面積を小さくし、もつて排気流速
を増大して排気タービン12の回転を増速する。
又デユーテイ比100%では電磁弁23が大気ポー
ト23aを閉じて圧力作動室26の圧力を増大
し、ダイヤフラム24を介してフラツプ21を図
示実線位置bの開弁位置に変位させ排気タービン
12の入口開口面積を大きくして排気流速を低減
し、排気タービン12の回転を減速する。従つて
電磁弁23の制御デユーテイ比を制御することに
より所望のフラツプ21の弁開度を得ることがで
き、もつて排気タービン12へ供給する排気流速
ひいては過給圧力を機関運転状態に応じて自由に
制御することができる。
The operation of the solenoid valve 23 is, for example, at a duty ratio of 0%.
When the pressure control is performed, the atmospheric port 23a is opened to release the pressure in the pressure passage 27 to the atmosphere, and the
6 and displaces the flap 21 to the dotted line position a in the figure via the link 25, thereby reducing the inlet opening area of the exhaust turbine 12, thereby increasing the exhaust flow velocity and increasing the rotation speed of the exhaust turbine 12. do.
When the duty ratio is 100%, the solenoid valve 23 closes the atmospheric port 23a to increase the pressure in the pressure working chamber 26, and displaces the flap 21 via the diaphragm 24 to the open position indicated by the solid line b, thereby closing the inlet of the exhaust turbine 12. The opening area is increased to reduce the exhaust flow velocity and slow down the rotation of the exhaust turbine 12. Therefore, by controlling the control duty ratio of the electromagnetic valve 23, a desired valve opening degree of the flap 21 can be obtained, and the exhaust gas flow rate supplied to the exhaust turbine 12, as well as the boost pressure, can be freely adjusted according to the engine operating state. can be controlled.

バイパス弁制御デユーテイ比設定手段52は前
記基本噴射パルス巾TPと機関回転速度Nとで予
め割り付けられた異なる燃料のオクタン価に対応
する複数のマツプ53a1〜53anを備えたメ
モリ54から制御デユーテイ比を読み出す。この
場合、フラツプ制御と同様にオクタン価検出手段
57から出力される現在使用燃料のオクタン価に
応じて、マツプ選択手段52aが、対応するオク
タン価のマツプ53a1〜53anのいずれか1
つを選択して読み出す。そしてその読み出した値
をバイパス弁用電磁弁16の駆動手段55へ出力
して電磁弁16の大気ポート16a開閉の時間的
割合を制御する。これにより、前記フラツプ制御
の場合と同様にしてバイパス弁14の弁開度を制
御する。バイパス弁14の開度が増大すれば排気
タービン12を回転駆動せずにバイパス通路13
に向かう排気流が生じて排気タービン12の回転
エネルギが低減し、コンプレツサ5の過回転が防
止されて過給圧の過昇を防止できる。
The bypass valve control duty ratio setting means 52 reads the control duty ratio from a memory 54 having a plurality of maps 53a1 to 53an corresponding to different fuel octane numbers assigned in advance based on the basic injection pulse width TP and the engine speed N. . In this case, similarly to the flap control, the map selection means 52a selects one of the corresponding octane number maps 53a1 to 53an according to the octane number of the currently used fuel output from the octane number detection means 57.
Select one and read it. Then, the read value is outputted to the driving means 55 of the bypass valve solenoid valve 16 to control the time ratio of opening and closing of the atmospheric port 16a of the solenoid valve 16. Thereby, the valve opening degree of the bypass valve 14 is controlled in the same manner as in the case of flap control. When the opening degree of the bypass valve 14 increases, the exhaust turbine 12 is not rotated and the bypass passage 13 is opened.
An exhaust flow toward the engine is generated, the rotational energy of the exhaust turbine 12 is reduced, the compressor 5 is prevented from over-rotating, and the supercharging pressure can be prevented from increasing excessively.

