JPH1054251A - Internal combustion engine controller - Google Patents

Internal combustion engine controller

Info

Publication number
JPH1054251A
JPH1054251A JP8212245A JP21224596A JPH1054251A JP H1054251 A JPH1054251 A JP H1054251A JP 8212245 A JP8212245 A JP 8212245A JP 21224596 A JP21224596 A JP 21224596A JP H1054251 A JPH1054251 A JP H1054251A
Authority
JP
Japan
Prior art keywords
bypass
amount
catalyst temperature
target
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8212245A
Other languages
Japanese (ja)
Other versions
JP3714495B2 (en
Inventor
Koichi Ohata
耕一 大畑
Kanehito Nakamura
兼仁 中村
Hajime Suguro
肇 勝呂
Tsukasa Kuboshima
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP21224596A priority Critical patent/JP3714495B2/en
Publication of JPH1054251A publication Critical patent/JPH1054251A/en
Application granted granted Critical
Publication of JP3714495B2 publication Critical patent/JP3714495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve fuel consumption, exhaust emission control capability, and driverability. SOLUTION: A bypass air quantity control valve 19 is fitted at an intake bypass passage 18 which bypasses an intake passage 12 on more downstream side than a turbo supercharger 13 and an exhaust passage 14 on more upstream side of a catalyst 17, and a bypass displacement control valve 22 is fitted at an exhaust bypass passage 21 which bypasses the upstream side and the downstream side of an exhaust gas turbine 15. When catalyst temperature is below target catalyst temperature, the bypass air quantity control valve 19 is opened completely and cooling of the catalyst 17 is stopped. The opening of the bypass displacement control valve 22 is controlled to ensure necessary engine output. When the catalyst temperature is above the target catalyst temperature, the opening of the bypass air quantity controlling valve 19 is controlled, with necessary engine output ensured, according to a difference between the catalyst temperature and the target catalyst temperature within the range of sufficient supercharging performance of the turbo supercharger 13, and a part of supercharging air is bypassed to the exhaust passage 14 side to cool down the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過給機と排気浄化
用の触媒とを備えた内燃機関制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine control device provided with a supercharger and an exhaust gas purifying catalyst.

【0002】[0002]

【従来の技術】例えば、ディーゼルエンジンから排気ガ
スに含まれる窒素酸化物(NOx)を浄化する触媒は、
図4に示すように所定の活性温度範囲(例えば200か
ら400℃)においてのみNOx浄化率が高いことが一
般的に知られている。従って、NOx排出量を低減する
には、触媒温度を活性温度範囲内に維持することが効果
的である。しかし、実際には、エンジンの運転状態によ
り排気温度が大きく変化して、触媒温度が活性温度範囲
から外れることがあり、安定したNOx浄化性能が得ら
れない。
2. Description of the Related Art For example, a catalyst for purifying nitrogen oxides (NOx) contained in exhaust gas from a diesel engine is disclosed in US Pat.
It is generally known that the NOx purification rate is high only in a predetermined activation temperature range (for example, 200 to 400 ° C.) as shown in FIG. Therefore, in order to reduce NOx emission, it is effective to maintain the catalyst temperature within the activation temperature range. However, in practice, the exhaust gas temperature greatly changes depending on the operation state of the engine, and the catalyst temperature may be out of the activation temperature range, so that stable NOx purification performance cannot be obtained.

【0003】そこで、ターボ過給機を備えたエンジンで
は、特開平7−189720号公報に示すように、ター
ボ過給機の上流側の吸気通路とターボ過給機の下流側の
排気通路とをバイパス通路で連通させ、このバイパス通
路の途中に、過給圧によって開閉する通路開閉弁を設
け、過給圧が所定値以上になったときに、上記通路開閉
弁を開放させて過給気の一部を排気通路側にバイパスさ
せることで、排気温度を低下させて触媒を冷却するよう
にしている。しかし、過給気の一部を排気通路へバイパ
スさせると、エンジン出力が低下してドライバビリティ
が悪化するため、上記特開平7−189720号公報で
は、過給気の一部をバイパスさせることに伴って生じる
エンジン出力低下を、ターボ過給機に過給圧を増幅させ
る補助機を設置することにより解決しようとしている。
Therefore, in an engine equipped with a turbocharger, as disclosed in Japanese Patent Application Laid-Open No. 7-189720, an intake passage on the upstream side of the turbocharger and an exhaust passage on the downstream side of the turbocharger are provided. A passage opening / closing valve that opens and closes by a boost pressure is provided in the middle of the bypass passage, and when the boost pressure becomes a predetermined value or more, the passage opening / closing valve is opened to reduce the supercharged air. By partially bypassing the exhaust passage, the exhaust gas temperature is lowered to cool the catalyst. However, if a part of the supercharged air is bypassed to the exhaust passage, the engine output is reduced and the drivability is deteriorated. Therefore, in Japanese Patent Application Laid-Open No. Hei 7-189720, a part of the supercharged air is bypassed. Attempts have been made to solve the accompanying decrease in engine output by installing an auxiliary machine for amplifying the supercharging pressure in the turbocharger.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記公報の構
成では、バイパス通路の通路開閉弁を過給圧によって開
閉するため、触媒温度が高くても、過給圧が低いと、通
路開閉弁が開放されず、触媒を冷却することができな
い。それ故に、上記公報の構成では、エンジン負荷が小
さい場合でも、触媒温度(排気温度)が高いときには、
エンジンの出力で補助機を駆動して過給圧を高める必要
があり、そのために燃費が悪化してしまう。しかも、エ
ンジン負荷が大きい場合には、過給圧が高くなるので、
触媒温度が適温でも、過給圧によって通路開閉弁が開放
されてしまい、触媒温度が適温以下に低下して、排気浄
化能力が低下してしまう。更に、補助機を設けること
で、装置全体が大型化し、コンパクト化、低コスト化の
要求を満たすことができない。
However, in the configuration disclosed in the above publication, the passage opening / closing valve of the bypass passage is opened / closed by the supercharging pressure. Therefore, even if the catalyst temperature is high, if the supercharging pressure is low, the passage opening / closing valve is opened. It is not opened and the catalyst cannot be cooled. Therefore, in the configuration of the above publication, even when the engine load is small, when the catalyst temperature (exhaust gas temperature) is high,
It is necessary to drive the auxiliary machine with the output of the engine to increase the supercharging pressure, which deteriorates fuel efficiency. In addition, when the engine load is large, the supercharging pressure increases,
Even when the catalyst temperature is appropriate, the passage opening / closing valve is opened due to the supercharging pressure, so that the catalyst temperature falls below the appropriate temperature, and the exhaust gas purification capacity is reduced. Further, by providing the auxiliary machine, the whole apparatus becomes large in size, and it is not possible to satisfy the demand for downsizing and cost reduction.

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、燃費向上、コンパク
ト化、低コスト化を実現しながら、排気浄化性能とドラ
イバビリティとを両立させることができる内燃機関制御
装置を提供することにある。
[0005] The present invention has been made in view of such circumstances, and an object of the present invention is to achieve both exhaust purification performance and drivability while realizing improved fuel economy, compactness, and low cost. It is an object of the present invention to provide an internal combustion engine control device that can achieve the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関制御装置は、過給機よ
りも下流側の吸気通路と触媒よりも上流側の排気通路と
をバイパスさせる吸気バイパス通路を設けると共に、こ
の吸気バイパス通路にバイパス空気量制御弁を設ける。
そして、内燃機関に供給する吸入空気の酸素量(以下
「供給酸素量」という)を供給酸素量推定手段により推
定すると共に、内燃機関に供給する燃料を燃焼するのに
必要な吸入空気の酸素量(以下「目標酸素量」という)
を目標酸素量算出手段により算出する。その上で、触媒
温度判定手段で判定した触媒温度と目標触媒温度との差
及び前記供給酸素量と前記目標酸素量との差に基づいて
前記バイパス空気量制御弁の開度を制御手段によって制
御する。ここで、「開度を制御する」とは、モータ等で
弁開度を制御する場合のほか、電磁弁のON・OFFデ
ューティの制御により「弁を開閉する時間的な度合を制
御する場合も含む。
According to a first aspect of the present invention, there is provided an internal combustion engine control apparatus comprising: an intake passage downstream of a supercharger and an exhaust passage upstream of a catalyst; Is provided, and a bypass air amount control valve is provided in the intake bypass passage.
Then, the oxygen amount of the intake air supplied to the internal combustion engine (hereinafter referred to as “supplied oxygen amount”) is estimated by the supplied oxygen amount estimating means, and the oxygen amount of the intake air required to burn the fuel supplied to the internal combustion engine is estimated. (Hereinafter referred to as "target oxygen amount")
Is calculated by the target oxygen amount calculating means. Then, the control unit controls the opening degree of the bypass air amount control valve based on the difference between the catalyst temperature and the target catalyst temperature determined by the catalyst temperature determination unit and the difference between the supplied oxygen amount and the target oxygen amount. I do. Here, “controlling the opening degree” means not only controlling the valve opening degree with a motor or the like, but also controlling the degree of time for opening and closing the valve by controlling the ON / OFF duty of the solenoid valve. Including.

【0007】この場合、供給酸素量と目標酸素量との差
が少なくなるほど、内燃機関に供給する燃料の燃焼状態
が良好となり、ドライバビリティ向上、エミッション低
減につながる。また、触媒温度と目標触媒温度との差が
少なければ、触媒温度が所定の活性温度範囲内に収ま
り、NOx浄化率が高くなる。このような特性を考慮し
て、本発明のように、触媒温度と目標触媒温度との差及
び供給酸素量と目標酸素量との差に基づいてバイパス空
気量制御弁の開度を制御すれば、ドライバビリティ(内
燃機関の出力)を確保しながら、過給気のバイパス量
(触媒冷却効果)を調整して排気浄化性能を確保するこ
とができる。しかも、本発明では、過給圧とは関係な
く、バイパス空気量制御弁の開度を制御手段によって制
御できるので、従来のように内燃機関の出力で補助機を
駆動して過給圧を高める必要がなくなり、燃費を向上で
きると共に、補助機が不要になる分、コンパクト化、低
コスト化を実現することができる。
In this case, the smaller the difference between the supplied oxygen amount and the target oxygen amount, the better the combustion state of the fuel supplied to the internal combustion engine, which leads to improved drivability and reduced emission. If the difference between the catalyst temperature and the target catalyst temperature is small, the catalyst temperature falls within a predetermined activation temperature range, and the NOx purification rate increases. In consideration of such characteristics, as in the present invention, if the opening degree of the bypass air amount control valve is controlled based on the difference between the catalyst temperature and the target catalyst temperature and the difference between the supplied oxygen amount and the target oxygen amount, The exhaust gas purifying performance can be secured by adjusting the bypass amount of the supercharged air (catalyst cooling effect) while ensuring drivability (output of the internal combustion engine). In addition, according to the present invention, the opening degree of the bypass air amount control valve can be controlled by the control means irrespective of the supercharging pressure, so that the supercharging pressure is increased by driving the auxiliary machine with the output of the internal combustion engine as in the prior art. This eliminates the necessity and improves fuel efficiency, and also reduces the size and cost because the auxiliary machine is not required.

