JPS6195617A - Cmos logic circuit - Google Patents

Cmos logic circuit

Info

Publication number
JPS6195617A
JPS6195617A JP59216259A JP21625984A JPS6195617A JP S6195617 A JPS6195617 A JP S6195617A JP 59216259 A JP59216259 A JP 59216259A JP 21625984 A JP21625984 A JP 21625984A JP S6195617 A JPS6195617 A JP S6195617A
Authority
JP
Japan
Prior art keywords
input
output
turned
nmos
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59216259A
Other languages
Japanese (ja)
Other versions
JPH0622328B2 (en
Inventor
Masahiro Iwamura
将弘 岩村
Ikuro Masuda
郁朗 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59216259A priority Critical patent/JPH0622328B2/en
Publication of JPS6195617A publication Critical patent/JPS6195617A/en
Publication of JPH0622328B2 publication Critical patent/JPH0622328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Logic Circuits (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE:To eliminate an offset of an output level by providing a complementary switch comprising parallel connection of a PMOS and an NMOS between one of inputs and an output so as to drive each gate with a positive or an inverted signal of the other input. CONSTITUTION:One electrode each of the PMOS15 and the NMOS16 is connected in common to an input B. Other electrode each of the PMOS15 and the NMOS16 is connected in common to an output C. The gate of the PMOS15 is connected to the input A and the gate of the NMOS16 is connected to a point P corresponding to an inverted level of the input A. When the level of both the inputs A and B is logical '0', an NMOS54 is turned off, and an PMOS53 and the PMOS15 are turned on. An output C is decreased to DELTAV1 by the discharge of the PMOS53 and the PMOS15. On the other hand, since the level of the point P is logical '1', the NMOS16 is turned on. As a result, the charge of the output C is discharged to '0' completely and the level is logical '0'.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は論理回路に係り、特に、相補型MO3FET(
CMO3)を使用した排他的OR回路及び排他的NOR
回路の改良に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a logic circuit, and particularly to a complementary MO3FET (
Exclusive OR circuit and exclusive NOR using CMO3)
Regarding circuit improvement.

〔発明の背景〕[Background of the invention]

排他的OR回路(以下FORと略す、)として、従来、
第3図の回路が使用されている。この回路の入力、出力
の関係は次式で示される。
Conventionally, as an exclusive OR circuit (hereinafter abbreviated as FOR),
The circuit of FIG. 3 is used. The relationship between the input and output of this circuit is shown by the following equation.

C=AψB+A−B また、排他的NOR回路(以下、 ENORと略す、)
として、従来、第4図の回路が使用されている。
C=AψB+A-B Also, exclusive NOR circuit (hereinafter abbreviated as ENOR)
Conventionally, the circuit shown in FIG. 4 has been used.

この回路の入力、出力の関係は。What is the relationship between the input and output of this circuit?

C=A−B+A−B ところで、上記の回路をCMO5で構成した場合、夫々
、12ケのトランジスタを必要とし、集積回路の面積が
大きくなる欠点がある。
C=A-B+A-B By the way, when the above circuit is constructed using CMO5, 12 transistors are required for each, which has the disadvantage that the area of the integrated circuit becomes large.

この欠点を改良したFOR,ENOR回路が特開昭50
−140255号の第2図、第3図に示されている。
FOR and ENOR circuits that improved this drawback were developed in 1983.
This is shown in Figures 2 and 3 of No.-140255.

第5図は、改良された従来のEOR回路を示す。FIG. 5 shows an improved conventional EOR circuit.

図において、51はPMO5であり、ソースが電源子V
に、ゲートが入力Aに接続され、ドレインがNMOS5
2のドレインに接続される。 NMOS52のゲートは
入力Aに接続され、ソースは接地電位GNDに接続され
る。また、PMOS51とNMOS51の共通接点Pは
NMOS 54のソースに接続される。53はPMO5
であり、ソースは入力Aに、ゲートは入力Bに接続され
、ドレインは出力Cに接続される。
In the figure, 51 is PMO5, and the source is the power supply V
, the gate is connected to input A, and the drain is connected to NMOS5.
Connected to the drain of 2. The gate of NMOS 52 is connected to input A, and the source is connected to ground potential GND. Further, a common contact P between the PMOS 51 and the NMOS 51 is connected to the source of the NMOS 54. 53 is PMO5
, the source is connected to input A, the gate is connected to input B, and the drain is connected to output C.