このようにして前記フラツプ制御デユーテイ比
設定手段46、メモリ49、電磁弁23の駆動手
段47がフラツプ制御手段を構成し、バイパス弁
制御デユーテイ比設定手段52、電磁弁16の駆
動手段55及びメモリ54がバイパス弁制御手段
を構成し、これら全体がフラツプ21とバイパス
弁14とからなる排気制御装置の制御手段Mを構
成している。
In this way, the flap control duty ratio setting means 46, the memory 49, and the driving means 47 of the solenoid valve 23 constitute a flap control means, and the bypass valve control duty ratio setting means 52, the driving means 55 of the solenoid valve 16, and the memory 54 constitute a flap control means. constitutes a bypass valve control means, and these as a whole constitute a control means M of the exhaust control device consisting of the flap 21 and the bypass valve 14.

次に前記オクタン価検出手段57の具体例を第
4図のブロツク図に示し、その作動を第5図のフ
ローチヤートを用いて説明する。
Next, a specific example of the octane number detection means 57 is shown in the block diagram of FIG. 4, and its operation will be explained using the flowchart of FIG.

本実施例におけるオクタン価検出手段57は、
機関の点火回路59を制御する点火進角制御手段
60を用いたものである。即ち点火進角制御手段
60は基本噴射パルス巾TPと機関回転速度Nと
に基づいて基本点火進角設定手段61が基本点火
進角をメモリ63から読み取り、点火進角変更手
段64に出力する。
The octane number detection means 57 in this embodiment is as follows:
This uses an ignition advance control means 60 that controls the ignition circuit 59 of the engine. That is, in the ignition advance control means 60, the basic ignition advance setting means 61 reads the basic ignition advance angle from the memory 63 based on the basic injection pulse width TP and the engine rotational speed N, and outputs it to the ignition advance changing means 64.

メモリ63は燃料のオクタン価に応じた複数の
基本点火進角マツプ62a1〜62anを予め基
本噴射パルス巾TPと機関回転速度Nに応じて有
しており、後述するオクタン価判別手段65から
出力される現在使用燃料のオクタン価に対応する
基本点火進角マツプ61a1〜62anの1つを
マツプ選択手段61aを介して選択する。
The memory 63 has a plurality of basic ignition advance angle maps 62a1 to 62an corresponding to the octane number of the fuel in advance according to the basic injection pulse width TP and the engine rotational speed N, and the current value outputted from the octane number determining means 65, which will be described later. One of the basic ignition advance angle maps 61a1 to 62an corresponding to the octane number of the fuel used is selected via the map selection means 61a.

かかる構成の点火進角制御手段60によりまず
91オクタン用の基本点火進角マツプ62a1を選
択し、点火回路59の制御を行うと共にフラツプ
制御デユーテイ比設定手段46及びバイパス制御
デユーテイ比設定手段52においても同様に91オ
クタン用のマツプ48a1,53a1を選択して
それぞれフラツプ開度及びバイパス弁開度を制御
して過給圧を制御する(S71)。
With the ignition advance control means 60 having such a configuration, first
The basic ignition advance angle map 62a1 for 91 octane is selected to control the ignition circuit 59, and the maps 48a1 and 53a1 for 91 octane are also selected in the flap control duty ratio setting means 46 and the bypass control duty ratio setting means 52. The flap opening degree and the bypass valve opening degree are selected and the boost pressure is controlled respectively (S71).

かかる運転条件で機関を運転し暖機すると、水
温センサ28から出力される機関冷却水温度Tw
により暖機判定手段66が、暖機完了と判断し
(S72)、判定開始制御手段67にこれを出力す
る。
When the engine is operated and warmed up under such operating conditions, the engine cooling water temperature Tw output from the water temperature sensor 28
Accordingly, the warm-up determination means 66 determines that warm-up is complete (S72), and outputs this to the determination start control means 67.