【0008】また、過給機としてターボ過給機を用いる
場合には、請求項2のように、ターボ過給機の排気ター
ビンの上流側と下流側とをバイパスさせる排気バイパス
通路を設けると共に、該排気バイパス通路にバイパス排
気量制御弁を設けた構成としても良い。この場合には、
触媒温度と目標触媒温度との差及び供給酸素量と目標酸
素量との差に基づいてバイパス空気量制御弁及びバイパ
ス排気量制御弁の開度を総合的に制御すれば良い。この
ようにすれば、排気バイパス通路を流れる排気ガスのバ
イパス量を制御することで、排気タービンを通過する排
気ガスの量を制御して、排気タービンの回転数(過給
圧)を制御することができ、制御特性を向上できる。
When a turbocharger is used as the supercharger, an exhaust bypass passage for bypassing the upstream and downstream sides of the exhaust turbine of the turbocharger is provided. The exhaust bypass passage may be provided with a bypass exhaust amount control valve. In this case,
The degree of opening of the bypass air amount control valve and the bypass exhaust amount control valve may be comprehensively controlled based on the difference between the catalyst temperature and the target catalyst temperature and the difference between the supplied oxygen amount and the target oxygen amount. With this configuration, by controlling the bypass amount of the exhaust gas flowing through the exhaust bypass passage, the amount of the exhaust gas passing through the exhaust turbine is controlled, and the rotation speed (supercharging pressure) of the exhaust turbine is controlled. And control characteristics can be improved.

【0009】この場合、請求項3では、触媒温度が目標
触媒温度以下の場合、つまり触媒の冷却が不要な場合に
は、バイパス空気量制御弁を閉鎖することで、排気通路
の触媒上流側への過給気のバイパスを遮断して、過給気
による触媒の冷却を停止し、触媒温度の上昇を促進して
排気浄化能力を高める。これと共に、バイパス排気量制
御弁の開度を制御することで、排気タービンの回転数
(過給圧)を制御して、供給酸素量を目標酸素量に合わ
せるように制御し、内燃機関の燃焼効率を向上させて、
燃費とドライバビリティを向上させる。
In this case, when the catalyst temperature is equal to or lower than the target catalyst temperature, that is, when it is not necessary to cool the catalyst, the bypass air amount control valve is closed to move the exhaust passage upstream of the catalyst in the exhaust passage. By cutting off the bypass of the supercharged air, the cooling of the catalyst by the supercharged air is stopped, and the increase of the catalyst temperature is promoted to enhance the exhaust gas purifying ability. At the same time, by controlling the opening of the bypass exhaust amount control valve, the number of revolutions (supercharging pressure) of the exhaust turbine is controlled so that the supplied oxygen amount is adjusted to the target oxygen amount, and the combustion of the internal combustion engine is controlled. Improve efficiency,
Improve fuel efficiency and drivability.

【0010】一方、触媒温度が目標触媒温度より高い場
合、つまり触媒の冷却が必要な場合には、供給酸素量を
目標酸素量に合わせるようにバイパス空気量制御弁及び
バイパス排気量制御弁の開度を制御して、内燃機関の出
力を確保した上で、ターボ過給機の過給能力に余力があ
る範囲内でバイパス空気量制御弁の開度を前記触媒温度
と目標触媒温度との差に応じて制御し、過給気の一部を
排気通路側にバイパスさせることで、排気温度を低下さ
せて触媒を冷却して、排気浄化能力を高める。この場
合、排気通路側への過給気のバイパス(触媒の冷却)
は、ターボ過給機の過給能力に余力がある範囲内で行わ
れるので、内燃機関への過給気が供給不足になることは
なく、内燃機関の出力が確保されて、ドライバビリティ
が低下することはない。
On the other hand, when the catalyst temperature is higher than the target catalyst temperature, that is, when the catalyst needs to be cooled, the bypass air amount control valve and the bypass exhaust amount control valve are opened to adjust the supplied oxygen amount to the target oxygen amount. Control the degree of opening of the bypass air amount control valve within the range where the turbocharger has sufficient supercharging capacity after ensuring the output of the internal combustion engine, and calculating the difference between the catalyst temperature and the target catalyst temperature. By reducing the temperature of the exhaust gas and cooling the catalyst, the exhaust gas purification capacity is increased by bypassing a part of the supercharged air to the exhaust passage side. In this case, bypass of the supercharged air to the exhaust passage side (cooling of the catalyst)
Is performed within a range where the turbocharger has enough supercharging capacity, so that the supply of supercharged air to the internal combustion engine does not become insufficient, the output of the internal combustion engine is secured, and the drivability is reduced. I will not do it.

【0011】また、請求項4では、過給機よりも下流側
の吸気通路と触媒よりも上流側の排気通路とをバイパス
させる第1の吸気バイパス通路と、前記過給機よりも下
流側の吸気通路と触媒よりも下流側の排気通路とをバイ
パスさせる第2の吸気バイパス通路とを設け、これら両
吸気バイパス通路に設けた第1及び第2の各バイパス空
気量制御弁を、触媒温度と目標触媒温度との差及び供給
酸素量と目標酸素量との差に基づいて制御手段により総
合的に制御する。このようにすれば、第1及び第2の各
バイパス空気量制御弁を制御することで、排気通路の触
媒上流側への過給気のバイパス量の制御と過給圧の制御
とを同時に行うことが可能となり、排気浄化性能とドラ
イバビリティとを両立させることができる。
According to a fourth aspect of the present invention, a first intake bypass passage that bypasses an intake passage downstream of the turbocharger and an exhaust passage upstream of the catalyst, and a downstream of the turbocharger. A second intake bypass passage is provided for bypassing the intake passage and an exhaust passage downstream of the catalyst. The first and second bypass air amount control valves provided in both intake bypass passages are connected to the catalyst temperature and The control means performs comprehensive control based on the difference between the target catalyst temperature and the difference between the supplied oxygen amount and the target oxygen amount. With this configuration, by controlling the first and second bypass air amount control valves, the control of the bypass amount of the supercharging air to the upstream side of the catalyst in the exhaust passage and the control of the supercharging pressure are simultaneously performed. It is possible to achieve both exhaust purification performance and drivability.

【0012】この場合、請求項5では、触媒温度が目標
触媒温度より低い場合(触媒の冷却が不要な場合)に
は、第1のバイパス空気量制御弁を閉鎖することで、排
気通路の触媒上流側への過給気のバイパスを遮断して、
過給気による触媒の冷却を停止し、触媒温度の上昇を促
進して排気浄化能力を高める。これと共に、第2のバイ
パス空気量制御弁の開度を制御することで、排気通路の
触媒下流側への過給気のバイパス量を制御して過給圧を
制御し、供給酸素量を目標酸素量に合わせるように制御
して、内燃機関の燃焼効率を向上させ、燃費とドライバ
ビリティを向上させる。
In this case, when the catalyst temperature is lower than the target catalyst temperature (when it is not necessary to cool the catalyst), the first bypass air amount control valve is closed, so that the catalyst in the exhaust passage is closed. Shut off the bypass for upstream supercharging,
The cooling of the catalyst due to the supercharging is stopped, and a rise in the catalyst temperature is promoted to enhance the exhaust gas purification ability. At the same time, by controlling the opening degree of the second bypass air amount control valve, the supercharging pressure is controlled by controlling the bypass amount of the supercharged air to the downstream side of the catalyst in the exhaust passage, and the supply oxygen amount is controlled. Control is performed to match the amount of oxygen, thereby improving the combustion efficiency of the internal combustion engine and improving fuel efficiency and drivability.

【0013】一方、触媒温度が目標触媒温度より高い場
合には、供給酸素量を目標酸素量に合わせるように第1
及び第2のバイパス空気量制御弁の開度を制御して、内
燃機関の出力を確保した上で、過給機の過給能力に余力
がある範囲内で触媒温度と目標触媒温度との差に応じて
第1のバイパス空気量制御弁の開度を制御し、過給気の
一部を排気通路の触媒上流側にバイパスさせることで、
触媒上流側の排気温度を低下させて触媒を冷却する。こ
の場合、触媒上流側への過給気のバイパス(触媒の冷
却)は、過給機の過給能力に余力がある範囲内で行われ
るので、内燃機関への過給気が供給不足になることはな
く、内燃機関の出力が確保されて、ドライバビリティが
低下することはない。
On the other hand, when the catalyst temperature is higher than the target catalyst temperature, the first oxygen amount is adjusted so that the supplied oxygen amount matches the target oxygen amount.
And controlling the degree of opening of the second bypass air amount control valve to secure the output of the internal combustion engine, and then setting the difference between the catalyst temperature and the target catalyst temperature within a range where the supercharging capacity of the supercharger has a margin. By controlling the opening degree of the first bypass air amount control valve according to the above, a part of the supercharged air is bypassed to the catalyst upstream side of the exhaust passage,
The catalyst is cooled by lowering the exhaust gas temperature on the upstream side of the catalyst. In this case, since the bypass of the supercharged air to the upstream side of the catalyst (cooling of the catalyst) is performed within a range where the supercharging capacity of the supercharger has a surplus, the supercharged air to the internal combustion engine becomes insufficiently supplied. The output of the internal combustion engine is secured, and the drivability does not decrease.