54はNMOSであり、ドレインは出力Cに、ゲートは
入力Bに接続され、ソースはP点に接続される。
54 is an NMOS whose drain is connected to output C, gate is connected to input B, and source is connected to point P.

この回路の入力A、Bと出力Cの関係及び出力(Cの電
圧レベルは表1に示すとおりである。以下。
The relationship between inputs A, B and output C of this circuit and the voltage level of output (C) are as shown in Table 1. Below.

この回路の動作を説明する。The operation of this circuit will be explained.

この回路の動作を説明する。The operation of this circuit will be explained.

第  1  表 いま、入力Aが“1”、入力Bが# O#のとき。Table 1 Now, when input A is "1" and input B is #O#.

PMO363はオン、NMOS54はオフになる。その
結果、出力Cは“1”になり電源+Vまで充電される0
次に、入力A、Bが共にl(I 11のとき、 PMO
353はオフ、NMOS54はオンになる。一方、P点
はOvまで下がれるので出力CはNMOS54 、 N
に0852を通してOvまで放電され、0”レベルにな
る。
PMO363 is turned on and NMOS54 is turned off. As a result, the output C becomes “1” and is charged to the power supply +V.
Next, when inputs A and B are both l (I 11, PMO
353 is turned off and NMOS 54 is turned on. On the other hand, since the P point can be lowered to Ov, the output C is NMOS54, N
It is discharged to Ov through 0852 and becomes 0'' level.

入力A、Bが共に“0ルベルのとき、NMOS54はオ
フ、PMO353はオンになる。その結果。
When inputs A and B are both "0 level", NMOS54 is turned off and PMO353 is turned on.The result.

出力Cは“0”になる。このとき、出力CがPMO55
3のV□以下になると、PMO353はオンを維持でき
なくなる。従って、出力Cの“0”レベルは表1のよう
にΔv1のオフセットを持つ。
Output C becomes "0". At this time, the output C is PMO55
When the voltage drops below 3 V□, the PMO 353 cannot remain on. Therefore, the "0" level of the output C has an offset of Δv1 as shown in Table 1.

次に、入力Aが# Q 11.入力Bが1”のときPM
O553はオフ、NMOS54はオンになる。一方、P
点は“l”になるので出力Cは“l”になる。
Next, input A is #Q 11. PM when input B is 1”
O553 is turned off and NMOS54 is turned on. On the other hand, P
Since the point becomes "l", the output C becomes "l".

このとき、NMOS 54の基板効果により出力Cは電
源+Vまで上昇できず、表1のようにΔv2だけのオフ
セットを持つ。
At this time, the output C cannot rise to the power supply +V due to the substrate effect of the NMOS 54, and has an offset of Δv2 as shown in Table 1.

第6図は改良された従来のENOR回路を示す1図にお
いて、61はPMO5であり、ソースは電源V+に、ゲ
ートは入力Aに接続され、ドレインはNMOS62のド
レインに接続される。 NMOS62のゲートは入力A
に接続され、ソースはGNDに接続される。63はPM
O5テあり、ソースはPMO561、NMOS62の共
通ドレイン接続点Pに接続される。 PMO363のゲ
ートは入力Bに、ドレインは出力Cに接続される。64
はNMOSであり、ドレイン′は出力Cに、ゲートは入
力Bに接続され、ソースは入力Aに接続される。
FIG. 6 shows an improved conventional ENOR circuit, in which 61 is a PMO 5 whose source is connected to the power supply V+, whose gate is connected to input A, and whose drain is connected to the drain of NMOS 62. The gate of NMOS62 is input A
The source is connected to GND. 63 is PM
There is an O5 terminal, and the source is connected to the common drain connection point P of PMO561 and NMOS62. The gate of PMO363 is connected to input B, and the drain is connected to output C. 64
is an NMOS, the drain' is connected to the output C, the gate is connected to the input B, and the source is connected to the input A.