判定開始制御手段67においては基本噴射パル
ス巾TPと機関回転速度Nとに基づいて、S73で
機関回転速度Nが2000rpmと4000rpmとの間にあ
り、S74で基本噴射パルス巾が7mm/sより大で
ある第6図に示すオクタン価判定ゾーンZにある
ことを判定する。該オクタン価判定ゾーンZはノ
ツキングが発生し易い高速高負荷運転状態にあ
る。かかる運転状態になると、点火進角変更手段
64とオクタン価判別手段65にそのことを知ら
せ、点火進角変更手段64ではS75で点火進角制
御手段60から出力される基本点火進角(91オク
タン用の点火進角)を93オクタン用基本点火進角
に相当するように4度進め(S75)これをオクタ
ン価判別手段65に入力する。オクタン価判別手
段65はマツプ選択手段61aに93オクタン用マ
ツプを用いるべき旨の指令信号を出力し、これに
より対応するマツプから93オクタン用マツプの基
本点火進角を読み取つて点火回路59を93オクタ
ン用基本点火進角で制御する。そしてその点火進
角条件でS76においてノツキングが発生するかど
うかを検出する。即ちノツキングセンサ31はノ
ツキングが発生するとこれをノツキングレベル検
出手段68に出力し、これをオクタン価判別手段
65に出力する。もしノツキングが発生した場合
には、点火進角制御手段60において93オクタン
用基本点火進角を選択したことが誤りであると判
断し、現在使用燃料が91オクタン価を有する燃料
であることを判別する。そしてマツプ選択手段6
1aにS78で91オクタン用マツプを用いるべき旨
の指令信号を出力し、基本点火進角、フラツプ制
御デユーテイ比、バイパス弁制御デユーテイ比共
に91オクタン用のマツプを選択してそれぞれの制
御を行わしめる。
In the determination start control means 67, based on the basic injection pulse width TP and the engine rotation speed N, the engine rotation speed N is between 2000 rpm and 4000 rpm in S73, and the basic injection pulse width is larger than 7 mm/s in S74. It is determined that the octane number is in the octane determination zone Z shown in FIG. The octane number determination zone Z is in a high speed, high load operating state where knocking is likely to occur. When such an operating state is reached, the ignition advance change means 64 and the octane number determination means 65 are notified of this, and the ignition advance change means 64 changes the basic ignition advance angle (for 91 octane) output from the ignition advance control means 60 in S75. (ignition advance angle) is advanced by 4 degrees to correspond to the basic ignition advance angle for 93 octane (S75) and inputted to the octane number determining means 65. The octane number determination means 65 outputs a command signal to the map selection means 61a to the effect that the 93 octane map should be used, and thereby reads the basic ignition advance angle of the 93 octane map from the corresponding map and changes the ignition circuit 59 to the 93 octane map. Controlled by basic ignition advance angle. Then, it is detected whether knocking occurs in S76 under the ignition advance condition. That is, when knocking occurs, the knocking sensor 31 outputs this to the knocking level detecting means 68, and outputs this to the octane number determining means 65. If notking occurs, it is determined that the selection of the basic ignition advance angle for 93 octane in the ignition advance control means 60 is an error, and it is determined that the currently used fuel is a fuel having an octane number of 91. . And map selection means 6
A command signal indicating that the 91 octane map should be used is output in S78 to 1a, and the 91 octane map is selected for the basic ignition advance angle, flap control duty ratio, and bypass valve control duty ratio, and each control is performed. .

もしS76でノツキングが発生しない場合には、
更にノツキングに対して厳しい条件となる95オク
タン価に対する点火進角即ち初期設定の基本点火
進角よりも8度進めるように点火進角変更手段6
4がオクタン価判別手段65に出力する(S77)。
If knotting does not occur in S76,
Furthermore, the ignition advance angle changing means 6 is set so that the ignition advance angle is advanced by 8 degrees from the initial setting basic ignition advance angle for 95 octane number, which is a severe condition for notking.
4 is output to the octane number determining means 65 (S77).

そしてS79でノツキングが発生するか否かを検
出し、もしノツキングが発生したらこれよりオク
タン価が小さい93オクタン価の燃料を現在使用し
ているものであると判別する。その判別結果を点
火進角制御手段60、フラツプ制御デユーテイ比
設定手段46、バイパス弁制御デユーテイ比設定
手段52にそれぞれ出力し、対応する93オクタン
用のマツプを用いて制御するようにする(S80)。
Then, S79 detects whether or not knocking occurs, and if knocking occurs, it is determined that fuel with a lower octane number of 93 is currently being used. The determination results are outputted to the ignition advance control means 60, the flap control duty ratio setting means 46, and the bypass valve control duty ratio setting means 52, respectively, and control is performed using the corresponding map for 93 octane (S80). .

