JPS6193831A - Preparation of membrane - Google Patents

Preparation of membrane

Info

Publication number
JPS6193831A
JPS6193831A JP21694284A JP21694284A JPS6193831A JP S6193831 A JPS6193831 A JP S6193831A JP 21694284 A JP21694284 A JP 21694284A JP 21694284 A JP21694284 A JP 21694284A JP S6193831 A JPS6193831 A JP S6193831A
Authority
JP
Japan
Prior art keywords
substrate
reaction
luminous flux
light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21694284A
Other languages
Japanese (ja)
Inventor
Akiyuki Tate
彰之 館
Kaname Jinguuji
神宮寺 要
Norio Takato
高戸 範夫
Takeshi Yamada
武 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21694284A priority Critical patent/JPS6193831A/en
Publication of JPS6193831A publication Critical patent/JPS6193831A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To form a membrane at a high speed while uniformity is held, by allowing reaction luminous flux to be incident to a substrate in parallel and passing said incident luminous flux along the substrate to be reflected by a reflective mirror while allowing the reflected liminous flux to be again incident to said substrate in parallel. CONSTITUTION:A substrate support part 8 for supporting a substrate 7 is mounted in a reaction container 6 and the substrate 7 is placed on the substrate support part 8 and a substrate heating part 9 for heating the substrate 7 is provided to said support part 8. Further, a gaseous phase substance introducing pipe 10 for introducing a gaseous phase substance into the reaction container 6 is provided in the reaction container 6. In this apparatus, when luminous flux 1 is introduced into the reaction container 6 from the luminous flux introducing window 40 of a liminous flux introducing part 4, reaction luminous flux 1 passes in parallel to the substrate 7 to be guided to a luminous flux reflective part 11. The luminous flux 1 guided to the luminous flux reflective part 11 is reflected by a reaction luminous flux total reflection mirror 110 to be returned to the substrate 7.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は薄膜の製造方法、さらに詳しくは気相より基体
表面に光化学反応により生成した物質の被膜を成長させ
る、いわゆる光気相化学成長法に関し、形成された薄膜
の基体上の膜厚分布を所要の範囲に保ちつつ、光束な薄
膜成長を可能にする製造方法に関するものである。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a method for producing a thin film, and more particularly, to a so-called photovapor phase chemical growth method in which a film of a substance produced by a photochemical reaction is grown on a substrate surface from a gas phase. The present invention relates to a manufacturing method that enables luminous thin film growth while maintaining the film thickness distribution of the formed thin film on a substrate within a required range.

〔発明の背景〕[Background of the invention]

気相物質の光分解および光反応を利用する被膜の形成は
シラン(Sin a ) 、ジシラン(Si2 Hs)
を原料としたa−5t (SiHa    Si+2 
H2、Sig Hs    2 Si+3H2:いずれ
も光エネルギによる反応)およびシラン、亜酸化窒素(
N20)を原料とした5iOs+(N20    N2
+01SiH4+20    SiO2+H2)の各薄
膜について多くの報告がある。またその他の光を用いた
薄膜の形成法についても特公昭56−96704号、特
公昭59−87814号等の公報に記載されている。
Silane (Sina), disilane (Si2Hs) can be used to form a film using photodecomposition and photoreaction of gas phase substances.
a-5t (SiHa Si+2
H2, Sig Hs 2 Si + 3H2: both reactions by light energy) and silane, nitrous oxide (
5iOs+ (N20 N2) using N20) as raw material
There are many reports on each thin film of +01SiH4+20SiO2+H2). Other methods of forming thin films using light are also described in Japanese Patent Publications No. 56-96704 and Japanese Patent Publication No. 59-87814.

第1図は従来の光反応を利用した薄膜の製造方法に用い
る装置の概略図である。図中、1は反応光束、2および
3は反応光束形状および強度分布変換用光学系、4は光
束導入部、40は光束導入用窓、41は窓パージ用ガス
導入管、5は光束出射部、50は光束出射用窓、51は
光束出射用窓パージ用ガス導入管、6は反応容器、7は
基体、8は基体支持部、9は基体加熱部、10は気相物
質導入管である。
FIG. 1 is a schematic diagram of an apparatus used in a conventional thin film manufacturing method using photoreaction. In the figure, 1 is a reaction light flux, 2 and 3 are optical systems for converting the reaction light flux shape and intensity distribution, 4 is a light flux introduction part, 40 is a window for light flux introduction, 41 is a gas introduction tube for window purging, and 5 is a light flux emission part , 50 is a window for light flux emission, 51 is a window for light flux emission, gas introduction tube for purging, 6 is a reaction vessel, 7 is a substrate, 8 is a substrate support section, 9 is a substrate heating section, and 10 is a gas phase substance introduction tube. .

