JPS6194342A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS6194342A
JPS6194342A JP21510284A JP21510284A JPS6194342A JP S6194342 A JPS6194342 A JP S6194342A JP 21510284 A JP21510284 A JP 21510284A JP 21510284 A JP21510284 A JP 21510284A JP S6194342 A JPS6194342 A JP S6194342A
Authority
JP
Japan
Prior art keywords
polysilicon
film
residue
etching
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21510284A
Other languages
Japanese (ja)
Inventor
Hiroaki Otsuki
大槻 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21510284A priority Critical patent/JPS6194342A/en
Publication of JPS6194342A publication Critical patent/JPS6194342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent short circuits due to residue of polycrystalline Si without excessive etching, by forming a polycrystalline Si film on a semiconductor substrate having the difference in steps on the surface, patterning the film by anisotropic etching, and oxidizing the residue of the polycrystalline Si film at the side surface of a step part. CONSTITUTION:On an Si substrate 21, a first polysilicon pattern 22 is formed. Thereafter, an interlayer insulating film 23 is formed on the entire surface. Second polysilicon 24 is deposited on the film 23. Impurities such as P are doped in the polysilicon 24. An oxidation resisting Si3N4 film 25 is formed thereon. A resist pattern 26 is formed on the film 25. With the pattern 26 as a mask, the film 25 and the polysilicon 24 are etched by RIE. The resist pattern 26 is exfoliated. Then, with the film 25 as an oxidation resisting mask, only the polysilicon 24 at the surface of the pattern 22 is oxidized as residue. Thus SiO2 27 is obtained. Then the film 25 is etched away. Thus short circuits due to the residue of the polysilicon 24 are prevented without excessive etching.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体素子の製造方法に関し、詳しくは、多
結晶シリコン膜(以下ポリシリコンと呼ぶンの)やター
ン形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming polycrystalline silicon films (hereinafter referred to as polysilicon) and turns.

(従来の技術) シリコン集積回路は、今後、ますます微細化が進み、高
密度化・高集積化が図られようとしている。これを支え
るエツチングにおける技術の一つが反応性イオンエッチ
(Reactive Ion Etch ;RIE)t
−筆頭とする異方性エツチングである。異方性エツチン
グは、超LSI技術総集編1982年版(昭57−7)
ダイヤモンド社経営開発編集部P213−P223にR
IEが詳述されているように、従来のいわゆるウェット
エッチ憧たはプラズマエッチのような異方性エツチング
と異なり、エツチングマスク材端からの横方向へのエツ
チング量が少なく、被エツチング物にほぼエツチングマ
スク通りの寸法の/4ターンが転写される。したがって
、フォトマスクからの変換差が小さく微細化に適してお
シ、今後、ますます使用されようとしている。
(Prior Art) Silicon integrated circuits will continue to become increasingly finer, with higher densities and higher integration being achieved. One of the etching technologies that supports this is reactive ion etch (RIE).
-This is anisotropic etching. Anisotropic etching is described in the 1982 edition of the VLSI Technology Compilation (1982-7).
Diamond Company Management Development Editorial Department P213-P223R
As detailed in IE, unlike conventional anisotropic etching such as wet etching or plasma etching, the amount of etching in the lateral direction from the edge of the etching mask material is small, and the etching target is almost completely etched. /4 turns of the dimensions according to the etching mask are transferred. Therefore, it has a small conversion difference from a photomask and is suitable for miniaturization, and will be used more and more in the future.

このような異方性エツチングでは、第2図のようにシリ
コシ基板16表面に膜2により段差があり、そこに被エ
ツチング物3を形成しエツチングする場合、下地段差部
の側面に被エツチング物3aが残りやすい。
In such anisotropic etching, when there is a step on the surface of the silicon substrate 16 due to the film 2 as shown in FIG. tends to remain.

(発明が解決しようとする問題点) そして、このことが、例えばシリコン集積回路のメモリ
などの製造においては問題となった。
(Problems to be Solved by the Invention) This has become a problem in the manufacture of silicon integrated circuit memories, for example.