S79でもノツクが発生しなかつた場合には、更
に点火進角を4度進め、初期設定の基準点火進角
よりも12度進めて(S81)、S82でノツキングが発
生するかどうかを検出する。そしてノツキングが
生じればそれよりオクタン価の小さい95オクタン
用の燃料を現在使用していると判断して制御手段
Mと点火進角制御手段60に95オクタン用のマツ
プを用いて制御すべき旨を出力する。
If knocking does not occur in S79, the ignition advance angle is further advanced by 4 degrees and advanced by 12 degrees from the initially set reference ignition advance angle (S81), and whether or not knocking occurs is detected in S82. If knocking occurs, it is determined that 95 octane fuel with a lower octane number is currently being used, and the control means M and ignition advance control means 60 are instructed to control using the 95 octane map. Output.

S82でノツキングが発生しなかつた場合には、
95オクタン価の燃料より1ランク上の98オクタン
価の燃料を用いているものと判断する。
If knotting does not occur in S82,
It is determined that fuel with an octane rating of 98 is used, which is one rank higher than fuel with an octane rating of 95.

このようにしてオクタン価検出手段57が検出
した現在使用燃料のオクタン価に応じて排気制御
手段Mと点火進角制御手段60とが制御されるの
で、現在使用燃料のオクタン価に合致した最適な
過給圧制御及び点火進角制御が可能となる。
In this way, the exhaust control means M and the ignition advance control means 60 are controlled according to the octane number of the currently used fuel detected by the octane number detection means 57, so that the optimum supercharging pressure that matches the octane number of the currently used fuel is controlled. control and ignition advance control becomes possible.

このようにして例えば91オクタン価の燃料(レ
ギユラーガソリン)に対応して過給圧制御目標値
を350mmHgに設定した場合には、同一の機関を用
いて98オクタン価の燃料(ハイオク)を用いて機
関を運転すれば該オクタン価に対応して過給圧を
465mmHgまで上昇させることができるから、機関
出力は約16%増もの大幅な増大を実現できるので
ある。
In this way, for example, if the boost pressure control target value is set to 350 mmHg corresponding to 91 octane fuel (regular gasoline), the same engine can be used with 98 octane fuel (high octane). If you operate the engine, the boost pressure will be adjusted according to the octane number.
Since it is possible to raise the engine power to 465mmHg, it is possible to achieve a significant increase in engine output of about 16%.

オクタン価検出手段57によつて現在使用燃料
のオクタン価を判定した後は、所定時間内その判
定結果を保持する。所定時間内とは設定された時
間巾でもよく、キーオフされるまでもしくはガソ
リン補給時までであつてもよい。
After the octane number detection means 57 determines the octane number of the currently used fuel, the determination result is held for a predetermined period of time. The predetermined time period may be a set time period, or may be until the key is turned off or until gasoline is refilled.

もし先の説明で判定した使用燃料のオクタン価
が誤つてなされた場合を考慮して、オクタン価判
別手段65の出力を補正手段69によつて補正す
る。その作用は第7図に示すように、一旦検出さ
れたオクタン価に対応して点火進角制御及び排気
制御がなされて運転が継続されたときに、ノツキ
ングセンサ31がS91においてのノツキングが発
生したことを検出すると、点火進角制御手段60
に進角値を2度ずつ遅らせるように指令信号を出
す(S92)。そしてS93でカウントアツプした結果
S94で点火進角の遅角量RETが4度を越した場合
には、各デユーテイ比設定手段46,52の制御
マツプを1ランク低いオクタン価のものを選択す
るように指令する(S95,S96)。そしてS97でフ
ラツグを点火進角遅れ量RET=0にたて、再び
第5図に示すオクタン価検出作用を行わしめる。
これによつてもS91でノツキングが発生したこと
が検出されれば、上記作動を繰り返して順次オク
タン価を繰り下げる。
In consideration of the case where the octane number of the fuel used was determined in error as described above, the output of the octane number determining means 65 is corrected by the correcting means 69. As shown in Fig. 7, once the ignition advance control and exhaust control are performed in accordance with the detected octane number and the operation is continued, the knocking sensor 31 detects the occurrence of knocking at S91. When this is detected, the ignition advance control means 60
A command signal is issued to delay the advance angle value by 2 degrees (S92). And the result of counting up with S93
If the ignition advance retardation amount RET exceeds 4 degrees in S94, a command is given to select the control map of each duty ratio setting means 46, 52 with an octane value that is one rank lower (S95, S96). . Then, in S97, the flag is set to the ignition advance delay amount RET=0, and the octane number detection operation shown in FIG. 5 is performed again.
Even with this, if it is detected in S91 that knocking has occurred, the above operation is repeated to lower the octane number one by one.