この第1図よ′り明らかなように、光源より射出された
反応光束lは変換用光学系2,3を通過して光束導入部
4の光束導入用窓40より反応容器6中に入り、前記反
応容器6中の基体7直上を前記基体7と平行に進行する
とともに、光束出射部5の光束出射用窓50を経て反応
容器6より出射されるようになっている。
As is clear from FIG. 1, the reaction light flux l emitted from the light source passes through the conversion optical systems 2 and 3 and enters the reaction vessel 6 through the light flux introduction window 40 of the light flux introduction section 4. The light travels directly above the substrate 7 in the reaction container 6 in parallel to the substrate 7, and is emitted from the reaction container 6 through the light beam emission window 50 of the light beam emission section 5.

基体7の直上を進行する反応光束1は、気相物質導入管
10より導入され、かつ光路近傍に分布する気相物質の
光分解あるいは光反応を誘起し、基体加熱部9によって
加熱された基体7上で生成物はアニールされ薄膜を形成
する。
The reaction light beam 1 traveling directly above the substrate 7 is introduced from the gas phase substance introduction tube 10 and induces photodecomposition or photoreaction of the gas phase substance distributed near the optical path, and the substrate heated by the substrate heating section 9. The product is annealed on 7 to form a thin film.

このような方法により形成された薄膜の膜厚分布の均一
性を決める要因としては、基板面内の温度分布、反応光
の強度分布、気相物質の反応光束中における濃度分布お
よび気相物質の光吸収係数がある。
Factors that determine the uniformity of the thickness distribution of thin films formed by such methods include the temperature distribution within the substrate plane, the intensity distribution of the reaction light, the concentration distribution of the gaseous substance in the reaction light flux, and the concentration distribution of the gaseous substance in the reaction light flux. There is a light absorption coefficient.

1      温度、濃度分布の均一化においては類似
技術のMOCVDあるいは酸化雰囲気中でのSt裏表面
高温酸化技術などで良く検討され、多くの解決法がある
ことが知られている。また、反応光の強度分布の均一化
は従来の光学技術を応用することにより達成することが
可能である。
1. In order to make the temperature and concentration distribution uniform, similar techniques such as MOCVD or high-temperature oxidation of the St back surface in an oxidizing atmosphere have been well studied, and it is known that there are many solutions. Furthermore, uniformity of the intensity distribution of the reaction light can be achieved by applying conventional optical techniques.

しかしながら、光を利用した薄膜形成方法においては反
応光の気相物質による吸収のために、膜厚が入射端より
離れる程薄くなるという本質的な欠点を有していた。
However, the method of forming a thin film using light has an essential drawback that the film thickness becomes thinner as the distance from the incident end increases due to the absorption of the reaction light by the gas phase substance.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、所要の均
一性を保ちつつ、高速に薄1!!2を形成する方法を提
供することを目的とするものである。
The present invention has been made in view of the above points, and can be made thinner at high speed while maintaining the required uniformity. ! The purpose of this invention is to provide a method for forming 2.

したがって本発明による薄膜の製造方法によれば、気相
物質の光による分解を用いて基体上に薄膜を形成させる
方法において、反応光束を基体に平行に入射し、この入
射光束を基体上を通過させた後反射鏡により反射して再
度基体上に平行に入射させることを特徴とするものであ
る。
Therefore, according to the method for producing a thin film according to the present invention, in a method of forming a thin film on a substrate using light decomposition of a gas phase substance, a reaction light beam is incident on the substrate in parallel, and the incident light beam is passed on the substrate. After that, the light is reflected by a reflecting mirror and is made parallel to the substrate again.

本発明によれば、反応光束を基体に入射した後反射鏡に
より反射して再度入射するので、光束の強度分布を均一
化でき、そのため形成される被膜の膜厚分布を所要範囲
に保ちつつ、高速で形成できるという利点がある。
According to the present invention, after the reaction light beam is incident on the substrate, it is reflected by the reflecting mirror and then enters the substrate again, so that the intensity distribution of the light beam can be made uniform, and therefore, the thickness distribution of the formed film can be maintained within the required range. It has the advantage of being able to be formed at high speed.