すなわち、シリコン集積回路のメモリの製造方法におい
ては、第3図(a)のように、シリコン基板11上に第
1ポリシリコンのパターン12を形成した後、第2ポリ
シリコンとの層間絶縁膜13を熱酸化あるいはCV D
 (Chemical Vapor Depo −5i
tion )法などにより形成し、続いて第2ポリシリ
コン14’kCVD法で被着させ、その第2ポリシリコ
ン14の非エツチング部を図′示しないレジストで覆っ
た上で、第2ポリシリコン14 ’tRIEでエツチン
グして第4図の平面図に示すような第2ポリシリコンノ
臂ターン14a、14b4得ているが、RIEで第2ポ
リシリコン14をエツチングすると、第2ポリシリコン
14が除去されるべき部分でも第3図伽)のように第1
ポリシリコンノ臂ターン12の側面に第2ポリシリコン
14が残る。
That is, in the method of manufacturing a memory of a silicon integrated circuit, as shown in FIG. thermal oxidation or CVD
(Chemical Vapor Depo-5i
The second polysilicon layer 14 is formed by a method such as etching, followed by depositing the second polysilicon layer 14' by a CVD method. Although the second polysilicon arm turns 14a and 14b4 as shown in the plan view of FIG. 4 are obtained by etching with RIE, the second polysilicon 14 is removed when it is etched with RIE. Even in the part where it should be, the first part is
A second polysilicon 14 remains on the sides of the polysilicon arm turn 12.

すなわち、第4図の点線の部分に第2ポリシリコン14
が残る(第3図(b)は第4図のA−A部分の断面図で
ある)。したがって、この第2ポリシリコン14の残渣
で第2ポリシリコンパターン14a。
That is, the second polysilicon 14 is placed in the dotted line area in FIG.
remains (FIG. 3(b) is a sectional view taken along line A-A in FIG. 4). Therefore, the residue of the second polysilicon 14 forms the second polysilicon pattern 14a.

14bがショートして歩留りが低下する。14b is short-circuited and the yield decreases.

これを避けるため異方性エツチング性を弱くすルト、エ
ツチングマスク通りの寸法のパターンを転写できるとい
う異方性エツチングの特徴が損なわれる。また、オーバ
ーエツチングを行って段差部の残渣を除去しようとする
と、必要以上に平坦部の下地が損傷を焚け、延いては素
子特性に悪影響を及ぼすという問題点がある。
In order to avoid this, the anisotropic etching property is weakened, but the characteristic of anisotropic etching, which is that it is possible to transfer a pattern with the dimensions exactly as per the etching mask, is lost. Further, if an attempt is made to remove the residue from the stepped portion by over-etching, there is a problem that the underlying layer of the flat portion is damaged more than necessary, which in turn adversely affects the device characteristics.

(問題点を解決するだめの手段〉 そこで、この発明では、ポリシリコンの異方性エツチン
グ後、下地段差部側面のポリシリコンの残欲を酸化する
(Another Means to Solve the Problem) Therefore, in the present invention, after anisotropic etching of polysilicon, the residual polysilicon on the side surface of the underlying stepped portion is oxidized.

(作用) ポリシリコンの残渣を酸化すると、それは、非導電性の
Sin、に変わる。したがって、残直によるショートな
どの問題はなくなる。
(Operation) When the polysilicon residue is oxidized, it turns into non-conductive Sin. Therefore, problems such as short circuits due to leftovers are eliminated.

(実施例) 以下この発明の一実施例を第1図(この図は第4図のB
−B部分の断面図に相幽する)を従前して説明する。
(Example) An example of the present invention is shown in Fig. 1 (this figure is B in Fig. 4).
2) will be explained in advance.

第1図(a)において、21は半導体基板としてのシリ
コン基板であり、このシリコン基板21上に第1ポリシ
リコンのパターン22を形成した後、全面に眉間絶縁膜
23を形成し、さらにその上に第2ポリシリコン24を
被着する。ここで、層間絶縁膜23は例えば数百nm厚
の熱酸化5iO1膜からなる。また、第2ポリシリコン
24は例えば減圧CVD法で数百nm厚に形成されるも
ので、このポリシリコン24には「in aitと」か
或いは被着後、リン(P)などの不純物のドーピングを
行う。
In FIG. 1(a), 21 is a silicon substrate as a semiconductor substrate. After forming a first polysilicon pattern 22 on this silicon substrate 21, a glabella insulating film 23 is formed on the entire surface, and then A second polysilicon 24 is deposited on the surface. Here, the interlayer insulating film 23 is made of, for example, a thermally oxidized 5iO1 film with a thickness of several hundred nm. The second polysilicon 24 is formed to a thickness of several hundred nm by, for example, a low-pressure CVD method, and this polysilicon 24 is doped with impurities such as phosphorus (P) "in ait" or after deposition. I do.

その後、同第1図(a)のように、第2ポリシリコン2
4上に耐酸化性のS i 3 N、膜25をCVD法な
どで形成する。ここで、S i B N、膜25の膜厚
は、後述する酸化に対してマスクとなるだけの厚さとす
る。例えば、数十nm厚とする。
Thereafter, as shown in FIG. 1(a), the second polysilicon 2
An oxidation-resistant Si 3 N film 25 is formed on the substrate 4 by CVD or the like. Here, the thickness of the S i B N film 25 is set to be enough to serve as a mask against oxidation, which will be described later. For example, the thickness is several tens of nanometers.