尚第8図に本実施例におけるオクタン価検出手
段57の大略機能を表示したブロツク図を示して
ある。
FIG. 8 is a block diagram showing the general functions of the octane number detection means 57 in this embodiment.

〈発明の効果〉 以上述べたように本発明によれば、排気ターボ
チヤージヤの排気タービンへ供給される排気の流
れを制御する排気制御装置を、短時間で現在使用
燃料のオクタン価をきめ細かく検出した後、運転
状態と使用燃料のオクタン価に応じて制御し、該
オクタン価に応じた目標過給圧を得るようにした
ので、燃料のオクタン価に応じてきめ細かく短時
間に最適な過給圧制御ができ、低オクタン価燃料
使用時には過給制御圧を下げてノツキングの発生
或いは機関の焼付を防止でき、また高オクタン価
燃料使用時には過給制御圧を最大限に高めて高出
力を得ることができる。また燃料のオクタン価に
応じて過給圧を変えることはオクタン価のバラツ
キを考慮することなく、機関の圧縮比を高くで
き、燃費及び出力向上を図ることが可能となる。
<Effects of the Invention> As described above, according to the present invention, the exhaust control device that controls the flow of exhaust gas supplied to the exhaust turbine of the exhaust turbocharger can be operated after precisely detecting the octane number of the currently used fuel in a short time. Control is performed according to the operating conditions and the octane number of the fuel used, and the target boost pressure is obtained according to the octane number, so it is possible to finely control the optimal boost pressure in a short time according to the octane number of the fuel, and it is possible to achieve a low octane number. When using fuel, the supercharging control pressure can be lowered to prevent knocking or engine seizure, and when using high octane fuel, the supercharging control pressure can be maximized to obtain high output. Further, by changing the boost pressure according to the octane number of the fuel, it is possible to increase the compression ratio of the engine without considering variations in the octane number, and it is possible to improve fuel efficiency and output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクレーム対応図、第2図は本
発明の一実施例を示す概略構成図、第3図は同上
におけるコントロールユニツト30の作動を示す
ブロツク図、第4図は同上におけるオクタン価検
出手段を示すブロツク図、第5図は同じくオクタ
ン価検出手段の作用を示すフローチヤート、第6
図はオクタン価判定ゾーンZを示すグラフ、第7
図は第4図における補正手段69の作用を説明す
るフローチヤート、第8図は第4図に示すオクタ
ン価検出手段の実施例の基本的構成を示すブロツ
ク図である。 1…内燃機関、2…吸気通路、4…排気ターボ
チヤージヤ、5…コンプレツサ、8…回転セン
サ、11…排気通路、12…排気タービン、13
…バイパス通路、14…バイパス弁、16,23
…電磁弁、21…フラツプ、30…コントロール
ユニツト、31…ノツキングセンサ、46…フラ
ツプ制御デユーテイ比設定手段、46a…マツプ
選択手段、48a1〜48an…マツプ、52…
バイパス弁制御デユーテイ比設定手段、52a…
マツプ選択手段、53a1〜53an…マツプ、
M…排気制御手段、60…点火進角制御手段、6
1…基本点火進角設定手段、61a…マツプ選択
手段、62a1〜62an…基本点火進角マツプ、
64…点火進角変更手段、65…オクタン価判別
手段、67…判定開始制御手段、69…補正手
段。
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 3 is a block diagram showing the operation of the control unit 30 in the same, and Fig. 4 is an octane rating diagram in the same. FIG. 5 is a block diagram showing the detection means, and FIG. 6 is a flowchart showing the operation of the octane number detection means.
The figure is a graph showing octane rating zone Z.
This figure is a flowchart explaining the operation of the correction means 69 in FIG. 4, and FIG. 8 is a block diagram showing the basic structure of an embodiment of the octane number detection means shown in FIG. 4. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 2... Intake passage, 4... Exhaust turbocharger, 5... Compressor, 8... Rotation sensor, 11... Exhaust passage, 12... Exhaust turbine, 13
...Bypass passage, 14...Bypass valve, 16, 23
...Solenoid valve, 21...Flap, 30...Control unit, 31...Knocking sensor, 46...Flap control duty ratio setting means, 46a...Map selection means, 48a1-48an...Map, 52...
Bypass valve control duty ratio setting means, 52a...
Map selection means, 53a1 to 53an...Map,
M...Exhaust control means, 60...Ignition advance control means, 6
1... Basic ignition advance angle setting means, 61a... Map selection means, 62a1 to 62an... Basic ignition advance angle map,
64... Ignition advance angle changing means, 65... Octane number determining means, 67... Judgment start control means, 69... Correction means.