【0014】また、請求項6では、前記供給酸素量推定
手段は、吸気圧を検出する吸気圧センサ、吸入空気量を
検出する吸入空気量センサ、吸気系への排気ガスの還流
量を検出する排気還流量センサ、前記内燃機関に吸入さ
れる酸素量を検出する酸素センサのうちの少なくとも1
つのセンサの出力信号に基づいて供給酸素量を推定す
る。ここで、吸気圧センサや吸入空気量センサは、内燃
機関の制御のために車両に搭載されている既存のセンサ
を用いれば良く、コスト的な負担が少なくて済む。更
に、吸気圧センサと吸入空気量センサのいずれか一方の
検出値と排気還流量センサの検出値とを組み合わせて供
給酸素量を推定するようにしても良い。このようにすれ
ば、吸気系へ還流する排気ガス中の酸素を考慮した正確
な供給酸素量を推定することができる。また、酸素セン
サを用いれば、供給酸素量を直接検出することができ
る。
According to a sixth aspect of the present invention, the supply oxygen amount estimating means detects an intake pressure sensor for detecting an intake pressure, an intake air amount sensor for detecting an intake air amount, and detects a recirculation amount of exhaust gas to an intake system. At least one of an exhaust gas recirculation amount sensor and an oxygen sensor for detecting an amount of oxygen sucked into the internal combustion engine;
The supply oxygen amount is estimated based on the output signals of the two sensors. Here, as the intake pressure sensor and the intake air amount sensor, existing sensors mounted on the vehicle for controlling the internal combustion engine may be used, and the cost burden can be reduced. Furthermore, the supply oxygen amount may be estimated by combining the detection value of one of the intake pressure sensor and the intake air amount sensor with the detection value of the exhaust gas recirculation amount sensor. In this way, it is possible to estimate an accurate supply oxygen amount in consideration of oxygen in the exhaust gas recirculated to the intake system. Further, if the oxygen sensor is used, the supplied oxygen amount can be directly detected.

【0015】また、請求項7では、前記目標酸素量算出
手段は、前記過給機の過給圧限界値に相当する最大酸素
量以下の範囲内で前記目標酸素量を内燃機関の運転状態
に基づいて算出する。これにより、内燃機関が過負荷状
態にならないように目標酸素量を設定でき、内燃機関の
耐久性を向上できる。
According to a seventh aspect of the present invention, the target oxygen amount calculating means sets the target oxygen amount in an operating state of the internal combustion engine within a range equal to or less than a maximum oxygen amount corresponding to a supercharging pressure limit value of the supercharger. Calculated based on Thus, the target oxygen amount can be set so that the internal combustion engine does not become overloaded, and the durability of the internal combustion engine can be improved.

【0016】[0016]

【発明の実施の形態】以下、本発明の第1の実施形態を
図1乃至図5に基づいて説明する。まず、図1に基づい
てエンジン制御系全体の概略構成を説明する。内燃機関
であるディーゼルエンジン11の吸気通路12にはター
ボ過給機13が設置されている。このターボ過給機13
は、排気通路14内を流れる排気ガスの運動エネルギに
よって回転駆動される排気タービン15を駆動源として
いる。そして、排気タービン15よりも下流側の排気通
路14には排気浄化用の触媒17が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. A turbocharger 13 is provided in an intake passage 12 of a diesel engine 11 which is an internal combustion engine. This turbocharger 13
Uses an exhaust turbine 15 driven by the kinetic energy of exhaust gas flowing in the exhaust passage 14 as a drive source. A catalyst 17 for purifying exhaust gas is provided in the exhaust passage 14 downstream of the exhaust turbine 15.

【0017】更に、ターボ過給機13よりも下流側の吸
気通路12と触媒17よりも上流側の排気通路14とを
バイパスさせる吸気バイパス通路18が設けられ、この
吸気バイパス通路18には、開度調節可能なバイパス空
気量制御弁19が設けられている。このバイパス空気量
制御弁19の開度調整は、ステップモータ等のモータ
(図示せず)で行えば良い。或は、バイパス空気量制御
弁19を電磁弁で構成する場合には、電磁弁のソレノイ
ドコイルへの通電をデューティ制御することで、弁を開
閉する時間的な度合を制御して弁を通過する空気量を制
御すれば良い。このような電磁弁のデューティ制御によ
り弁を開閉する時間的な度合を制御する場合も、特許請
求の範囲でいう「バイパス空気量制御弁の開度を制御す
る」の概念に含まれる。また、吸気バイパス通路18の
入口18aよりも下流側の吸気通路12には、吸気圧を
検出する吸気圧センサ20が設置されている。
Further, an intake bypass passage 18 for bypassing the intake passage 12 downstream of the turbocharger 13 and the exhaust passage 14 upstream of the catalyst 17 is provided. A bypass air amount control valve 19 whose degree can be adjusted is provided. The opening degree of the bypass air amount control valve 19 may be adjusted by a motor (not shown) such as a step motor. Alternatively, when the bypass air amount control valve 19 is formed by an electromagnetic valve, the energization of the solenoid coil of the electromagnetic valve is duty-controlled to control the degree of time for opening and closing the valve and pass through the valve. What is necessary is just to control the amount of air. Controlling the degree of opening and closing the valve by such duty control of the solenoid valve is also included in the concept of "controlling the opening of the bypass air amount control valve" in the claims. An intake pressure sensor 20 for detecting intake pressure is provided in the intake passage 12 downstream of the inlet 18a of the intake bypass passage 18.

【0018】一方、排気通路14には、排気タービン1
5の上流側と下流側とをバイパスさせる排気バイパス通
路21(ウェイストゲート)が設けられ、この排気バイ
パス通路21には開度調節可能なバイパス排気量制御弁
22が設けられている。このバイパス排気量制御弁22
の開度調整も、前記バイパス空気量制御弁19の開度調
整と同じく、モータ(図示せず)、又は電磁弁のデュー
ティ制御で行えば良い。また、触媒17の上流側端面の
近傍には、排気温度を検出する排気温度センサ23が設
置され、この排気温度センサ23で検出した排気温度か
ら触媒17の温度が判定される。従って、本実施形態で
は、排気温度センサ23を特許請求の範囲でいう触媒温
度判定手段として用いる。
On the other hand, in the exhaust passage 14, the exhaust turbine 1
An exhaust bypass passage 21 (a waste gate) for bypassing the upstream side and the downstream side of the exhaust pipe 5 is provided, and the exhaust bypass passage 21 is provided with a bypass exhaust amount control valve 22 whose opening degree can be adjusted. This bypass displacement control valve 22
May be adjusted by a duty control of a motor (not shown) or a solenoid valve, similarly to the adjustment of the opening of the bypass air amount control valve 19. An exhaust temperature sensor 23 for detecting an exhaust gas temperature is provided near the upstream end surface of the catalyst 17, and the temperature of the catalyst 17 is determined from the exhaust gas temperature detected by the exhaust gas temperature sensor 23. Therefore, in the present embodiment, the exhaust gas temperature sensor 23 is used as a catalyst temperature determining means described in the claims.

【0019】尚、アクセル24には、アクセル開度(ア
クセル操作量)を検出するアクセル開度センサ25が設
けられ、ディーゼルエンジン11には、エンジン回転数
を検出するエンジン回転数センサ26が設けられてい
る。
The accelerator 24 is provided with an accelerator opening sensor 25 for detecting the accelerator opening (accelerator operation amount), and the diesel engine 11 is provided with an engine speed sensor 26 for detecting the engine speed. ing.

【0020】これらアクセル開度センサ25、エンジン
回転数センサ26、排気温度センサ23、吸気圧センサ
20等、エンジン制御に関する各種情報を検出するセン
サの出力信号は、エンジン制御用の電子制御回路(以下
「ECU」という)27に入力される。このECU27
は、マイクロコンピュータを主体として構成され、上記
各種センサ情報に基づいて燃料噴射装置(図示せず)の
動作を制御すると共に、図2及び図3に示す過給制御プ
ログラムを実行することで、触媒温度と目標触媒温度と
の差及び後述する供給酸素量と目標酸素量との差に基づ
いてバイパス空気量制御弁19とバイパス排気量制御弁
22の開度を制御する制御手段として機能する。
Output signals from sensors for detecting various information related to engine control, such as an accelerator opening sensor 25, an engine speed sensor 26, an exhaust temperature sensor 23, and an intake pressure sensor 20, are sent to an electronic control circuit for engine control (hereinafter referred to as an engine control circuit). (Referred to as “ECU”) 27. This ECU 27
Is mainly composed of a microcomputer, controls the operation of a fuel injection device (not shown) based on the various sensor information, and executes a supercharging control program shown in FIGS. It functions as control means for controlling the opening of the bypass air amount control valve 19 and the bypass exhaust amount control valve 22 based on a difference between the temperature and the target catalyst temperature and a difference between a supply oxygen amount and a target oxygen amount described later.

【0021】以下、図2及び図3の過給制御プログラム
の処理の流れを説明する。本プログラムは、所定時間毎
(例えば1秒毎)又は所定クランク角毎に割り込み処理
にて起動される。本プログラムが起動されると、まずス
テップS101で、エンジン回転数センサ26、アクセ
ル開度センサ25、吸気圧センサ20、排気温度センサ
23から出力されるエンジン回転数Ne、アクセル開度
Ac、吸気圧Pq及び排気温度Tを読み込む。そして、
次のステップS102で、読み込んだエンジン回転数N
eとアクセル開度Acとに応じて、目標とするエンジン
出力を確保するのに必要な目標吸気圧P1 を予め設定さ
れたマップデータより算出する。この際、目標吸気圧P
1 は、ディーゼルエンジン11が過負荷状態にならない
ようにターボ過給機13の過給圧限界値以下の範囲内で
設定される。
Hereinafter, the flow of processing of the supercharging control program shown in FIGS. 2 and 3 will be described. This program is started by interruption processing at predetermined time intervals (for example, at every one second) or at predetermined crank angle intervals. When this program is started, first, in step S101, the engine speed Ne, the accelerator opening Ac, and the intake pressure output from the engine speed sensor 26, the accelerator opening sensor 25, the intake pressure sensor 20, and the exhaust temperature sensor 23 are output. Read Pq and exhaust temperature T. And
In the next step S102, the read engine speed N
The target intake pressure P1 required to secure the target engine output is calculated from preset map data in accordance with e and the accelerator opening Ac. At this time, the target intake pressure P
1 is set within a range not more than the supercharging pressure limit value of the turbocharger 13 so that the diesel engine 11 is not overloaded.