〔発明の詳細な説明〕[Detailed description of the invention]

第2歯は本発明の方法を実施するための装置の一例を示
す概略図であり、第1図と同一の符号は同一部分を示し
、符号42は反応光束導入用窓材、11は反応光束反射
部、110は反応光束全反射ミラーを示している。
The second tooth is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, in which the same reference numerals as in FIG. The reflecting portion 110 represents a total reflection mirror for the reaction light beam.

この第2図より明らかなように、本発明を実施するため
の装置は、基板7を備えた反応容器6に光束導入窓40
を有する光束導入部4が設けられており、この光束導入
窓40には前記光束lを透過する反応光束導入用窓材4
2が備えられているとともに、この窓材42に気相物質
の煤が付着しないようにパージガスを導入するためのパ
ージガス導入管41が設けられている。
As is clear from this FIG.
A light flux introduction section 4 having a reaction light flux introduction section 4 is provided, and this light flux introduction window 40 has a reaction light flux introduction window material 4 that transmits the light flux l.
2, and a purge gas introduction pipe 41 for introducing purge gas so that soot, which is a gas phase substance, does not adhere to the window material 42 is provided.

この光束導入部4に対向する位置に反応光束反射部11
が設けられており、この反応光束反射部11は反応光束
を反射するための反応光束全反射ミラー110が備えら
れているとともに、この全反射ミラー110に気相物質
の煤が付着し、反射性を低下させないようにパージガス
導入管111が設けられている。
A reaction light beam reflection section 11 is located at a position opposite to this light flux introduction section 4.
The reaction light beam reflecting section 11 is equipped with a reaction light beam total reflection mirror 110 for reflecting the reaction light beam, and soot, which is a vapor phase substance, adheres to this total reflection mirror 110, causing the reflection property to deteriorate. A purge gas introduction pipe 111 is provided so as not to lower the temperature.

反応容器6中には基体7を支持するための基体支持部8
が備えられ、この基体支持部8に基体7を数置するよう
になっているとともに、この基体支持部8は基体7を加
熱するための基体加熱部9が設けられている。さらに反
応容器6内には気相物質を反応容器6に導入するための
気相物質導入管10が設けられている。
A substrate support portion 8 for supporting the substrate 7 is provided in the reaction vessel 6.
A number of substrates 7 are placed on this substrate support section 8, and a substrate heating section 9 for heating the substrates 7 is provided on the substrate support section 8. Furthermore, a gas phase substance introduction pipe 10 for introducing a gas phase substance into the reaction vessel 6 is provided in the reaction vessel 6 .

このような装置において、光束1を光束導入部4の光束
導入窓40より反応容器6内に導入すると反応光束1は
基体7上を平行に通過し、光束反射部11に導かれる。
In such an apparatus, when the light flux 1 is introduced into the reaction vessel 6 through the light flux introduction window 40 of the light flux introduction section 4, the reaction light flux 1 passes parallel to the substrate 7 and is guided to the light flux reflection section 11.

反応光束反射部11に導かれた光束lは反応光束全反射
ミラー110に反射され、前記基体7上に戻るようにな
っている。
The light beam l guided to the reaction light beam reflection section 11 is reflected by a reaction light beam total reflection mirror 110 and returns onto the base 7.

次ぎに本発明の作用について説明する。Next, the operation of the present invention will be explained.

光分解あるいは光反応に基づくN膜の成長速度はγdは
、気相物質に吸収される単位時間当たりの光子数に比例
し、気相物質の吸収係数αと光の入射端から観測点まで
の距離χにより、本発明の反射光を利用する場合には下
記の式により表される。
The growth rate of the N film based on photolysis or photoreaction is γd, which is proportional to the number of photons absorbed by the gaseous material per unit time, and is determined by the absorption coefficient α of the gaseous material and the distance from the light incident end to the observation point. When using the reflected light of the present invention, the distance χ is expressed by the following equation.

ただし、八と10はそれぞれの比例定数と光の入射端に
おける光強度を示している。
However, numbers 8 and 10 indicate the respective proportionality constants and light intensity at the light incident end.

一方従来の方法で一方向のみから光束を入射させる場合
には、薄膜形成速度γd′は下記の式により表される。
On the other hand, when the light beam is incident from only one direction using the conventional method, the thin film formation rate γd' is expressed by the following equation.

実際に本発明者らはシラン(SiHa ) 、亜酸化窒
素(N 20 )を原料ガスとし、ArFエキシマレー
ザを用いてSiOを薄膜形成について検討した結果、成
長速度と吸収係数の関係は(1)および(2)と良(一
致していた。
In fact, the present inventors investigated the formation of SiO thin films using silane (SiHa) and nitrous oxide (N20) as raw material gases and ArF excimer laser, and found that the relationship between growth rate and absorption coefficient is (1). and (2) and good (consistent).

第3図に光源として^rFエキシマレーザ(発振波長1
93 nn+) 、反応用気相物質としてN2希釈5i
Ha5%、N t O100%、窓パージガスとしてN
2を用い、気相物質の各流量をそれぞれ0.2.1゜0
.0.81 /minとしたときの反応容器6内の光吸
収係数(193nm)と基板中央(Z=L/2)におけ
る成長速度の関係を示す0図中Oと実線は本発明の反射
光を利用した時の実験値と計算値を示すものであり、・
および破線は従来の一方向入射の場合の実験値と計算値
を示している。
Figure 3 shows a ^rF excimer laser (oscillation wavelength 1) as a light source.
93 nn+), N2 dilution 5i as gas phase substance for reaction
Ha 5%, N t O 100%, N as window purge gas
2, each flow rate of the gas phase substance is set to 0.2.1°0.
.. O and the solid line in the figure 0, which shows the relationship between the light absorption coefficient (193 nm) in the reaction vessel 6 and the growth rate at the center of the substrate (Z=L/2) at 0.81/min, indicate the reflected light of the present invention. It shows experimental values and calculated values when used.
and the broken line show experimental values and calculated values in the case of conventional unidirectional incidence.

第4図は従来法の場合の基体面内の膜厚分布を示す。横
軸は基体上の光入射側の端からの距離、縦軸は光入射端
との膜厚比を示す。図中(a)〜(d)は吸収係数αが
それぞれo、oi、0.02.0.05.0.1の時の
膜厚分布を示している。
FIG. 4 shows the film thickness distribution within the plane of the substrate in the case of the conventional method. The horizontal axis indicates the distance from the light incident side end of the substrate, and the vertical axis indicates the film thickness ratio with respect to the light incident end. In the figure, (a) to (d) show the film thickness distribution when the absorption coefficient α is o, oi, and 0.02.0.05.0.1, respectively.

この第4図より理解されるように膜厚分布の均一性は吸
収係数が増加するにつれて急激に悪くなることがわかる
As can be understood from FIG. 4, the uniformity of the film thickness distribution deteriorates rapidly as the absorption coefficient increases.

集積回路の形成技術においてへゲート酸化膜などに使用
されるSiOt IIRはウェハー面内の膜厚分布の許
容範囲として最大±5%程度、好ましくは±2%以下で
ある。5 cm幅の基板内での膜厚分布の許容範囲を1
5%以下とするためには、吸収係数を0.02cm’以
下とする必要がある。しかし、吸収係数を減少するにつ
れ、第3図でわかるように被膜の成長速度が低下する。
In SiOt IIR, which is used for gate oxide films and the like in integrated circuit formation technology, the permissible range of film thickness distribution within the wafer surface is about ±5% at most, preferably ±2% or less. The allowable range of film thickness distribution within a 5 cm wide substrate is set to 1.
In order to make it 5% or less, the absorption coefficient needs to be 0.02 cm' or less. However, as the absorption coefficient is decreased, the growth rate of the film decreases, as can be seen in FIG.

第5図には本発明による両方向入射の場合の光路方向の
膜厚分布を示す。ここでは反応容器の径りを20cmと
して容器中央に置かれた幅5 cmの基体上の分布につ
いて示しである。図中、(a)、(b)、(C1はそれ
ぞれαが0.01.0.1.0.5の場合の分布を示す
ものである。
FIG. 5 shows the film thickness distribution in the optical path direction in the case of bidirectional incidence according to the present invention. Here, the diameter of the reaction container is 20 cm, and the distribution on a substrate with a width of 5 cm placed in the center of the container is shown. In the figure, (a), (b), and (C1) each show the distribution when α is 0.01.0.1.0.5.

片側入射法による膜厚分布を示す第4図と二方向入射法
による膜厚分布を示す第5図との比較でも明らかなよう
に、二方向入射法により成長速度が大きくできる大きな
吸収係数領域まで、膜厚が均一化されることがわかる。
As is clear from the comparison between Figure 4, which shows the film thickness distribution by the single-side incidence method, and Figure 5, which shows the film thickness distribution by the two-way incidence method, the growth rate can be increased by the two-direction incidence method up to a large absorption coefficient region. , it can be seen that the film thickness is made uniform.

このように本発明による薄膜成長法に用いられる気相物
質は基本的に限定されるものではない。
As described above, the gas phase substance used in the thin film growth method according to the present invention is basically not limited.

たとえば、珪素、ボロン、ゲルマニウム、アルミニウム
、燐、ガリウム、インジウム、チタン、タングステン、
ハフニウム、亜鉛、カルシウム、タンタル、ニオブ、ジ
ルコニウム、カリウム、鉛、バリウム、ナトリウム、ま
たはアンチモンを含む分子を含有する物質の一種以上あ
るいはこれらの物質の一種以上に亜酸化窒素、二酸化窒
素、−酸化炭素、二酸化炭素、酸素分子の内の一種以上
を含む物質であることができる。さらに上述の気相物質
には光分解あるいは光反応の増感剤を添加し、被着速度
を早めることができる。
For example, silicon, boron, germanium, aluminum, phosphorus, gallium, indium, titanium, tungsten,
One or more substances containing molecules containing hafnium, zinc, calcium, tantalum, niobium, zirconium, potassium, lead, barium, sodium, or antimony, or one or more of these substances combined with nitrous oxide, nitrogen dioxide, or carbon oxide. , carbon dioxide, and oxygen molecules. Furthermore, a photodecomposition or photoreaction sensitizer can be added to the above-mentioned gas phase substance to increase the deposition rate.

本発明による光源は上述の説明においてはArFエキシ
マレーザを用いて説明したが、本発明においてはこれに
限定されるものではないことは明らかである。
Although the light source according to the present invention has been explained using an ArF excimer laser in the above description, it is clear that the present invention is not limited to this.

以下、本発明の実施例を比較例とともに説明する。Examples of the present invention will be described below along with comparative examples.

比較例 第1図に示す装置において、反応光束1を片側よす入射
し、50鶴φのSiウェハを基体7として膜厚の分布を
±2.5%以内とするために、吸収係数αが0.01c
m’未満としてSiOg被膜を形成した。
Comparative Example In the apparatus shown in FIG. 1, the reaction light beam 1 is incident on one side, and a Si wafer with a diameter of 50 mm is used as the substrate 7. In order to keep the film thickness distribution within ±2.5%, the absorption coefficient α is 0.01c
A SiOg film was formed with a thickness of less than m'.

形成条件は、基体温度200℃、N2希釈5iH45%
、N t 0100%、窓パージ用N−2ガスの流量そ
れぞれ0.2.1.0.0.812 /+win 、光
源はArFエキシマレーザ 10−であった。
Formation conditions were: substrate temperature 200°C, N2 dilution 5iH 45%
, Nt 0100%, the flow rate of N-2 gas for window purging was 0.2.1.0.0.812/+win, and the light source was an ArF excimer laser 10-.

この時、ウェハの中心での被膜形成速度は700(人/
akinであり、光入射側、出射側それぞれの端と中心
との膜厚比はそれぞれ1,024.0.977であった
At this time, the film formation rate at the center of the wafer was 700 (person/person).
The film thickness ratio between the end and the center on the light incident side and the light exit side was 1,024.0.977, respectively.

実施例 第2図における構成の装置を用い、反応光束の反射光利
用によりSi02被膜を形成した。吸収係数を0.03
c11以下とした他は、比較例と同一条件で前記SiO
@の被膜を形成した。
EXAMPLE Using an apparatus having the configuration shown in FIG. 2, a Si02 film was formed by utilizing the reflected light of the reaction light flux. absorption coefficient 0.03
The SiO
A film of @ was formed.

この時中心での被膜の形成速度は2700人/minで
、かつ膜厚分布は±2.5%以内であった。
At this time, the film formation rate at the center was 2700 persons/min, and the film thickness distribution was within ±2.5%.

上述の結果より本発明が所要の均一性を保ちつつ、高速
な薄膜の形成に効果があることが確認された。
From the above results, it was confirmed that the present invention is effective in forming a thin film at high speed while maintaining the required uniformity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、一旦入射した反応光束を再び基体
上に入射することにより、基体上での光束の強度分布を
均一化することができ、さらに光強度分布を均一化でき
るため、形成される被膜の膜厚分布を所要範囲に保ちつ
つ、高速で薄膜の形成が可能になるという利点がある。
As explained above, by re-injecting the reaction luminous flux onto the substrate, the intensity distribution of the luminous flux on the substrate can be made uniform. This method has the advantage that a thin film can be formed at high speed while maintaining the film thickness distribution within a required range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の薄膜形成装置の概略図、第2図は本発明
による薄膜形成方法を実施するための装置の一例の概略
図、第3図は光吸収(糸数と基体中央における成長速度
の関係を示す図、第4図4ま反応光束の片側入射により
形成された薄[*(7) Ill厚分布を示す図、第5
図は第2図に示す膜量番こより形成された膜厚分布を示
す図である。 1 ・・・反応光束、 6 ・・・反応容N、7 ・・
・基体、 11・・・反応光束反射部、110 ・・・
反応光束全反射ミラー。 出願人代理人     雨 宮 正 季第2図 第3図 眼光1糸朕(cm’ ) 第4図
Fig. 1 is a schematic diagram of a conventional thin film forming apparatus, Fig. 2 is a schematic diagram of an example of an apparatus for implementing the thin film forming method according to the present invention, and Fig. 3 is a schematic diagram of an example of an apparatus for carrying out the thin film forming method according to the present invention. A diagram showing the relationship, Fig. 4. A diagram showing the thickness distribution of the thin [*(7)Ill] formed by one side incidence of the reaction light beam, Fig.
The figure shows a film thickness distribution formed from the film thickness scale shown in FIG. 2. 1...Reaction luminous flux, 6...Reaction volume N, 7...
・Substrate, 11... Reaction light beam reflecting section, 110...
Reactive beam total reflection mirror. Applicant's agent: Masaki Amemiya Figure 2 Figure 3 Eyesight 1 thread (cm') Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)気相物質の光による分解を用いて基体上に薄膜を
形成させる方法において、反応光束を基体に平行に入射
し、この入射光束を基体上を通過させた後反射鏡により
反射して再度基体上に平行に入射させることを特徴とす
る薄膜の製造方法。
(1) In a method of forming a thin film on a substrate using light decomposition of a gas phase substance, a reaction light beam is incident on the substrate in parallel, and this incident light beam is passed over the substrate and then reflected by a reflecting mirror. A method for producing a thin film, characterized by making the light incident parallel to the substrate again.
JP21694284A 1984-10-16 1984-10-16 Preparation of membrane Pending JPS6193831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21694284A JPS6193831A (en) 1984-10-16 1984-10-16 Preparation of membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21694284A JPS6193831A (en) 1984-10-16 1984-10-16 Preparation of membrane

Publications (1)

Publication Number Publication Date
JPS6193831A true JPS6193831A (en) 1986-05-12

Family

ID=16696345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21694284A Pending JPS6193831A (en) 1984-10-16 1984-10-16 Preparation of membrane

Country Status (1)

Country Link
JP (1) JPS6193831A (en)

Similar Documents

Publication Publication Date Title
US4868005A (en) Method and apparatus for photodeposition of films on surfaces
JPH01244623A (en) Manufacture of oxide film
US4518628A (en) Hermetic coating by heterogeneous nucleation thermochemical deposition
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
JPH01500444A (en) Photochemical vapor deposition method with increased oxide layer growth rate
JPS6193831A (en) Preparation of membrane
JPS60165728A (en) Forming method for thin film
JPS6191919A (en) Manufacture of thin film
JPS60128265A (en) Device for forming thin film in vapor phase
JPS6197820A (en) Manufacture of thin film and device therefor
JPS6050168A (en) Production of thin solid film by photo cvd method
JPS5992523A (en) Method for crystal growth
JPS6187342A (en) Nitriding method of si by multiple-beam projection
JPS59208065A (en) Depositing method of metal by laser
Bäuerle Laser induced chemical vapor deposition
JPS59129773A (en) Selective formation of oxidized film
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPH0544818B2 (en)
JPS6386880A (en) Photochemical reaction utilizing device
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPS6393108A (en) Formation of optically pumped film
JPS62263643A (en) Method and apparatus for manufacturing silicon nitride film using laser beam
JPH08134654A (en) Formation of thin film of metallic compound and method for patterning same
JPH02194176A (en) Formation of thin oxide superconducting film
JPH05306464A (en) Photoexcitation chemical vapor growth device