次に、第1図(b)に示すように、S i 、N4膜2
5上に、第2ポリシリコン24の非エツチング部分を覆
うようにレジストパターン26をフォトリングラフィに
より形成する。
Next, as shown in FIG. 1(b), the Si, N4 film 2
5, a resist pattern 26 is formed by photolithography so as to cover the non-etched portions of the second polysilicon 24.

しかる後、同第1図(b)に示すように、レジストパタ
ーン26をマスクとしてRIEにより Si3N4膜2
5および第2ポリ−シリコン24’iエツチングする。
Thereafter, as shown in FIG. 1(b), the Si3N4 film 2 is removed by RIE using the resist pattern 26 as a mask.
5 and second poly-silicon 24'i etching.

これにより、第4図で示したところの第2のポリシリコ
ンパターンが形成される。また、この時、第2のポリシ
リコン24が除去されるべき部分であっても下地段差部
側面(第1ポリシリコンパターン22の側面)は、第1
図(b)に示すように第2ポリシリコン24が完全に除
去されずに残っている。
As a result, the second polysilicon pattern shown in FIG. 4 is formed. Moreover, at this time, even if the second polysilicon 24 is to be removed, the side surface of the base step part (the side surface of the first polysilicon pattern 22) is
As shown in Figure (b), the second polysilicon 24 remains without being completely removed.

そこで、次に、エツチングマスクとしてのレジストパタ
ーン26を剥離した上で、S i 、N、膜25を耐酸
化のマスクとして、前記残渣としての第2ポリシリコン
(第1ポリシリコンパターン22側面の第2ポリシリコ
ン)24のみを酸化し、これを第1図(C)に示すよう
に5in227とする。ここで、酸化は、水蒸気雰囲気
あるいは高圧下で行えば、より低温・短時間で済む。
Therefore, next, after peeling off the resist pattern 26 as an etching mask, using the Si, N, film 25 as an oxidation-resistant mask, the second polysilicon as the residue (the second polysilicon on the side surface of the first polysilicon pattern 22 2 polysilicon) 24 is oxidized to form a 5 inch 227 layer as shown in FIG. 1(C). Here, if the oxidation is performed in a steam atmosphere or under high pressure, it can be performed at a lower temperature and in a shorter time.

しかる恢、耐酸化マスクとしてのS i 3 N、膜2
5を、熱リン酸のような、SiO2とのエツチングの選
択比が大きなエッチャントで除去する。
However, S i 3 N as an oxidation-resistant mask, film 2
5 is removed with an etchant having a high etching selectivity with SiO2, such as hot phosphoric acid.

なお、以上の一実施例では、第2ポリシリコン24上に
S i 、N4膜25を付けて、その後の第2ポリシリ
コン24の残渣の酸化工程における耐酸化マスクとした
が、このS i 、N、膜25は必ずしも必要ない。す
なわち、S i 、N4膜25を形成する代9に、前記
酸化工程の時の第2ポリシリコン24の酸化による膜減
りを考慮して予め第2のポリシリコン24を厚くしてお
けばよい。
In the above embodiment, the S i , N4 film 25 was attached on the second polysilicon 24 to serve as an oxidation-resistant mask in the subsequent oxidation process of the residue of the second polysilicon 24, but this S i , N, the film 25 is not necessarily required. That is, in step 9 of forming the S i , N4 film 25, the thickness of the second polysilicon 24 may be increased in advance in consideration of the film reduction due to oxidation of the second polysilicon 24 during the oxidation process.