【0022】そして、目標吸気圧P1 の算出後、ステッ
プS103で、排気温度Tと目標触媒温度T1 とを比較
し、触媒17の温度状態(活性状態)を判定する。この
場合、触媒17は主として排気ガスの熱で温度上昇し、
触媒温度は排気温度Tとほぼ等しいと推定できるため、
本実施形態では、触媒温度の代用データとして排気温度
Tを用いる。また、目標触媒温度T1 は、触媒17のN
Ox浄化率が最大となる触媒温度Tmax (図4参照)に
設定されている。
After calculating the target intake pressure P1, in step S103, the exhaust gas temperature T is compared with the target catalyst temperature T1 to determine the temperature state (active state) of the catalyst 17. In this case, the temperature of the catalyst 17 is increased mainly by the heat of the exhaust gas,
Since the catalyst temperature can be estimated to be substantially equal to the exhaust gas temperature T,
In the present embodiment, the exhaust gas temperature T is used as substitute data for the catalyst temperature. The target catalyst temperature T1 is determined by the N
The catalyst temperature Tmax (see FIG. 4) at which the Ox purification rate is maximized is set.

【0023】上記ステップS103で、排気温度T(=
触媒温度)が目標触媒温度T1 以下と判定された場合に
は、触媒17の冷却は不要である。この場合には、ステ
ップS104に進み、バイパス空気量制御弁19を全閉
と仮定して、吸気圧Pq=目標吸気圧P1 となるように
バイパス排気量制御弁22の開度を算出する。この後、
ステップS105で、バイパス空気量制御弁19の全閉
信号を出力してバイパス空気量制御弁19を全閉し、排
気通路14の触媒17上流側への過給気のバイパスを遮
断して、排気温度の低下を防ぎ、触媒17の温度上昇を
促進する。更に、このステップS105では、ステップ
S104で算出したバイパス排気量制御弁22の開度信
号を出力し、バイパス排気量制御弁22の開度を調整し
て、ターボ過給機13の排気タービン15をバイパスさ
せる排気ガス量を調整する。これにより、排気タービン
15を通過する排気ガス量を調整して、排気タービン1
5の回転数を調整し、ターボ過給機13の過給圧を吸気
圧Pqが目標吸気圧P1 となるように調整し、ディーゼ
ルエンジン11の燃焼効率を向上させて、燃費とドライ
バビリティを向上させる。
In step S103, the exhaust gas temperature T (=
If the catalyst temperature is determined to be equal to or lower than the target catalyst temperature T1, the cooling of the catalyst 17 is unnecessary. In this case, the process proceeds to step S104, and the opening degree of the bypass exhaust amount control valve 22 is calculated so that the intake air pressure Pq becomes equal to the target intake air pressure P1, assuming that the bypass air amount control valve 19 is fully closed. After this,
In step S105, a full-close signal of the bypass air amount control valve 19 is output to fully close the bypass air amount control valve 19, and the bypass of the supercharged air to the upstream side of the catalyst 17 in the exhaust passage 14 is cut off, and the exhaust gas is exhausted. The temperature is prevented from lowering, and the temperature of the catalyst 17 is promoted. Further, in step S105, the opening degree signal of the bypass exhaust amount control valve 22 calculated in step S104 is output, the opening degree of the bypass exhaust amount control valve 22 is adjusted, and the exhaust turbine 15 of the turbocharger 13 is controlled. Adjust the amount of exhaust gas to be bypassed. Thereby, the amount of exhaust gas passing through the exhaust turbine 15 is adjusted, and the exhaust turbine 1
5, the supercharging pressure of the turbocharger 13 is adjusted so that the intake pressure Pq becomes the target intake pressure P1, and the combustion efficiency of the diesel engine 11 is improved, thereby improving fuel efficiency and drivability. Let it.

【0024】この場合、ディーゼルエンジン11に供給
する吸入空気の酸素量(供給酸素量)は、吸気圧Pqか
ら推定できるため、供給酸素量の代用データとして吸気
圧Pqを用いる。従って、本実施形態では、吸気圧Pq
を検出する吸気圧センサ20が特許請求の範囲でいう供
給酸素量推定手段として用いられる。そして、ディーゼ
ルエンジン11に供給する燃料を燃焼するのに必要な吸
入空気の酸素量(目標酸素量)の代用データとしてステ
ップS102で算出する目標吸気圧P1 を用いる。従っ
て、本実施形態では、目標吸気圧P1 を算出するステッ
プS102の処理が特許請求の範囲でいう目標酸素量算
出手段としての役割を果たしている。
In this case, since the oxygen amount (supply oxygen amount) of the intake air supplied to the diesel engine 11 can be estimated from the intake pressure Pq, the intake pressure Pq is used as substitute data for the supply oxygen amount. Therefore, in the present embodiment, the intake pressure Pq
Is used as the supply oxygen amount estimating means referred to in the claims. Then, the target intake pressure P1 calculated in step S102 is used as substitute data of the oxygen amount (target oxygen amount) of the intake air necessary for burning the fuel supplied to the diesel engine 11. Therefore, in the present embodiment, the process of step S102 for calculating the target intake pressure P1 plays a role as a target oxygen amount calculating means in the claims.

【0025】一方、前述したステップS103で、排気
温度T(=触媒温度)が目標触媒温度T1 より高いと判
定された場合には、触媒17の冷却が必要となる。この
場合には、図3のステップS106に進み、吸気圧Pq
=目標吸気圧P1 と仮定して排気温度T=目標触媒温度
T1 となるようにバイパス空気量制御弁19の開度を算
出する。この後、ステップS107に進み、上記ステッ
プS106で算出したバイパス空気量制御弁19の開度
で、吸気圧Pq=目標吸気圧P1 となるようにバイパス
排気量制御弁22の開度を算出する。
On the other hand, if it is determined in step S103 that the exhaust gas temperature T (= catalyst temperature) is higher than the target catalyst temperature T1, the catalyst 17 needs to be cooled. In this case, the process proceeds to step S106 in FIG.
= The target intake pressure P1 and the opening degree of the bypass air amount control valve 19 is calculated so that the exhaust gas temperature T becomes equal to the target catalyst temperature T1. Thereafter, the process proceeds to step S107, and the opening degree of the bypass exhaust amount control valve 22 is calculated based on the opening degree of the bypass air amount control valve 19 calculated in step S106 so that the intake pressure Pq becomes equal to the target intake pressure P1.

【0026】この後、ステップS108で、バイパス排
気量制御弁22の開度が0(=全閉)よりも大きいか否
かを判定し、大きい場合には、ステップS109に進ん
で、ステップS106で算出したバイパス空気量制御弁
19の開度信号と、ステップS107で算出したバイパ
ス排気量制御弁22の開度信号とを出力し、両制御弁1
9,22の開度を調整する。これにより、吸気圧Pq=
目標吸気圧P1 となるように過給圧を制御して、必要な
エンジン出力を確保すると共に、排気温度T(=触媒温
度)を目標触媒温度T1 に一致させるようにバイパス空
気量制御弁19の開度を制御して、過給気の一部を排気
通路14側にバイパスさせて排気ガスと混合させること
で、排気温度を低下させて触媒17を冷却し、触媒温度
を目標触媒温度T1 まで速やかに低下させる。
Thereafter, in step S108, it is determined whether or not the opening of the bypass displacement control valve 22 is greater than 0 (= fully closed). If it is, the process proceeds to step S109, and in step S106. The calculated opening signal of the bypass air amount control valve 19 and the calculated opening signal of the bypass exhaust amount control valve 22 calculated in step S107 are output.
Adjust the opening of 9, 22. Thereby, the intake pressure Pq =
The supercharging pressure is controlled so as to reach the target intake pressure P1 to secure a necessary engine output, and at the same time, the bypass air amount control valve 19 is controlled so that the exhaust gas temperature T (= catalyst temperature) matches the target catalyst temperature T1. By controlling the opening degree, a part of the supercharged air is bypassed to the exhaust passage 14 side and mixed with the exhaust gas, thereby lowering the exhaust gas temperature, cooling the catalyst 17, and bringing the catalyst temperature to the target catalyst temperature T1. Decrease quickly.

【0027】一方、前述したステップS108で、バイ
パス排気量制御弁22の開度が0(=全閉)以下と判定
された場合には、ステップS110に進み、バイパス排
気量制御弁22を全閉と仮定して、吸気圧Pq=目標吸
気圧P1 となるようにバイパス空気量制御弁19の開度
を算出する。この後、ステップS111で、上記ステッ
プS110で算出したバイパス空気量制御弁19の開度
信号とバイパス排気量制御弁22の全閉信号を出力し、
バイパス排気量制御弁22を全閉して、バイパス空気量
制御弁19の開度調整により吸気圧Pq=目標吸気圧P
1 となるように過給圧を制御して、必要なエンジン出力
を確保した上で、ターボ過給機13の過給能力に余力が
ある範囲内で過給気の一部を排気通路14側にバイパス
させることで、排気温度を低下させて触媒17を冷却
し、触媒温度を低下させる。
On the other hand, if it is determined in step S108 that the opening degree of the bypass exhaust amount control valve 22 is equal to or less than 0 (= fully closed), the process proceeds to step S110, where the bypass exhaust amount control valve 22 is fully closed. , The opening of the bypass air amount control valve 19 is calculated so that the intake pressure Pq becomes equal to the target intake pressure P1. After that, in step S111, the opening degree signal of the bypass air amount control valve 19 and the fully closed signal of the bypass exhaust amount control valve 22 calculated in step S110 are output,
By fully closing the bypass exhaust amount control valve 22 and adjusting the opening of the bypass air amount control valve 19, the intake pressure Pq = the target intake pressure P
After controlling the supercharging pressure so as to attain the necessary engine output, a part of the supercharging is reduced to the exhaust passage 14 within a range where the supercharging capacity of the turbocharger 13 has a margin. By lowering the exhaust gas temperature, the catalyst 17 is cooled and the catalyst temperature is lowered.