この回路の入力A、Bと出力Cの関係及び出力Cの電圧
レベルは表2に示すとおりである。以下。
The relationship between inputs A, B and output C of this circuit and the voltage level of output C are as shown in Table 2. below.

この回路の動作を説明する。The operation of this circuit will be explained.

いま、入力A、Bがともに“0″のとき、P点は“l”
になり、NMOS64はオフ、 PMO383はオンに
なる。その結果、出力c4“1”になり電源+Vまで充
電される2次に入力Aがlo#ZBが“1″のときPM
O363はオフ、NMOS64はオンになる。その結果
、出力Cはjj Oj7レベルになりOVまで放電され
る。
Now, when inputs A and B are both “0”, point P is “l”
, NMOS64 is turned off and PMO383 is turned on. As a result, the output c4 becomes "1" and the secondary input A is charged to the power supply +V.When lo#ZB is "1", PM
O363 is turned off and NMOS64 is turned on. As a result, the output C becomes the jj Oj7 level and is discharged to OV.

入力Aが“1”、Bが“0″のとき、P点は”O”に?
、+lJ、NMOS641;!オフ 、 PMO563
1Lオンになる。その結果、出力Cは“0”になる。こ
のとき、出力CがPMO363のv0以下になると。
When input A is “1” and input B is “0”, does point P become “O”?
, +lJ, NMOS641;! Off, PMO563
1L turns on. As a result, the output C becomes "0". At this time, when the output C becomes less than v0 of PMO363.

PMO563はオンを維持できなくなる。従って、出力
Cのレベルは表2のようにAV、のオフセットを持つ。
PMO 563 will no longer be able to remain on. Therefore, the level of output C has an offset of AV as shown in Table 2.

入力A、Bが共に“1″のとき、P点は1”になり、P
MQS63はオフ、8MO864はオンになる。
When inputs A and B are both “1”, point P becomes “1” and P
MQS63 is turned off and 8MO864 is turned on.

このとき、NMOS64の基板効果により出力Cは電源
子Vまで上昇できず1表2のようにAV、だけのオフセ
ットを持つ。
At this time, due to the substrate effect of the NMOS 64, the output C cannot rise to the power supply voltage V, and has an offset of AV as shown in Table 1.

このように、改良された従来のEOR,ENOR回路で
は少ない素子数で構成できる反面、出力電圧レベルにオ
フセットを持つため、その出力に接続される論理回路の
消費電力が増大する欠点がある。
As described above, although the improved conventional EOR and ENOR circuits can be configured with a small number of elements, they have the disadvantage that the output voltage level has an offset, which increases the power consumption of the logic circuit connected to the output.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこのような従来技術の欠点を除去した排
他的OR回路、排他的NOR回路を提供することにある
An object of the present invention is to provide an exclusive OR circuit and an exclusive NOR circuit that eliminate the drawbacks of the prior art.

〔発明の概要〕[Summary of the invention]

本発明の要点は、一方の入力と出力の間にpsosと8
MO5を並列接続した相補スイッチを設け、夫々のゲー
トを他方入力の正又は反転信号で駆動することにある。
The key point of the invention is that between one input and output there is a psos and an 8
A complementary switch is provided in which MO5s are connected in parallel, and each gate is driven by a positive or inverted signal input from the other.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に従って本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明のEOR回路である0本発明ではPMQ
S15と8MO316からなる相補スイッチが新たに設
けられている。 PMQS 15とNHQS 16の一
方の電極は共通接続され、入力Bに接続される。 PM
QS15と8MO516の他方の電極は共通接続され、
出力Cに接続される。また、PMQS15のゲートは入
力Aに接続され、8MO516のゲートは入力Aの反転
出力であるP点に接続される。
Figure 1 shows the EOR circuit of the present invention.0 In the present invention, PMQ
A complementary switch consisting of S15 and 8MO316 is newly provided. One electrode of PMQS 15 and NHQS 16 are commonly connected and connected to input B. PM
The other electrodes of QS15 and 8MO516 are commonly connected,
Connected to output C. Further, the gate of PMQS15 is connected to input A, and the gate of 8MO516 is connected to point P, which is the inverted output of input A.

この回路の動作は次のとおりである。いま、入力A、B
が共にII O”のとき、NMOS54はオフになり、
Pに0853とPMQS15がオンになる。 PMQS
53とPMQS15による放電で出力CはAV、まで下
がる。一方、このときP点は″1″になっているので、
8MO316もオンになる。この結果、出力Cは完全に
0まで放電され、110 I+レベルになる。
The operation of this circuit is as follows. Now input A, B
When both are IIO”, NMOS54 is turned off,
0853 and PMQS15 are turned on. PMQS
53 and PMQS15, the output C drops to AV. On the other hand, since the P point is "1" at this time,
8MO316 is also turned on. As a result, the output C is completely discharged to 0 and reaches the 110 I+ level.

次に、入力Aが110”、Bが“1″のとき、P点はI
I l +1になり、 PMQS53はオフ、NMOS
54と8MO316がオンになる。NMOS54と8M
O316による充電圧で出力Cは+V−aV2まで上昇
する。
Next, when input A is 110'' and input B is 1, point P is I
I l +1, PMQS53 is off, NMOS
54 and 8MO316 are turned on. NMOS54 and 8M
The output C rises to +V-aV2 due to the charging pressure caused by O316.

一方、このとき、PMQS15はオンになっているので
出力Cは+■まで充電され、61″レベルになる。
On the other hand, since the PMQS 15 is on at this time, the output C is charged to +■ and reaches the 61'' level.

次に、入力Aが“1”、Bが“ONのとき、P点は“0
#になり、NHQS 54とNMOS 16 、 PM
QS15はオフ、PMQS53がオンになる。その結果
、出力Cは+Vまで充電圧され“1”レベルになる。
Next, when input A is “1” and input B is “ON”, point P is “0”.
#, NHQS 54 and NMOS 16, PM
QS15 is turned off and PMQS53 is turned on. As a result, the output C is charged to +V and becomes the "1" level.

次に、入力A、Bが共に“1”のとき、P点は1/ O
IIになり、PMQS53 、 PMO5I 5 、 
NNQSI 6はオフ、NMOS54はオンになる。そ
の結果、出力CはOvまで放電され、“0ルベルになる
Next, when inputs A and B are both “1”, point P is 1/O
II, PMQS53, PMO5I 5,
NNQSI 6 is turned off and NMOS 54 is turned on. As a result, the output C is discharged to Ov and becomes "0 level."

第2図は本発明のEMOR回路である。FIG. 2 shows the EMOR circuit of the present invention.

本発明ではPMQS15と8MO316からなる相補ス
イッチが新たに設けられている。 PMO5I 5と8
MO316の一方の電極は共通接続され、入力Bに接続
される。PMQS l 5と8MO516の他方の電極
は共通接続され、出力Cに接続される。また、PMQS
15のゲートは入口Aの反転出力であるP点に接続され
、8MO516のゲートは入力Aに接続布れる。
In the present invention, a complementary switch consisting of PMQS15 and 8MO316 is newly provided. PMO5I 5 and 8
One electrode of MO 316 is connected in common and connected to input B. The other electrodes of PMQS l 5 and 8MO516 are connected in common and connected to output C. Also, PMQS
The gate of 8MO516 is connected to point P, which is the inverted output of input A, and the gate of 8MO516 is connected to input A.