(発明の効果) 以上のように、この発明の方法では、ポリシリコンの異
方性エツチング後、下地段差部側面のポリシリコンの残
渣を酸化して、それを非導電性のSin、に変える。し
たがって、異方性エツチング性を弱めたり、オーバーエ
ッチを行うことなしに、ポリシリコンの残渣によるショ
ートなどの問題を解決でき、同時に、異方性エツチング
性を弱める方法オよびオーバーエッチ法による問題も解
決できる。また、異方性エツチング後の酸化は、エツチ
ングによるダメージを取り除く効果がある。
(Effects of the Invention) As described above, in the method of the present invention, after anisotropic etching of polysilicon, the polysilicon residue on the side surface of the underlying stepped portion is oxidized to convert it into non-conductive Sin. Therefore, problems such as short circuits caused by polysilicon residue can be solved without weakening the anisotropic etching property or over-etching, and at the same time, problems caused by methods that weaken the anisotropic etching property and over-etching can be solved. Solvable. Further, oxidation after anisotropic etching has the effect of removing damage caused by etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体素子の製造方法の一実施例を
説明するための断面図、第2図は異方性エツチングのと
き下地段差部側面に被エツチング物が残ることを示す模
式断面図、第3図はシリコン集積回路のメモリにおける
製造方法を説明するための断面図、第4図は同平面図で
ある。 21・・・シリコン基鈑、22・・・第1ポリシリコン
パターン、24・・・第2ポリシリコン、27・・・5
i02゜第1図 21:シリコン基板     24:%2ボッノリコン
22:11.↑ζす/リコンバターノ   25:5r
tuaルに23/i几門糸色倉本日贋      26
 Uノストバターン27:S;o□ 第2図 第4図
FIG. 1 is a cross-sectional view for explaining one embodiment of the method for manufacturing a semiconductor element of the present invention, and FIG. 2 is a schematic cross-sectional view showing that the object to be etched remains on the side surface of the stepped portion of the base during anisotropic etching. , FIG. 3 is a cross-sectional view for explaining a method of manufacturing a silicon integrated circuit memory, and FIG. 4 is a plan view thereof. 21...Silicon base plate, 22...First polysilicon pattern, 24...Second polysilicon, 27...5
i02゜Figure 1 21: Silicon substrate 24:%2 Bonnolicon 22:11. ↑ζsu/Reconvertano 25:5r
tual ni 23/i Kamon Itirokura today's counterfeit 26
U Nost Bataan 27: S; o□ Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  表面に段差を有する半導体基板上に多結晶シリコン膜
を形成する工程と、その多結晶シリコン膜を異方性エッ
チングでパターニングする工程と、この工程後、前記基
板の段差部側面の多結晶シリコン膜の残渣を酸化する工
程とを具備してなる半導体素子の製造方法。
A step of forming a polycrystalline silicon film on a semiconductor substrate having a step on the surface, a step of patterning the polycrystalline silicon film by anisotropic etching, and a step of patterning the polycrystalline silicon film on the side surface of the step of the substrate after this step. A method for manufacturing a semiconductor device, comprising the step of oxidizing the residue of.
JP21510284A 1984-10-16 1984-10-16 Manufacture of semiconductor element Pending JPS6194342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21510284A JPS6194342A (en) 1984-10-16 1984-10-16 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21510284A JPS6194342A (en) 1984-10-16 1984-10-16 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS6194342A true JPS6194342A (en) 1986-05-13

Family

ID=16666783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21510284A Pending JPS6194342A (en) 1984-10-16 1984-10-16 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6194342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896254B2 (en) 2004-11-15 2011-03-01 Smc Corporation Temperature regulation method and system for low flow rate liquid
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111247A (en) * 1980-01-24 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of semiconductor device
JPS58206142A (en) * 1982-05-26 1983-12-01 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111247A (en) * 1980-01-24 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of semiconductor device
JPS58206142A (en) * 1982-05-26 1983-12-01 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896254B2 (en) 2004-11-15 2011-03-01 Smc Corporation Temperature regulation method and system for low flow rate liquid
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method

Similar Documents

Publication Publication Date Title
EP0223994B1 (en) Method of forming a sub-micrometer trench structure on a semiconductor substrate
US5776821A (en) Method for forming a reduced width gate electrode
JPS588579B2 (en) hand tai souchi no seizou houhou
JPH07221193A (en) Formation of gate stack of integrated circuit
JP2874620B2 (en) Method for manufacturing semiconductor device
US6211557B1 (en) Contact structure using taper contact etching and polycide step
KR100268894B1 (en) Method for forming of flash memory device
JPS6194342A (en) Manufacture of semiconductor element
JP3516653B2 (en) Method for manufacturing semiconductor device
JP2003282700A (en) Hole forming method
JP3172998B2 (en) Semiconductor device and manufacturing method thereof
JP2907314B2 (en) Method for manufacturing semiconductor device
JP2005236118A (en) Semiconductor device and its manufacturing method
JPH09260647A (en) Semiconductor device and manufacture thereof
JPH06224161A (en) Manufacture of semiconductor device
JP2741964B2 (en) Method for manufacturing semiconductor device
JPS6194326A (en) Manufacture of semiconductor element
KR100416813B1 (en) Field Oxide Formation Method of Semiconductor Device
JP2002231693A (en) Photolithographic and etching method
JPS6194327A (en) Manufacture of semiconductor element
JPH0327521A (en) Manufacture of mos-type transistor
JP2571006B2 (en) Method of forming caliper pattern
JP2848746B2 (en) Method for manufacturing semiconductor device
KR100480231B1 (en) Field oxide film formation method of semiconductor device
KR940009578B1 (en) Semiconductor device and manufacturing method thereof