【0028】以上説明した過給制御によれば、触媒温度
(排気温度T)が目標触媒温度T1以下の場合、つまり
触媒17の冷却が不要な場合には、バイパス空気量制御
弁19を全閉することで、排気通路14側への過給気の
バイパスを遮断して、過給気による触媒の冷却を停止
し、触媒温度の上昇を促進して排気浄化能力を高める。
これと共に、バイパス排気量制御弁22の開度を制御す
ることで、排気タービン15の回転数(過給圧)を制御
して吸気圧Pq(供給酸素量)を目標吸気圧P1(目標
酸素量)に合わせるように制御し、ディーゼルエンジン
11の燃焼効率を向上させて、燃費とドライバビリティ
を向上させる。
According to the supercharging control described above, when the catalyst temperature (exhaust gas temperature T) is equal to or lower than the target catalyst temperature T1, that is, when cooling of the catalyst 17 is unnecessary, the bypass air amount control valve 19 is fully closed. By doing so, the bypass of the supercharged air to the exhaust passage 14 side is shut off, the cooling of the catalyst by the supercharged air is stopped, and a rise in the catalyst temperature is promoted to enhance the exhaust gas purification capability.
At the same time, by controlling the opening degree of the bypass exhaust amount control valve 22, the rotation speed (supercharging pressure) of the exhaust turbine 15 is controlled to reduce the intake pressure Pq (supply oxygen amount) to the target intake pressure P1 (target oxygen amount). ) To improve the fuel efficiency and drivability by improving the combustion efficiency of the diesel engine 11.

【0029】一方、触媒温度(排気温度T)が目標触媒
温度T1 より高い場合、つまり触媒17の冷却が必要な
場合には、吸気圧Pq(供給酸素量)を目標吸気圧P1
(目標酸素量)に合わせるようにバイパス空気量制御弁
19及びバイパス排気量制御弁22の開度を制御して、
ディーゼルエンジン11の出力を確保した上で、ターボ
過給機13の過給能力に余力がある範囲内で触媒温度
(排気温度T)と目標触媒温度T1 との差に応じてバイ
パス空気量制御弁19の開度を制御し、過給気の一部を
排気通路14側にバイパスさせることで、排気温度を低
下させて触媒17を冷却し、排気浄化能力を高める。
On the other hand, if the catalyst temperature (exhaust temperature T) is higher than the target catalyst temperature T1, that is, if the catalyst 17 needs to be cooled, the intake pressure Pq (supply oxygen amount) is reduced to the target intake pressure P1.
By controlling the opening degree of the bypass air amount control valve 19 and the bypass exhaust amount control valve 22 so as to match the (target oxygen amount),
After the output of the diesel engine 11 is secured, the bypass air amount control valve is controlled according to the difference between the catalyst temperature (exhaust temperature T) and the target catalyst temperature T1 within a range in which the supercharging capacity of the turbocharger 13 has a margin. By controlling the opening of the valve 19 and bypassing a part of the supercharged air to the exhaust passage 14, the exhaust gas temperature is reduced, the catalyst 17 is cooled, and the exhaust gas purifying capability is enhanced.

【0030】以上説明した過給制御の挙動を図5に示す
タイムチャートに従って説明する。図5のタイムチャー
トは、市街地走行時に頻繁に生じる加速→定速走行→減
速の走行パターンの例である。アイドル運転中の時刻t
0 では、触媒温度が目標触媒温度T1 よりも低いため、
バイパス空気量制御弁19が全閉されて、触媒17の冷
却は行われない。また、アイドル運転中は、ディーゼル
エンジン11の出力は最低で良いため、バイパス排気量
制御弁22が全開され、排気タービン15を通過する排
気ガスの量が最少となって、ターボ過給機13の仕事量
(過給圧)が最低となる。
The behavior of the supercharging control described above will be described with reference to a time chart shown in FIG. The time chart of FIG. 5 is an example of a traveling pattern of acceleration → constant speed traveling → deceleration that frequently occurs when traveling in an urban area. Time t during idle operation
At 0, since the catalyst temperature is lower than the target catalyst temperature T1,
The bypass air amount control valve 19 is fully closed, and the catalyst 17 is not cooled. Also, during idling operation, the output of the diesel engine 11 may be the lowest, so that the bypass exhaust amount control valve 22 is fully opened, the amount of exhaust gas passing through the exhaust turbine 15 is minimal, and the turbocharger 13 Work volume (supercharging pressure) is minimized.

【0031】その後、時刻t1 で加速を開始すると、エ
ンジン出力を大きくする必要があるため、バイパス排気
量制御弁22が全閉され、ターボ過給機13の仕事量が
増大されて過給圧が高められる。この加速開始とほぼ同
時に、排気温度が上昇するが、触媒17には熱容量があ
るため、触媒温度の上昇が排気温度の上昇よりも遅れ
る。従って、加速時間(t1 −t2 )が比較的短けれ
ば、その加速中は、触媒温度が目標触媒温度T1 よりも
低いため、触媒17の冷却は必要ない。この場合には、
加速中(t1 −t2 )は、バイパス空気量制御弁19が
引き続き全閉状態に維持され、排気通路14側への過給
気のバイパスが遮断されて過給気が全て過給圧を高める
のに使用され、エンジン出力が効果的に高められ、良好
な加速性が確保される。
Thereafter, when acceleration is started at time t1, the engine output needs to be increased, so that the bypass displacement control valve 22 is fully closed, the work of the turbocharger 13 is increased, and the supercharging pressure is reduced. Enhanced. Almost simultaneously with the start of the acceleration, the exhaust gas temperature rises. However, since the catalyst 17 has a heat capacity, the increase in the catalyst temperature is later than the increase in the exhaust gas temperature. Accordingly, if the acceleration time (t1 -t2) is relatively short, the catalyst 17 does not need to be cooled during the acceleration because the catalyst temperature is lower than the target catalyst temperature T1. In this case,
During acceleration (t1 -t2), the bypass air amount control valve 19 is continuously maintained in the fully closed state, the bypass of the supercharging air to the exhaust passage 14 side is cut off, and the supercharging all increases the supercharging pressure. The engine output is effectively increased, and good acceleration is ensured.

【0032】その後、時刻t2 で加速を終了して定速走
行に移行すると、エンジン出力は加速時よりも少なくて
済むため、バイパス排気量制御弁22が開放されてター
ボ過給機13の仕事量(過給圧)が加速時よりも低下す
る。
After that, when the acceleration is completed at time t2 and the vehicle shifts to the constant speed running, the engine output can be smaller than that at the time of acceleration, so that the bypass displacement control valve 22 is opened and the work amount of the turbocharger 13 is increased. (Supercharging pressure) is lower than during acceleration.

【0033】このとき、触媒温度は、定速走行に移行し
ても、暫く上昇し続け、時刻t3 で触媒温度が目標触媒
温度T1 を越える。このようになると、触媒17の冷却
が必要となるため、バイパス空気量制御弁19が触媒温
度と目標触媒温度T1 との差に応じた開度まで開放さ
れ、過給気の一部が排気通路14側にバイパスされて、
触媒17が冷却される。このようにして、過給気の一部
を触媒17の冷却に用いると、ディーゼルエンジン11
に供給する過給気が減少するため、それを補うように、
バイパス排気量制御弁22の開度が絞られ、ターボ過給
機13の仕事量が増大されて、定速走行を維持するため
に必要なエンジン出力が確保される。
At this time, the catalyst temperature continues to rise for a while, even after shifting to the constant speed running, and at time t3, the catalyst temperature exceeds the target catalyst temperature T1. In this case, since the catalyst 17 needs to be cooled, the bypass air amount control valve 19 is opened to an opening corresponding to the difference between the catalyst temperature and the target catalyst temperature T1, and a part of the supercharged air is exhausted through the exhaust passage. Bypassed to the 14 side,
The catalyst 17 is cooled. In this way, when a part of the supercharged air is used for cooling the catalyst 17, the diesel engine 11
To compensate for the decrease in supercharged air supplied to
The opening of the bypass displacement control valve 22 is reduced, the work of the turbocharger 13 is increased, and the engine output required to maintain the constant speed traveling is secured.

【0034】触媒温度が目標触媒温度T1 に達してから
は、エンジン出力を確保した上で、ターボ過給機13の
過給能力に余力がある範囲内で触媒温度を目標触媒温度
T1に一致させるようにバイパス空気量制御弁19の開
度を制御し、排気浄化能力を高める。
After the catalyst temperature reaches the target catalyst temperature T1, the engine temperature is secured and the catalyst temperature is made to coincide with the target catalyst temperature T1 within a range where the supercharging capacity of the turbocharger 13 has a margin. Thus, the opening degree of the bypass air amount control valve 19 is controlled to enhance the exhaust gas purification ability.

【0035】従来の一般的なディーゼルエンジンのよう
に、触媒17の冷却(過給気のバイパス)を行わない場
合には、図5に点線で示すように、定速走行中に触媒温
度が目標触媒温度T1 を大きく越えて、触媒温度と目標
触媒温度T1 との差が大きくなり、NOx浄化率が低下
してNOx排出量が多くなる。
When the cooling of the catalyst 17 (bypassing the supercharged air) is not performed as in a conventional general diesel engine, as shown by a dotted line in FIG. Exceeding the catalyst temperature T1, the difference between the catalyst temperature and the target catalyst temperature T1 becomes large, the NOx purification rate decreases, and the NOx emission increases.