この回路の動作は次のとおりである。いま、入力A、B
が共に′0”のとき、P点は11111になり、PMO
5I 5 、 NNQSI 8 、 NHQS54がオ
フニなる。
The operation of this circuit is as follows. Now input A, B
When both are '0'', the P point becomes 11111, and PMO
5I 5, NNQSI 8, and NHQS54 are off.

その結果、出力Cは電源+vまで充電され、IJ”にな
る。
As a result, the output C is charged to the power supply +v and becomes IJ''.

次に入力Aが“0”、Bが“1″のとき、P点は“1”
になり、PMQS 63 、 NMOS 16はオフ。
Next, when input A is “0” and input B is “1”, point P is “1”
PMQS 63 and NMOS 16 are turned off.

NMOS64はオンになる。その結果、出力Cはovで
放電され、′0”になる。
NMOS 64 is turned on. As a result, the output C is discharged at ov and becomes '0'.

次に入力Aが11”、Bが′O″のとき、P点は” o
 ” ニなり、PMQS 15 、 NHQS 64が
オフニなり、PMQS63がオンニなり、出OCはPM
QS63を通してAV、まで放電される。一方、このと
き、8MO516もオンになっているので出力Cは完全
にOvまで放電されll O11となる。
Next, when input A is 11" and input B is 'O', point P is "o"
” PMQS 15, NHQS 64 is off-ni, PMQS63 is on-ni, exit OC is PM
It is discharged to AV through QS63. On the other hand, at this time, since the 8MO516 is also on, the output C is completely discharged to Ov and becomes llO11.

次に、入力A、Bが共にII I 11のとき、P点が
110”になり、PMQS63がオフ、NHQS l 
6 、 NMOS64がオンニなり、出力Cは8MO5
16と8MO564の基板効果があるので+V−Δv2
 まで上昇する。
Next, when inputs A and B are both II I 11, point P becomes 110'', PMQS63 is off, and NHQS l
6, NMOS64 is turned on, output C is 8MO5
Since there is a substrate effect of 16 and 8MO564, +V-Δv2
rises to.

され、′1”になる。and becomes '1'.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、EOR,ENOR回路は夫々、6素子
で実現でき、しかも、出力レベルにオフセットが無いた
め、集積回路の高集積、低消費電力化に効果大である。
According to the present invention, each of the EOR and ENOR circuits can be realized with six elements, and since there is no offset in the output level, it is highly effective in achieving high integration and low power consumption of integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のEOR回路図、第2図は本発明のEN
OR回路図、第3図は従来のFOR回路図、第4図は従
来のENOR回路図、第5図は従来の改良されたFOR
回路図、第6図は従来の改良された皐1図 も2図 十v 士V
Fig. 1 is an EOR circuit diagram of the present invention, and Fig. 2 is an EN circuit diagram of the present invention.
OR circuit diagram, Figure 3 is a conventional FOR circuit diagram, Figure 4 is a conventional ENOR circuit diagram, and Figure 5 is a conventional improved FOR circuit diagram.
The circuit diagram, Figure 6, is the conventional improved version.

Claims (1)