Claims (1)

【特許請求の範囲】 1 機関運転状態検出手段と、現在使用燃料のオ
クタン価を3段階以上に区分して検出するオクタ
ン価検出手段と、排気ターボチヤージヤの排気タ
ービンへ供給される排気の流れを制御する排気制
御装置と、該排気制御装置を機関運転状態と前記
オクタン価検出手段から与えられた使用燃料のオ
クタン価とに応じて制御し目標過給圧を得る制御
手段と、 を備え、 かつ前記オクタン価検出手段が、 機関運転状態と燃料のオクタン価とに応じて設
定された基本点火進角に基づいて基本点火進角を
制御する点火進角制御手段と、 機関のノツキングレベルを検出してノツキング
の有無を検出するノツキングレベル検出手段と、 前記点火進角制御手段により制御される基本点
火進角を、前記ノツキングレベル検出手段により
ノツキングが検出されるまで所定範囲内で徐々に
進角変更する基本点火進角変更手段と、 前記点火進角制御手段により制御される基本点
火進角と、該基本点火進角に対して前記基本点火
進角変更手段によつて変更された総進角量と、に
基づいて現在使用燃料のオクタン価を判別するオ
クタン価判別手段と、 前記オクタン価判別後に検出されるノツキング
発生の有無に基づいて前記判別したオクタン価に
応じた点火時期あるいはオクタン価を補正する補
正手段と、 を備えたことを特徴とする排気ターボチヤージヤ
の過給圧制御装置。 2 排気制御装置は、排気ターボチヤージヤの排
気タービンへ供給する排気流速を制御する弁装置
と、排気タービンをバイパスする装置に設けたバ
イパス弁と、の少なくとも一方であることを特徴
とする特許請求の範囲第1項に記載の排気ターボ
チヤージヤの過給圧制御装置。 3 オクタン価検出手段は前記点火進角制御手段
に検出結果を出力する手段であることを特徴とす
る特許請求の範囲第1項〜第2項のいずれか1つ
に記載の排気ターボチヤージヤの過給圧制御装
置。
[Scope of Claims] 1. Engine operating state detection means, octane number detection means that detects the octane number of the currently used fuel by classifying it into three or more levels, and an exhaust system that controls the flow of exhaust gas supplied to the exhaust turbine of the exhaust turbocharger. a control device; and a control means for controlling the exhaust control device according to the engine operating state and the octane number of the fuel used given from the octane number detection means to obtain a target boost pressure, and the octane number detection means comprises: , an ignition advance control means for controlling a basic ignition advance angle based on a basic ignition advance angle set according to the engine operating state and the octane number of the fuel, and a means for detecting the knocking level of the engine to detect the presence or absence of knocking. a basic ignition advance that gradually advances the basic ignition advance controlled by the ignition advance control means within a predetermined range until knocking is detected by the knocking level detection means; ignition angle changing means, a basic ignition advance angle controlled by the ignition advance control means, and a total advance amount changed by the basic ignition advance angle changing means with respect to the basic ignition advance angle. An octane number determination means for determining the octane number of the currently used fuel; and a correction means for correcting the ignition timing or the octane number according to the determined octane number based on the presence or absence of knocking detected after the octane number determination. Features a boost pressure control device for the exhaust turbocharger. 2. Claims characterized in that the exhaust control device is at least one of a valve device that controls the flow rate of exhaust gas supplied to the exhaust turbine of the exhaust turbocharger, and a bypass valve provided in a device that bypasses the exhaust turbine. The supercharging pressure control device for an exhaust turbocharger according to item 1. 3. The supercharging pressure of the exhaust turbocharger according to any one of claims 1 to 2, wherein the octane number detection means is a means for outputting a detection result to the ignition advance control means. Control device.
JP59033341A 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger Granted JPS60178933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033341A JPS60178933A (en) 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033341A JPS60178933A (en) 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger

Publications (2)

Publication Number Publication Date
JPS60178933A JPS60178933A (en) 1985-09-12
JPH0551767B2 true JPH0551767B2 (en) 1993-08-03

Family

ID=12383860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033341A Granted JPS60178933A (en) 1984-02-25 1984-02-25 Supercharging pressure control device for exhaust turbosupercharger

Country Status (1)

Country Link
JP (1) JPS60178933A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119939A (en) * 1984-07-06 1986-01-28 Mazda Motor Corp Supercharged pressure control device in engine provided with supercharger
JP2532548B2 (en) * 1988-01-31 1996-09-11 マツダ株式会社 Engine supercharger
JPH01318722A (en) * 1988-06-16 1989-12-25 Honda Motor Co Ltd Control device for supercharging pressure of internal combustion engine with supercharger
KR101214164B1 (en) * 2005-08-04 2012-12-21 삼성전자주식회사 Input device with display button and portable electronic device having the same
JP4315196B2 (en) 2006-12-21 2009-08-19 トヨタ自動車株式会社 Control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111031A (en) * 1983-11-22 1985-06-17 Toyota Motor Corp Controlling method of internal-combustion engine with supercharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111031A (en) * 1983-11-22 1985-06-17 Toyota Motor Corp Controlling method of internal-combustion engine with supercharger

Also Published As

Publication number Publication date
JPS60178933A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
US5261236A (en) Turbocharged engine control system
EP0972925B1 (en) Internal combustion engine
US6161519A (en) Combustion control device for diesel engine
JPS6321009B2 (en)
US4849897A (en) Device for the governing of the supercharging pressure of an internal combustion engine
US4715184A (en) Knock control system for supercharged internal combustion engine
JP2009235920A (en) Fuel injection control device of cylinder injection internal combustion engine with supercharger
US4685435A (en) Safety device for a supercharged internal combustion engine
JP4161887B2 (en) Exhaust purification device
US4727719A (en) Apparatus for controlling inlet air flow in a turbocharged internal combustion engine
JPH0551767B2 (en)
JPH04191445A (en) Fuel supplying control device of internal combustion engine with super charger
JPH01182577A (en) Combustion control device for engine
US4467608A (en) Control method and apparatus for an internal combustion engine with a turbocharger
JPS5828559A (en) Method of controlling air fuel ratio of spark-ignited engine
JPS60230549A (en) Variable compression-ratio type engine
JP3361156B2 (en) Engine fuel injection control device
US20190170058A1 (en) Turbocharged engine and method of operating turbocharged engine
JP2530647B2 (en) Ignition timing control device for supercharged engine
JPH10196381A (en) Control device of internal combustion engine mounted with variable nozzle type turbocharger
JPH01318728A (en) Fuel feeding device for engine with supercharger
JPS60230523A (en) Knocking preventing apparatus for variable compression-ratio type engine
JPS6056128A (en) Control device for variable displacement type turbo-charger
JP3377573B2 (en) Control method of supercharged engine
JPS5828567A (en) Method of controlling air fuel ratio of engine