【0036】これに対し、本実施形態では、エンジン出
力を確保した上で、ターボ過給機13の過給能力に余力
がある範囲内で触媒温度と目標触媒温度T1 との差に応
じてバイパス空気量制御弁19の開度を制御して、触媒
17を冷却する過給気のバイパス量を調整するので、N
Ox浄化率が高い触媒温度に維持できて、NOx排出量
を効果的に低減できる。しかも、排気通路14側への過
給気のバイパス(触媒17の冷却)は、ターボ過給機1
4の過給能力に余力がある範囲内で行われるので、ディ
ーゼルエンジン11への過給気が供給不足になることは
なく、エンジン出力が確保されて、ドライバビリティが
低下することはなく、排気浄化能力とドライバビリティ
とを両立できる。
On the other hand, in this embodiment, the engine output is ensured, and the bypass is performed in accordance with the difference between the catalyst temperature and the target catalyst temperature T1 within a range where the supercharging capacity of the turbocharger 13 has a margin. Since the opening degree of the air amount control valve 19 is controlled to adjust the bypass amount of the supercharged air for cooling the catalyst 17, N
Ox purification rate can be maintained at a high catalyst temperature, and NOx emission can be effectively reduced. Moreover, the bypass of the supercharged air to the exhaust passage 14 side (cooling of the catalyst 17) is performed by the turbocharger 1
Since the supercharging capacity of 4 is performed within a range where there is a surplus, the supercharging air supply to the diesel engine 11 does not become insufficient, the engine output is secured, the drivability is not reduced, and the exhaust gas is not exhausted. Purification ability and drivability can be compatible.

【0037】尚、ターボ過給機13の下流側の吸気通路
12にインタークーラ(過給気を冷却する熱交換器)を
設けて、過給効率を高めるようにしても良い。この場合
には、吸気バイパス通路18の入口18aをインターク
ーラよりも下流側に設けることが好ましい。このように
すれば、インタークーラにより冷却された過給気の一部
を排気通路14側にバイパスさせることで、触媒17の
冷却効果をより高めることができる。
Incidentally, an intercooler (a heat exchanger for cooling the supercharged air) may be provided in the intake passage 12 on the downstream side of the turbocharger 13 to increase the supercharging efficiency. In this case, it is preferable to provide the inlet 18a of the intake bypass passage 18 downstream of the intercooler. By doing so, a part of the supercharged air cooled by the intercooler is bypassed to the exhaust passage 14 side, so that the cooling effect of the catalyst 17 can be further enhanced.

【0038】また、上記第1の実施形態では、排気バイ
パス通路21とバイパス排気量制御弁22を設けたが、
これらを省略した構成のものにも本発明を適用可能して
実施できる。この場合、ターボ過給機13に代えて、機
械式過給機(スーパーチャージャ)等の他の過給機を採
用しても良い。
In the first embodiment, the exhaust bypass passage 21 and the bypass exhaust amount control valve 22 are provided.
The present invention can be applied to a configuration in which these are omitted and can be implemented. In this case, instead of the turbocharger 13, another supercharger such as a mechanical supercharger (supercharger) may be employed.

【0039】一方、図6に示す本発明の第2の実施形態
では、ターボ過給機13よりも下流側の吸気通路12と
触媒17よりも上流側の排気通路14とをバイパスさせ
る第1の吸気バイパス通路31が設けられ、この第1の
吸気バイパス通路31の出口側には、開度調節可能な第
1のバイパス空気量制御弁32が設けられている。更
に、第1のバイパス空気量制御弁32よりも上流側の第
1の吸気バイパス通路31と触媒17よりも下流側の排
気通路14とをバイパスさせる第2の吸気バイパス通路
33が設けられ、この第2の吸気バイパス通路33に
は、開度調節可能な第2のバイパス空気量制御弁34が
設けられている。前記第1の実施形態で設けた排気バイ
パス通路21とバイパス排気量制御弁22は廃止されて
いる。これ以外の構成は、第1の実施形態と同じであ
る。
On the other hand, in the second embodiment of the present invention shown in FIG. 6, the first passage which bypasses the intake passage 12 downstream of the turbocharger 13 and the exhaust passage 14 upstream of the catalyst 17 is used. An intake bypass passage 31 is provided, and a first bypass air amount control valve 32 whose opening is adjustable is provided on the outlet side of the first intake bypass passage 31. Further, a second intake bypass passage 33 for bypassing the first intake bypass passage 31 upstream of the first bypass air amount control valve 32 and the exhaust passage 14 downstream of the catalyst 17 is provided. In the second intake bypass passage 33, a second bypass air amount control valve 34 whose opening degree can be adjusted is provided. The exhaust bypass passage 21 and the bypass exhaust amount control valve 22 provided in the first embodiment are eliminated. Other configurations are the same as those of the first embodiment.

【0040】以上のように構成した第2の実施形態で
は、第1の吸気バイパス通路31と第1のバイパス空気
量制御弁32が、第1の実施形態における吸気バイパス
通路18とバイパス空気量制御弁19と全く同じ役割を
果たす。また、第2の吸気バイパス通路33と第2のバ
イパス空気量制御弁34は、触媒17の下流側にバイパ
スさせる過給気の量を調整することで、ディーゼルエン
ジン11に供給する過給圧を調整するものであり、第1
の実施形態における排気バイパス通路21とバイパス排
気量制御弁22とほぼ同じ役割を果たす。従って、第1
のバイパス空気量制御弁32と第2のバイパス空気量制
御弁34の制御は、第1の実施形態におけるバイパス空
気量制御弁19とバイパス排気量制御弁22の制御と同
一であり、図2及び図3に示す過給制御プログラムにお
いて、「バイパス空気量制御弁19」を「第1のバイパ
ス空気量制御弁32」と読み替え、「バイパス排気量制
御弁22」を「第2のバイパス空気量制御弁34」と読
み替えて制御すれば良い。
In the second embodiment configured as described above, the first intake bypass passage 31 and the first bypass air amount control valve 32 are connected to the intake bypass passage 18 and the bypass air amount control valve in the first embodiment. It plays exactly the same role as the valve 19. Further, the second intake bypass passage 33 and the second bypass air amount control valve 34 adjust the amount of supercharged air bypassed to the downstream side of the catalyst 17 so that the supercharging pressure supplied to the diesel engine 11 is reduced. To adjust, the first
The exhaust gas passage 21 and the bypass exhaust amount control valve 22 in the embodiment have substantially the same functions. Therefore, the first
The control of the bypass air amount control valve 32 and the second bypass air amount control valve 34 is the same as the control of the bypass air amount control valve 19 and the bypass exhaust amount control valve 22 in the first embodiment. In the supercharging control program shown in FIG. 3, “bypass air amount control valve 19” is read as “first bypass air amount control valve 32”, and “bypass exhaust amount control valve 22” is referred to as “second bypass air amount control valve”. The control may be performed by reading as "the valve 34".

【0041】以上説明した第2の実施形態では、第1の
実施形態と同じ効果が得られる上に、排気バイパス通路
21(ウェイストゲート)を廃止しても、第2のバイパ
ス空気量制御弁34の開度調整によってディーゼルエン
ジン11への過負荷を防止することができて、エンジン
ルーム内のスペースが問題でウェーストゲートを設置で
きない場合に有効である。
In the second embodiment described above, the same effects as those of the first embodiment can be obtained, and even if the exhaust bypass passage 21 (waste gate) is eliminated, the second bypass air amount control valve 34 By adjusting the opening degree, overload on the diesel engine 11 can be prevented, and this is effective when the waste gate cannot be installed due to a problem in the space in the engine room.

【0042】尚、第2の実施形態では、第2の吸気バイ
パス通路33を第1の吸気バイパス通路31の途中から
分岐させた構成としたが、これら両吸気バイパス通路3
1,33を完全に独立させた構成としても良い。
In the second embodiment, the second intake bypass passage 33 is configured to be branched from the middle of the first intake bypass passage 31.
The configuration may be such that the components 1 and 33 are completely independent.

【0043】また、上記各実施形態では、ディーゼルエ
ンジン11に供給する吸入空気の酸素量(供給酸素量)
を吸気圧Pqから推定できる点に着目し、供給酸素量の
代用データとして吸気圧Pqを用いるようにした。つま
り、吸気圧Pqを検出する吸気圧センサ20を供給酸素
量推定手段として用いるようにしたが、吸入空気量を検
出する吸入空気量センサ、吸気系への排気ガスの還流量
を検出する排気還流量センサ、ディーゼルエンジン11
に吸入される酸素量を検出する酸素センサのうちの少な
くとも1つのセンサの出力信号に基づいて供給酸素量を
推定するようにしても良い。
Further, in each of the above embodiments, the oxygen amount of the intake air supplied to the diesel engine 11 (the supplied oxygen amount)
Focusing on the fact that can be estimated from the intake pressure Pq, the intake pressure Pq is used as substitute data for the supplied oxygen amount. That is, the intake pressure sensor 20 for detecting the intake pressure Pq is used as the supply oxygen amount estimating means. However, the intake air amount sensor for detecting the intake air amount, and the exhaust gas return for detecting the amount of exhaust gas recirculated to the intake system. Flow sensor, diesel engine 11
The supply oxygen amount may be estimated based on an output signal of at least one of the oxygen sensors that detects the amount of oxygen sucked into the air.

【0044】この場合、吸気圧センサ20や吸入空気量
センサは、ディーゼルエンジン11の制御のために車両
に搭載されている既存のセンサを用いれば良く、コスト
的な負担が少なくて済む。更に、吸気圧センサと吸入空
気量センサのいずれか一方の検出値と排気還流量センサ
の検出値とを組み合わせて供給酸素量を推定するように
しても良い。このようにすれば、吸気系へ還流する排気
ガス中の酸素を考慮した正確な供給酸素量を推定するこ
とができ、制御精度を向上できる。また、酸素センサを
用いれば、供給酸素量を直接検出することができて、制
御精度を向上できる。
In this case, as the intake pressure sensor 20 and the intake air amount sensor, existing sensors mounted on the vehicle for controlling the diesel engine 11 may be used, and the cost burden can be reduced. Furthermore, the supply oxygen amount may be estimated by combining the detection value of one of the intake pressure sensor and the intake air amount sensor with the detection value of the exhaust gas recirculation amount sensor. With this configuration, it is possible to accurately estimate the supply oxygen amount in consideration of the oxygen in the exhaust gas recirculated to the intake system, and it is possible to improve control accuracy. Further, if an oxygen sensor is used, the supplied oxygen amount can be directly detected, and the control accuracy can be improved.