【特許請求の範囲】 1、第1のPMOSと第1のNMOSのドレインを接続
して出力とし、夫々のゲートを共通接続して第1の入力
とし、前記第1のPMOSのソースを第2の入力に接続
し、第2のNMOSのソースを前記第2の入力の反転出
口に接続した排他的OR回路において、前記第1の入力
と前記出力の間に夫々のソースおよびドレインが接続さ
れる第2のPMOSと第2のNMOSを設け、前記第2
のPMOSのゲートは前記第2の入力に、前記第2のN
MOSのゲートは前記第2の入力の反転出力に接続する
ことを特徴とするCMOS論理回路。 2、第1のPMOSと第1のNMOSのドレインを接続
して出力とし、夫々のゲートを共通接続して第1の入力
とし、前記第1のPMOSのソースを第2の入力の反転
出力に接続し、第1のNMOSのソースを前記第2の入
力に接続した排他的NOR回路において、前記第1の入
力と出力の間に、夫々のソースおよびドレインが接続さ
れる第2のPMOSと第2のNMOSを設け、前記第2
のNMOSのゲートは前記第2の入力の反転出力に接続
し、前記第2のNMOSのゲートは前記第2の入力に接
続したことを特徴とするCMOS論理回路。
[Claims] 1. The drains of the first PMOS and the first NMOS are connected as an output, the gates of each are commonly connected as the first input, and the source of the first PMOS is connected as the second input. and a source of a second NMOS is connected to an inverting outlet of the second input, the respective sources and drains being connected between the first input and the output. a second PMOS and a second NMOS;
The gate of the PMOS of
A CMOS logic circuit characterized in that a gate of the MOS is connected to an inverted output of the second input. 2. The drains of the first PMOS and the first NMOS are connected as an output, the gates of each are commonly connected as a first input, and the source of the first PMOS is an inverted output of the second input. and a second PMOS and a second PMOS whose respective sources and drains are connected between the first input and the output. 2 NMOS is provided, and the second
A gate of the NMOS is connected to an inverted output of the second input, and a gate of the second NMOS is connected to the second input.
JP59216259A 1984-10-17 1984-10-17 Semiconductor integrated circuit device having CMOS logic circuit Expired - Lifetime JPH0622328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216259A JPH0622328B2 (en) 1984-10-17 1984-10-17 Semiconductor integrated circuit device having CMOS logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216259A JPH0622328B2 (en) 1984-10-17 1984-10-17 Semiconductor integrated circuit device having CMOS logic circuit

Publications (2)

Publication Number Publication Date
JPS6195617A true JPS6195617A (en) 1986-05-14
JPH0622328B2 JPH0622328B2 (en) 1994-03-23

Family

ID=16685748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216259A Expired - Lifetime JPH0622328B2 (en) 1984-10-17 1984-10-17 Semiconductor integrated circuit device having CMOS logic circuit

Country Status (1)

Country Link
JP (1) JPH0622328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292912A (en) * 1988-05-19 1989-11-27 Nec Corp Logic circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219058A (en) * 1975-08-04 1977-01-14 Nippon Telegr & Teleph Corp <Ntt> Exclusive logical sum circuit
JPS5649022A (en) * 1979-09-25 1981-05-02 Sumitomo Chem Co Ltd Production of carbon fiber tow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219058A (en) * 1975-08-04 1977-01-14 Nippon Telegr & Teleph Corp <Ntt> Exclusive logical sum circuit
JPS5649022A (en) * 1979-09-25 1981-05-02 Sumitomo Chem Co Ltd Production of carbon fiber tow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292912A (en) * 1988-05-19 1989-11-27 Nec Corp Logic circuit

Also Published As

Publication number Publication date
JPH0622328B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP2968200B2 (en) Electrostatic discharge and latch-up prevention circuit
JPH10303311A (en) Negative electric charge pump
JPH0159772B2 (en)
JPH05175811A (en) Power-on reset circuit
JP2003273724A (en) Semiconductor integrated circuit device
US3851277A (en) Astable multivibrator using insulated-gate field effect transistors
JPS6195617A (en) Cmos logic circuit
JP2806532B2 (en) Semiconductor integrated circuit device
JPH11163647A (en) Switched capacitor circuit
JPH0149969B2 (en)
JP2749185B2 (en) Composite logic circuit
JPH11163713A (en) Semiconductor integrated circuit device
JPH0127611B2 (en)
JP3626980B2 (en) Inverting amplifier circuit
JPS61189017A (en) Mis type semiconductor switch
JPH0793987A (en) Semiconductor integrated circuit device
JPS62135013A (en) Output circuit
JPH06105875B2 (en) Semiconductor integrated logic circuit
JPH0589265A (en) Integrating circuit
JPH04165709A (en) Rs flip-flop circuit
JPH021270B2 (en)
JPS61154159A (en) Conplementary mos integrated circuit
JPH01307315A (en) Power-on reset circuit
JPH04168806A (en) Selector circuit
JP2546894B2 (en) Clocked in-phase circuit