【0045】また、上記各実施形態では、触媒温度判定
手段として排気温度センサ23を用い、触媒温度の代用
データとして排気温度Tを用いるようにしたが、触媒温
度を直接検出する触媒温度センサを触媒温度判定手段と
して設けるようにしても良い。その他、本発明は、ガソ
リンエンジンに適用して実施しても良い等、要旨を逸脱
しない範囲内で、種々変更して実施できる。
Further, in each of the above embodiments, the exhaust gas temperature sensor 23 is used as the catalyst temperature determining means, and the exhaust gas temperature T is used as the substitute data of the catalyst temperature. You may make it provide as a temperature determination means. In addition, the present invention can be implemented with various modifications without departing from the gist, such as application to a gasoline engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態におけるエンジン制御
システム全体の概略構成を示す図
FIG. 1 is a diagram showing a schematic configuration of an entire engine control system according to a first embodiment of the present invention;

【図2】過給制御プログラムの処理の流れを示すフロー
チャート(その1)
FIG. 2 is a flowchart showing the flow of processing of a supercharging control program (part 1);

【図3】過給制御プログラムの処理の流れを示すフロー
チャート(その2)
FIG. 3 is a flowchart showing the flow of processing of a supercharging control program (part 2);

【図4】触媒温度とNOx浄化率との関係を示す図FIG. 4 is a diagram showing a relationship between a catalyst temperature and a NOx purification rate.

【図5】過給制御の挙動を示すタイムチャートFIG. 5 is a time chart showing the behavior of supercharging control.

【図6】本発明の第2の実施形態におけるエンジン制御
システム全体の概略構成を示す図
FIG. 6 is a diagram showing a schematic configuration of an entire engine control system according to a second embodiment of the present invention.

【符号の説明】 11…ディーゼルエンジン(内燃機関)、12…吸気通
路、13…ターボ過給機(過給機)、14…排気通路、
15…排気タービン、17…触媒、18…吸気バイパス
通路、19…バイパス空気量制御弁、20…吸気圧セン
サ(供給酸素量推定手段)、21…排気バイパス通路、
22…バイパス排気量制御弁、23…排気温度センサ
(触媒温度判定手段)、25…アクセル開度センサ、2
6…エンジン回転数センサ、27…ECU(制御手段,
目標酸素量算出手段)、31…第1の吸気バイパス通
路、32…第1のバイパス空気量制御弁、33…第2の
吸気バイパス通路、34…第2のバイパス空気量制御
弁。
[Description of Signs] 11: diesel engine (internal combustion engine), 12: intake passage, 13: turbocharger (supercharger), 14: exhaust passage,
Reference numeral 15: exhaust turbine, 17: catalyst, 18: intake bypass passage, 19: bypass air amount control valve, 20: intake pressure sensor (supply oxygen amount estimating means), 21: exhaust bypass passage,
Reference numeral 22: bypass exhaust amount control valve, 23: exhaust temperature sensor (catalyst temperature determining means), 25: accelerator opening degree sensor, 2
6 engine speed sensor 27 ECU (control means,
Target oxygen amount calculation means), 31 ... first intake bypass passage, 32 ... first bypass air amount control valve, 33 ... second intake bypass passage, 34 ... second bypass air amount control valve.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 37/00 F02B 37/12 ZAB 37/12 ZAB F02D 23/00 G 37/18 41/02 315 F02D 23/00 41/04 330M 41/02 315 45/00 310R 41/04 330 F02B 37/00 303G 45/00 310 37/12 301F (72)発明者 窪島 司 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F02B 37/00 F02B 37/12 ZAB 37/12 ZAB F02D 23/00 G 37/18 41/02 315 F02D 23 / 00 41/04 330M 41/02 315 45/00 310R 41/04 330 F02B 37/00 303G 45/00 310 37/12 301F (72) Inventor Tsukasa Kuboshima 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Inside the corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 吸気通路に設けられた過給機と、排気通
路に設けられた排気浄化用の触媒とを備えた内燃機関制
御装置において、 前記触媒の温度を判定する触媒温度判定手段と、 前記過給機よりも下流側の吸気通路と前記触媒よりも上
流側の排気通路とをバイパスさせる吸気バイパス通路
と、 前記吸気バイパス通路を通過する空気量を制御するバイ
パス空気量制御弁と、内燃機関に供給する吸入空気の酸
素量(以下「供給酸素量」という)を推定する供給酸素
量推定手段と、 内燃機関に供給する燃料を燃焼するのに必要な吸入空気
の酸素量(以下「目標酸素量」という)を算出する目標
酸素量算出手段と、 前記触媒温度判定手段で判定した触媒温度と目標触媒温
度との差及び前記酸素量推定手段で求めた供給酸素量と
前記目標酸素量算出手段で求めた目標酸素量との差に基
づいて前記バイパス空気量制御弁の開度を制御する制御
手段とを備えていることを特徴とする内燃機関制御装
置。
1. An internal combustion engine control device including a supercharger provided in an intake passage and an exhaust purification catalyst provided in an exhaust passage, comprising: catalyst temperature determination means for determining a temperature of the catalyst; An intake bypass passage that bypasses an intake passage downstream of the turbocharger and an exhaust passage upstream of the catalyst, a bypass air amount control valve that controls an amount of air that passes through the intake bypass passage, and an internal combustion engine. Supply oxygen amount estimating means for estimating the oxygen amount of the intake air supplied to the engine (hereinafter referred to as “supply oxygen amount”); and the oxygen amount of the intake air required to burn the fuel supplied to the internal combustion engine (hereinafter “target”). A target oxygen amount calculating means for calculating the oxygen amount), a difference between the catalyst temperature determined by the catalyst temperature determining means and the target catalyst temperature, a supply oxygen amount calculated by the oxygen amount estimating means, and the target oxygen amount calculation hand In an internal combustion engine control apparatus characterized by comprising a control means for controlling an opening degree of the bypass air flow rate control valve based on the difference between the target amount of oxygen determined.
【請求項2】 前記過給機は、排気エネルギで駆動され
る排気タービンを駆動源とするターボ過給機であり、 前記排気通路には、前記排気タービンの上流側と下流側
とをバイパスさせる排気バイパス通路が設けられ、該排
気バイパス通路にはバイパス排気量制御弁が設けられ、 前記制御手段は、前記触媒温度判定手段で判定した触媒
温度と目標触媒温度との差及び前記酸素量推定手段で求
めた供給酸素量と前記目標酸素量算出手段で求めた目標
酸素量との差に基づいて前記バイパス空気量制御弁及び
前記バイパス排気量制御弁の開度を総合的に制御するこ
とを特徴とする請求項1に記載の内燃機関制御装置。
2. The turbocharger is a turbocharger driven by an exhaust turbine driven by exhaust energy, and the exhaust passage bypasses an upstream side and a downstream side of the exhaust turbine. An exhaust bypass passage is provided, and a bypass exhaust amount control valve is provided in the exhaust bypass passage. The control unit includes a difference between a catalyst temperature determined by the catalyst temperature determination unit and a target catalyst temperature, and the oxygen amount estimation unit. And controlling the degree of opening of the bypass air amount control valve and the bypass exhaust amount control valve based on the difference between the supplied oxygen amount obtained in step (a) and the target oxygen amount obtained by the target oxygen amount calculating means. The internal combustion engine control device according to claim 1, wherein
【請求項3】 前記制御手段は、前記触媒温度が目標触
媒温度以下の場合には、前記バイパス空気量制御弁を閉
鎖して、前記バイパス排気量制御弁の開度を制御するこ
とで、前記供給酸素量を前記目標酸素量に合わせるよう
に制御し、 前記触媒温度が目標触媒温度より高い場合には、前記供
給酸素量を前記目標酸素量に合わせるように前記バイパ
ス空気量制御弁及び前記バイパス排気量制御弁の開度を
制御した上で前記ターボ過給機の過給能力に余力がある
範囲内で前記触媒温度と目標触媒温度との差に応じて前
記バイパス空気量制御弁の開度を制御することを特徴と
する請求項2に記載の内燃機関制御装置。
3. The control means, when the catalyst temperature is equal to or lower than the target catalyst temperature, closes the bypass air amount control valve and controls an opening degree of the bypass exhaust amount control valve, thereby controlling the opening degree of the bypass exhaust amount control valve. The supply oxygen amount is controlled to match the target oxygen amount. If the catalyst temperature is higher than the target catalyst temperature, the bypass air amount control valve and the bypass adjust the supply oxygen amount to match the target oxygen amount. The opening degree of the bypass air amount control valve is controlled in accordance with the difference between the catalyst temperature and the target catalyst temperature within a range in which the turbocharger has sufficient supercharging capacity after controlling the opening degree of the displacement control valve. The internal combustion engine control device according to claim 2, wherein the control is performed.
【請求項4】 吸気通路に設けられた過給機と、排気通
路に設けられた排気浄化用の触媒とを備えた内燃機関制
御装置において、 前記触媒の温度を判定する触媒温度判定手段と、 前記過給機よりも下流側の吸気通路と前記触媒よりも上
流側の排気通路とをバイパスさせる第1の吸気バイパス
通路と、 前記第1の吸気バイパス通路を通過する空気量を制御す
る第1のバイパス空気量制御弁と、 前記過給機よりも下流側の吸気通路と前記触媒よりも下
流側の排気通路とをバイパスさせる第2の吸気バイパス
通路と、 前記第2の吸気バイパス通路を通過する空気量を制御す
る第2のバイパス空気量制御弁と、 内燃機関に供給する吸入空気の酸素量(以下「供給酸素
量」という)を推定する供給酸素量推定手段と、 内燃機関に供給する燃料を燃焼するのに必要な吸入空気
の酸素量(以下「目標酸素量」という)を算出する目標
酸素量算出手段と、 前記触媒温度判定手段で判定した触媒温度と目標触媒温
度との差及び前記酸素量推定手段で求めた供給酸素量と
前記目標酸素量算出手段で求めた目標酸素量との差に基
づいて前記第1及び第2のバイパス空気量制御弁の開度
を制御する制御手段とを備えていることを特徴とする内
燃機関制御装置。
4. An internal combustion engine control device including a supercharger provided in an intake passage and an exhaust purification catalyst provided in an exhaust passage, wherein: a catalyst temperature determining means for determining a temperature of the catalyst; A first intake bypass passage that bypasses an intake passage downstream of the supercharger and an exhaust passage upstream of the catalyst, and a first air passage that controls an amount of air passing through the first intake bypass passage. A bypass air amount control valve, a second intake bypass passage that bypasses an intake passage downstream of the supercharger and an exhaust passage downstream of the catalyst, and passing through the second intake bypass passage. A second bypass air amount control valve for controlling an amount of air to be supplied, an oxygen supply amount estimating means for estimating an oxygen amount of intake air supplied to the internal combustion engine (hereinafter, referred to as an “supply oxygen amount”), and a supply to the internal combustion engine Burning fuel A target oxygen amount calculating means for calculating an oxygen amount of the intake air required to perform the operation (hereinafter, referred to as a “target oxygen amount”); a difference between the catalyst temperature determined by the catalyst temperature determining means and the target catalyst temperature; Control means for controlling the degree of opening of the first and second bypass air amount control valves based on a difference between the supplied oxygen amount obtained by the estimating means and the target oxygen amount obtained by the target oxygen amount calculating means. An internal combustion engine control device comprising:
【請求項5】 前記制御手段は、前記触媒温度が目標触
媒温度より低い場合には、前記第1のバイパス空気量制
御弁を閉鎖して、前記第2のバイパス空気量制御弁の開
度を制御することで、前記供給酸素量を前記目標酸素量
に合わせるように制御し、 前記触媒温度が目標触媒温度より高い場合には、前記供
給酸素量を前記目標酸素量に合わせるように前記第1及
び第2のバイパス空気量制御弁の開度を制御した上で前
記過給機の過給能力に余力がある範囲内で前記触媒温度
と目標触媒温度との差に応じて前記第1のバイパス空気
量制御弁の開度を制御することを特徴とする請求項4に
記載の内燃機関制御装置。
5. The control means, when the catalyst temperature is lower than a target catalyst temperature, closes the first bypass air amount control valve and adjusts an opening degree of the second bypass air amount control valve. By controlling, the supply oxygen amount is controlled to match the target oxygen amount. When the catalyst temperature is higher than the target catalyst temperature, the first oxygen supply amount is adjusted to the target oxygen amount. And controlling the opening degree of the second bypass air amount control valve, and setting the first bypass according to a difference between the catalyst temperature and a target catalyst temperature within a range in which the supercharging capacity of the supercharger has a surplus. The internal combustion engine control device according to claim 4, wherein the opening degree of the air amount control valve is controlled.
【請求項6】 前記供給酸素量推定手段は、吸気圧を検
出する吸気圧センサ、吸入空気量を検出する吸入空気量
センサ、吸気系への排気ガスの還流量を検出する排気還
流量センサ、前記内燃機関に吸入される酸素量を検出す
る酸素センサのうちの少なくとも1つのセンサの出力信
号に基づいて供給酸素量を推定することを特徴とする請
求項1乃至5のいずれかに記載の内燃機関制御装置。
6. The supply oxygen amount estimating means includes an intake pressure sensor for detecting an intake pressure, an intake air amount sensor for detecting an intake air amount, an exhaust gas recirculation amount sensor for detecting a recirculation amount of exhaust gas to an intake system, The internal combustion engine according to any one of claims 1 to 5, wherein the supply oxygen amount is estimated based on an output signal of at least one of the oxygen sensors that detects an oxygen amount taken into the internal combustion engine. Engine control device.
【請求項7】 前記目標酸素量算出手段は、前記過給機
の過給圧限界値に相当する最大酸素量以下の範囲内で前
記目標酸素量を内燃機関の運転状態に基づいて算出する
ことを特徴とする請求項1乃至6のいずれかに記載の内
燃機関制御装置。
7. The target oxygen amount calculation means calculates the target oxygen amount based on an operation state of an internal combustion engine within a range equal to or less than a maximum oxygen amount corresponding to a supercharging pressure limit value of the supercharger. The internal combustion engine control device according to any one of claims 1 to 6, wherein
JP21224596A 1996-08-12 1996-08-12 Internal combustion engine control device Expired - Fee Related JP3714495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21224596A JP3714495B2 (en) 1996-08-12 1996-08-12 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21224596A JP3714495B2 (en) 1996-08-12 1996-08-12 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPH1054251A true JPH1054251A (en) 1998-02-24
JP3714495B2 JP3714495B2 (en) 2005-11-09

Family

ID=16619386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21224596A Expired - Fee Related JP3714495B2 (en) 1996-08-12 1996-08-12 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP3714495B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286905A (en) * 2002-03-26 2003-10-10 Toyota Motor Corp Internal combustion engine with supercharger and its exhaust structure
JP2006336537A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Control device for internal combustion engine
JP2008255940A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2010506073A (en) * 2006-10-02 2010-02-25 マック トラックス インコーポレイテッド Engine with charge air recirculation and method for controlling the engine
JP2011513643A (en) * 2008-03-04 2011-04-28 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Charged air bypass for aftertreatment combustion air supply system
GB2442794B (en) * 2006-10-11 2011-05-18 Bentley Motors Ltd An internal combustion engine having a turbocharger
JP2012052429A (en) * 2010-08-31 2012-03-15 Daihatsu Motor Co Ltd Internal combustion engine
WO2012060155A1 (en) * 2010-11-02 2012-05-10 日立造船株式会社 Exhaust gas emission purification device
CN102889150A (en) * 2007-02-07 2013-01-23 丰田自动车株式会社 Cylinder head for internal-combustion engine
JP2013096276A (en) * 2011-10-31 2013-05-20 Daihatsu Motor Co Ltd Onboard power generation system
KR101300706B1 (en) * 2011-07-27 2013-08-26 대우조선해양 주식회사 Exhaust gas cleaning apparatus and method in ship or marine structure
JP2014040245A (en) * 2013-10-24 2014-03-06 National Maritime Research Institute Jet gas supplying method for marine vessel and jet gas control apparatus
KR101506696B1 (en) * 2008-02-29 2015-04-06 보르그워너 인코퍼레이티드 Multi-stage turbocharging system with thermal bypass
JP2015081554A (en) * 2013-10-22 2015-04-27 ヤンマー株式会社 Engine with supercharger
JP2018071431A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Exhauster warm-up system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286905A (en) * 2002-03-26 2003-10-10 Toyota Motor Corp Internal combustion engine with supercharger and its exhaust structure
JP2006336537A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Control device for internal combustion engine
JP4552763B2 (en) * 2005-06-02 2010-09-29 トヨタ自動車株式会社 Control device for internal combustion engine
JP2010506073A (en) * 2006-10-02 2010-02-25 マック トラックス インコーポレイテッド Engine with charge air recirculation and method for controlling the engine
GB2442794B (en) * 2006-10-11 2011-05-18 Bentley Motors Ltd An internal combustion engine having a turbocharger
CN102889150A (en) * 2007-02-07 2013-01-23 丰田自动车株式会社 Cylinder head for internal-combustion engine
JP2008255940A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
KR101506696B1 (en) * 2008-02-29 2015-04-06 보르그워너 인코퍼레이티드 Multi-stage turbocharging system with thermal bypass
JP2011513643A (en) * 2008-03-04 2011-04-28 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Charged air bypass for aftertreatment combustion air supply system
US8776504B2 (en) 2008-03-04 2014-07-15 Tenneco Automotive Operating Company Inc. Bypass fluid system for exhaust aftertreatment
JP2012052429A (en) * 2010-08-31 2012-03-15 Daihatsu Motor Co Ltd Internal combustion engine
JP2012097665A (en) * 2010-11-02 2012-05-24 Hitachi Zosen Corp Exhaust emission control device
WO2012060155A1 (en) * 2010-11-02 2012-05-10 日立造船株式会社 Exhaust gas emission purification device
CN103210189A (en) * 2010-11-02 2013-07-17 日立造船株式会社 Exhaust gas emission purification device
KR101300706B1 (en) * 2011-07-27 2013-08-26 대우조선해양 주식회사 Exhaust gas cleaning apparatus and method in ship or marine structure
JP2013096276A (en) * 2011-10-31 2013-05-20 Daihatsu Motor Co Ltd Onboard power generation system
JP2015081554A (en) * 2013-10-22 2015-04-27 ヤンマー株式会社 Engine with supercharger
US10006389B2 (en) 2013-10-22 2018-06-26 Yanmar Co., Ltd. Engine with supercharger
JP2014040245A (en) * 2013-10-24 2014-03-06 National Maritime Research Institute Jet gas supplying method for marine vessel and jet gas control apparatus
JP2018071431A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Exhauster warm-up system

Also Published As

Publication number Publication date
JP3714495B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
US6314735B1 (en) Control of exhaust temperature in lean burn engines
US7043916B2 (en) Control device for turbocharger with electric motor and control method of same
JP4320859B2 (en) Control device for turbocharged engine
JP3714495B2 (en) Internal combustion engine control device
JP2004278442A (en) Internal combustion engine control device
JP2008280923A (en) Engine supercharging device
JP3966243B2 (en) Internal combustion engine
JP2003097298A (en) Control apparatus for internal combustion engine with supercharger
JP6128425B2 (en) Supercharger control device for internal combustion engine
JP3988691B2 (en) Supercharger for internal combustion engine
US5297532A (en) Supercharging pressure control system for supercharged internal combustion engines
JP6763488B2 (en) Control method and control device for internal combustion engine for vehicles
EP1350937A2 (en) Energy regeneration control system and method for an internal combustion engine
JP2004316558A (en) Control device of supercharger with electric motor
JPH08303309A (en) Egr device of diesel engine with supercharger
JPH0953456A (en) Engine with turbosupercharger for vehicle
JP2019173578A (en) Engine control device
JP3448862B2 (en) Diesel engine control unit
JP7380914B2 (en) Catalyst warm-up control method and catalyst warm-up control device for internal combustion engine
JP2004346917A (en) Internal combustion engine control device
JP3533891B2 (en) Diesel engine intake control device
JP6784325B2 (en) Internal combustion engine control method and internal combustion engine control device
US11441497B2 (en) Internal combustion engine control method and internal combustion engine control device
JP6763489B2 (en) Control method and control device for internal combustion engine for vehicles
JPH0526049A (en) Supercharging control device for mechanical supercharger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees