JPS62263643A - Method and apparatus for manufacturing silicon nitride film using laser beam - Google Patents

Method and apparatus for manufacturing silicon nitride film using laser beam

Info

Publication number
JPS62263643A
JPS62263643A JP10784086A JP10784086A JPS62263643A JP S62263643 A JPS62263643 A JP S62263643A JP 10784086 A JP10784086 A JP 10784086A JP 10784086 A JP10784086 A JP 10784086A JP S62263643 A JPS62263643 A JP S62263643A
Authority
JP
Japan
Prior art keywords
laser beam
film
silicon nitride
nitride film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10784086A
Other languages
Japanese (ja)
Inventor
Shigeru Morikawa
茂 森川
Kazumasa Takahashi
一正 高橋
Akira Katayama
章 片山
Takeyasu Amano
天野 壮泰
Takeshi Udagawa
宇田川 毅
Yoshio Kusaba
草葉 義夫
Yasuhiro Washimi
泰弘 鷲見
Takeshi Kobayashi
健 小林
Mikinori Shiyouno
荘野 幹範
Takehiko Muramatsu
村松 岳彦
Hisanori Katayama
片山 久紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10784086A priority Critical patent/JPS62263643A/en
Publication of JPS62263643A publication Critical patent/JPS62263643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a film having excellent uniformity including a refractive index, density, etc. by irradiating a raw material by optimum energy density and energy input and smoothly promoting a chemical reaction. CONSTITUTION:A substrate is mounted horizontally under the environment of pressure of 0.2Torr-100Torr and a temperature of 100-500 deg.C while an silicon compound and a nitrogen compound are introduced under the environment, the surface of the substrate is irradiated horizontally by tunable pulse laser beams having a wavelength of 215+ or -7nm and repeated number of 20+ or -10Hz, and an silicon nitride film is formed onto the substrate. The rate of film formation is decreased when pressure reaches less than 0.2Torr, and particulates are generated partially and are disadvantageous to film formation. An excellent film cannot be shaped when a temperature is less than 100 deg.C, and the state in which stress is applied to the film formed is brought when the temperature exceeds 500 deg.C. A laser such as a YAG-DYE laser can be used as a light source for tunable laser beams employed.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、CV D (Chemical Vapo
r DcpoSition)法によろ波膜製造方法およ
び装置に関するらので、より詳しくは、半導体製造に係
り、特に、LSIの絶縁膜や保護膜等のトランノスター
用の膜としての窒化珪素膜をレーザー光線を用いて製造
する方法および装置に関する乙のである。
[Detailed Description of the Invention] "Industrial Application Field" This invention is directed to CVD (Chemical Vapo
This article relates to a method and apparatus for manufacturing a filtering film using the DcpoSition method, and more specifically relates to semiconductor manufacturing, and in particular, to manufacturing a silicon nitride film as a transistor film such as an LSI insulating film or a protective film using a laser beam. This is related to the method and equipment used to manufacture the product.

「従来の技術」 従来、窒化珪素膜の製造は、例えば、特開昭57゜−2
1/736号公報、特開昭59−231819号公報に
述べられているような方法により行なわれていた。
"Prior art" Conventionally, silicon nitride films have been manufactured as described in, for example, JP-A-57-2.
The method described in Japanese Patent Application Laid-open No. 1/736 and Japanese Patent Application Laid-Open No. 59-231819 was used.

すなわち、水銀ランプ、キセノンランプ、プラズマ、エ
キツマレーザーを基板上に照射しながら、S iII 
4 s S i 2 II a、5i1/tCI22等
の珪素化合物と、N1/.、LI+、等の窒素化合物、
さらにはN2、Ar、 lle等の不活性ガスを供給し
て、前記基板上に窒化珪素膜を形成する方法である。
That is, while irradiating the substrate with a mercury lamp, xenon lamp, plasma, or excimer laser, SiIII
A silicon compound such as 4s S i 2 II a, 5i1/tCI22, and N1/. , LI+, etc. nitrogen compounds,
Furthermore, there is a method of forming a silicon nitride film on the substrate by supplying an inert gas such as N2, Ar, or lle.

「発明が解決しようとする問題点」 ところで、前記従来の窒化珪素膜の製造方法においては
、次のような問題点があり、それらの解決が望まれてい
る。
"Problems to be Solved by the Invention" By the way, the conventional method for manufacturing a silicon nitride film has the following problems, and it is desired to solve them.

(a)  特に水銀ランプ法において顕著であるが、低
温において膜の形成が行なえない。また、出にて乙成膜
速度が遅い。
(a) This is particularly noticeable in the mercury lamp method, but a film cannot be formed at low temperatures. In addition, the film formation rate is slow at the beginning.

(b)  プラズマ法では、成膜速度は速いが、膜質(
密度、屈折率)が悪い。
(b) With the plasma method, the film formation rate is fast, but the film quality (
density, refractive index) are poor.

(C)  レーザー、特にエキツマレーザーでは、レー
ザー光線その乙のの寿命が極めて短いため、連続して安
定した膜形成が出来ない。
(C) With lasers, especially excimer lasers, the lifetime of the laser beam is extremely short, making it impossible to form a continuous and stable film.

(d)  Co2レーザー、エキシマレーザ−1その他
のレーザー法や光ランプ法では、レーザーまたは光を反
応器内部に照射するための窓板けが必要であるが、この
窓板材に曇りが発生し、その曇りのため照射量が低下し
て成膜速度が遅くなってしまう。
(d) Co2 laser, excimer laser-1 and other laser methods and optical lamp methods require a window plate to irradiate the inside of the reactor with the laser or light, but this window plate material may become cloudy and Due to the cloudiness, the irradiation amount decreases and the film formation rate slows down.

(a)  レーザー法、ランプ法、特にランプ法では、
照射形状が限られるため、多種サイズの多数の基板上に
一括的に大容量の膜を形成することができない。
(a) Laser method, lamp method, especially lamp method:
Since the irradiation shape is limited, it is not possible to form a large-capacity film on many substrates of various sizes at once.

(「)高温下で成膜しなければならないので、形成後の
膜にストレスかかかり、膜の強度、寿命が低下する。
(``) Because the film must be formed at high temperatures, stress is applied to the film after it is formed, reducing its strength and lifespan.

この発明は、前記事情に鑑みてなされたもので、その目
的は、レーザー光線を用いて、温度を高めることなく、
多種多数な基板上にストレスのない、良質な窒化珪素膜
を効率的に形成することのできる窒化珪素膜の製造方法
および装置を提供することにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to use a laser beam to reduce temperature without increasing the temperature.
An object of the present invention is to provide a method and apparatus for manufacturing a silicon nitride film that can efficiently form stress-free, high-quality silicon nitride films on a wide variety of substrates.

「問題点を解決するための手段」 本発明者らは、前記従来の問題点を解決し、多種多数な
基板上にストレスのない、良質な窒化珪素膜を効率的に
形成することのできる窒化珪素膜の製造方法および装置
を得るために鋭意研究を重ねたところ、次のような知見
を得るに至った。
"Means for Solving the Problems" The present inventors have discovered a nitride film that can solve the above-mentioned conventional problems and efficiently form stress-free, high-quality silicon nitride films on a wide variety of substrates. As a result of intensive research in order to obtain a method and apparatus for manufacturing a silicon film, the following knowledge was obtained.

レーザー光線を用いて膜形成を行なう場合、比較的低温
度で成膜できろものの、前記したように、(c)レーザ
ー光線その乙のの寿命が極めて短いため、連続して安定
した膜形成が出来ない、(d)レーザーを反応2:÷内
部に導くための窓板材に反応器内の生成物が付着して曇
りが発生し、その曇りのため照射量が低下して成膜速度
が遅くなってしまう、さらに、ランプ法はど顕著ではな
いが、(e)照射形状が限られるため、多種サイズの多
数の基板上に一括的に大容量の膜を形成することがてき
ない。という欠点がある。
When forming a film using a laser beam, the film can be formed at a relatively low temperature, but as mentioned above, (c) the lifespan of the laser beam is extremely short, making it impossible to form a stable film continuously. , (d) The product inside the reactor adheres to the window plate material used to guide the laser into the reaction 2: ÷ inside, causing fogging, which reduces the irradiation amount and slows down the film formation rate. Furthermore, although the lamp method is not so obvious, (e) the irradiation shape is limited, so it is not possible to form a large-capacity film on many substrates of various sizes at once. There is a drawback.

ところが、これら欠点は、次のような手段により解決可
能であることが判明した。
However, it has been found that these drawbacks can be overcome by the following means.

まず、(C)の欠点については、レーザー光線として波
長可変レーザーを使用ずろことにより解決できろ。そし
て、このレーザー光線を波長215±7 nm、繰り返
し数20±l OII zに設定することにより良質な
模を形成することが可能になることら明らかとなった。
First, the drawback of (C) can be solved by using a wavelength tunable laser as the laser beam. It has become clear that a high-quality pattern can be formed by setting the laser beam to a wavelength of 215±7 nm and a repetition rate of 20±1 OII z.

また、このパルスレーザ−を基板面に水平に照射するこ
とによって(e)の欠点を解決できるごとら判った。
It has also been found that the drawback (e) can be solved by horizontally irradiating the substrate surface with this pulsed laser.

さらに、(d)の欠点については、従来、反応2:;の
端面に形成していたレーザー光線透過用の窓を、反応器
の端面に短管を突設し、この短管の端面に透明窓板材を
貼着することによって形成し、これによって反応器内て
発生ずる生成物を窓数(オにまで到達しないようにすれ
ば、解決できることか判た。
Furthermore, regarding the drawback of (d), the window for laser beam transmission that was conventionally formed on the end face of reaction 2: was replaced by a short tube protruding from the end face of the reactor, and a transparent window was formed on the end face of the short tube. It was found that the problem could be solved by forming the reactor by pasting a plate to prevent the products generated in the reactor from reaching the number of windows.

この発明は、前記知見に乱づいてなされた乙のである。This invention was made based on the above knowledge.

すなわち、本発明のレーザー光線を用いた窒化珪素膜の
製造方法は、 圧力0.2Torr〜100Torr、温度100℃〜
500℃の環境下に水平に基板を設置するとともに、こ
の環境下に珪素化合物および窒素化合物を導入し、波長
215±7 nx、繰り返し数20±lOLの波長可変
パル。
That is, the method of manufacturing a silicon nitride film using a laser beam of the present invention includes: a pressure of 0.2 Torr to 100 Torr and a temperature of 100°C to
A wavelength variable pulse with a wavelength of 215±7 nx and a repeating number of 20±1 OL was created by installing a substrate horizontally in an environment of 500°C and introducing a silicon compound and a nitrogen compound into this environment.

スレーザー光線を前記基板面に水平に照射して、この基
板上に窒化珪素膜を形成することを特徴とするものであ
り、 さらに、本発明のレーザー光線を用いた窒化珪素膜の製
造装置は、 内部に基板を水平に設置する台を有ずろとともに、側部
に珪素化合物ガスおよび窒素化合物ガスを内部に導入す
るための反応ガス導入管が設けられ、内部を少なくとも
0.2Torr、500℃にまて設定することがてき、
レーザー光線を通過させるための透明な窓を持つ短管を
その端部に有する反応器と、 前記短管の窓を通過して前記基板面に平行に波長215
±7na、繰り返し数20+1OHzのパルスレーザ−
光線を照射ずろ波長可変レーザー発信装置とを具備して
なるしのである。
A silicon nitride film is formed on the substrate by horizontally irradiating the substrate surface with a laser beam, and the silicon nitride film manufacturing apparatus using the laser beam of the present invention further includes: In addition to having a stand on which the substrate is placed horizontally, a reaction gas introduction pipe for introducing silicon compound gas and nitrogen compound gas into the inside is provided on the side, and the inside is heated to at least 0.2 Torr and 500°C. You can set
a reactor having at its end a short tube with a transparent window for passing a laser beam;
±7na, pulsed laser with repetition rate 20+1OHz
It is equipped with a wavelength tunable laser transmitter that emits light beams at different wavelengths.

前記構成において、圧力を0.2Torr 〜1OQT
orrに設定したのは、0.2Torr未td4になる
と、膜形成速度が遅くなり不利となるからであり、1o
OTorrを越えると、微粒子が一部生成し、薄膜形成
に不利となるからである。
In the above configuration, the pressure is set to 0.2 Torr to 1 OQT.
The reason why it was set to 0.2 Torr is that the film formation rate slows down and becomes disadvantageous when the Torr is less than 0.2 Torr.
This is because if the temperature exceeds OTorr, part of the fine particles will be generated, which will be disadvantageous for forming a thin film.

また、温度を1000C〜500℃に設定したのは、1
00℃未満ては、良好な成膜ができないからであり、5
00℃を越えると、形成された膜にストレスかかかった
状態になってしまうからである。
In addition, the temperature was set between 1000C and 500C.
This is because good film formation cannot be achieved at temperatures below 00°C.
This is because if the temperature exceeds 00°C, the formed film will be under stress.

また、本発明に用いろ波長可変レーザー光線の光源とし
ては、例えば、YAG−DYEレーザーを用いることが
できる。
Further, as a light source of the wavelength tunable laser beam used in the present invention, for example, a YAG-DYE laser can be used.

また、本発明装置において、レーザー光線透過用の窓が
曇らないように設けた窓付き短管が良好な効果を得るた
めには、次のような寸法上の限定が必要である。すなわ
ち、短管の長さが反応器本体の長さのl/1〜1/50
で、短管の窓の透明板オの径寸法が同透明板材の厚み寸
法の3〜40倍であることが必要となる。これら数値限
定は、透明窓板材のレーザー透過性、反応生成物の窓へ
の付着しにくさを所望とする値とするために設定したも
のである。
In addition, in the apparatus of the present invention, in order to obtain a good effect from the windowed short tube provided so that the window for laser beam transmission does not fog, the following dimensional limitations are necessary. That is, the length of the short tube is 1/1 to 1/50 of the length of the reactor main body.
Therefore, it is necessary that the diameter of the transparent plate of the window of the short tube is 3 to 40 times the thickness of the transparent plate. These numerical limits were set in order to set the laser transmittance of the transparent window plate material and the difficulty of adhesion of reaction products to the window to desired values.

さらにまた、本発明に使用される珪素化合物としては、
主に、5il14,5itile、S i 31! a
、5illtCL、5i1/4cQtの群から選ばれる
1種以上の化合物が用いられ、窒素化合物としては、主
に、N 、、 N II 3、N 、 II 。
Furthermore, as the silicon compound used in the present invention,
Mainly 5il14, 5itele, S i 31! a
, 5illtCL, and 5i1/4cQt, and the nitrogen compounds are mainly N , , N II 3 , N , II .

の群から選ばれるIFIi以上の化合物が用いられ、良
好な成膜を行なうためには、これら化合物間の比(N/
Si比)が1〜25であることが望ましい。
A compound selected from the group of IFIi or higher is used, and in order to form a good film, the ratio between these compounds (N/
It is desirable that the Si ratio is 1 to 25.

「作用 」 前記構成の本発明の方法および装置によれば、次のよう
な作用効果を得ることができろ。
"Actions" According to the method and apparatus of the present invention having the above configuration, the following effects can be obtained.

(イ)最適なエネルギー密度、エネルギー人力を原料に
照射し、化学反応を円滑に進めることがてき、それによ
り、屈折率、密度などを含めた均一性の良好な膜を得る
ことかでき、成膜速度ら速い。
(b) It is possible to irradiate the raw material with optimal energy density and energy power, allowing the chemical reaction to proceed smoothly, thereby making it possible to obtain a film with good uniformity, including refractive index and density. The membrane speed is fast.

(ロ)比較的低温て成膜が可能なので、形成された膜に
ストレスが加わることがない。
(b) Since the film can be formed at a relatively low temperature, no stress is applied to the formed film.

(ハ)可変波長レーザーを用い、連続的安定したレーザ
ー光線を長時間に亙って供給できるため、膜形成の連続
化が可能となる。
(c) Since a variable wavelength laser can be used to continuously supply a stable laser beam over a long period of time, continuous film formation is possible.

(ニ)窓付きの短管を反応器に付設し、窓板オの曇りを
防止しているので、連続的にレーザー光線の効果的照射
が行なえ、効率の高い成膜が可能である。
(iv) Since a short tube with a window is attached to the reactor to prevent the window plate from fogging, effective irradiation of the laser beam can be performed continuously and highly efficient film formation is possible.

(ホ) レーザー光線を基板面に水平に照射するように
したので、一度に大量の膜を形成することができ、しか
も、いかなるサイズの基板に対して乙成膜が可能である
(e) Since the laser beam is irradiated horizontally onto the substrate surface, a large amount of film can be formed at once, and moreover, it is possible to form a film on any size of substrate.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

[実施例コ 第1図は、本発明方法を実施するに好適な製造装置の一
例を示すしので、図中符号lは、反応器を示す乙ので、
この反応器lは、反応器本体2と、この反応器本体2の
両端部にそれぞれ付設されている短管3.1/とからh
M成されている。
[Example 1] Figure 1 shows an example of a production apparatus suitable for carrying out the method of the present invention, and the reference numeral l in the figure indicates a reactor.
This reactor l consists of a reactor main body 2 and short pipes 3.1/h attached to both ends of this reactor main body 2, respectively.
M has been completed.

反応器本体2は、例えば、円筒状に形成されており、そ
の軸方向を水平に位置させている。この反応器本体2の
内部中央には、基板5を水平に載置するための台6が設
けられており、この台6にはヒータ7が内臓されている
。この台6の上方には、窒素化合物や珪素化合物等の反
応ガスを反応器1内に導入するための反応ガス導入管8
が取り付けられ、回合6の下方には、反応器l内を少な
くとら0.2Torrに減圧するための排気管9が取り
付けられている。
The reactor main body 2 is formed, for example, in a cylindrical shape, and its axial direction is positioned horizontally. A table 6 for horizontally placing the substrate 5 is provided at the center of the interior of the reactor body 2, and a heater 7 is built into the table 6. Above this table 6 is a reaction gas introduction pipe 8 for introducing a reaction gas such as a nitrogen compound or a silicon compound into the reactor 1.
is attached, and an exhaust pipe 9 is attached below the reactor 6 to reduce the pressure inside the reactor 1 to at least 0.2 Torr.

また、前記反応器本体2の両端部に付設されている短管
3.4は、それぞれ反応器本体2両端面の中央に取り付
けられており、それぞれの開口端部には透明な石英板(
透明窓吸材) 10a、llaが貼着されて窓10、I
Iとなっている。また、これら短管3.4の側部には、
それぞれ反応2’A I内にN2.Ar。
Further, the short tubes 3.4 attached to both ends of the reactor main body 2 are each attached to the center of both end faces of the reactor main body 2, and each open end is provided with a transparent quartz plate (
Transparent window absorbing material) 10a, lla are attached to the window 10, I
It is I. Also, on the sides of these short pipes 3.4,
N2. in each reaction 2'A I. Ar.

1/e等のパーツガスを導入し、排出するためのパージ
ガス管12.13が取り付けられている。
A purge gas pipe 12.13 for introducing and discharging part gas such as 1/e is attached.

前記構造によ5いて、短管3.4の長さが反応器本体2
の長さの171〜1/50で、短管3.4の窓1O1/
1の石英板10a、 llaの径寸法が同石英仮10a
、 llaの厚み寸法の3〜40倍であることが、前記
したように、この装置を用いて良好な成膜を行なうため
に必要である。
According to the above structure, the length of the short tube 3.4 is the length of the reactor body 2.
171 to 1/50 of the length of the short tube 3.4 window 1O1/
1 quartz plate 10a, the diameter dimension of lla is the same quartz plate 10a
, lla is required to be 3 to 40 times the thickness dimension in order to perform good film formation using this apparatus, as described above.

flif記構造の反応器1の一方の短管3の曲刃には、
波長可変レーザー発振装置14が設置され、集光、平行
化レンズ群15を介して反応器1内に基板5の」二面に
ζト行なパルスレーザ−光線を照射てきるようになって
いる。この波長可変レーザー発振装置14は、YAG−
DYEレーザーから構成されており、波長2+5±7n
’Sviり返し数20±l Otl zのパルスレーザ
−光線を照射できるようになっている。
The curved blade of one short pipe 3 of the reactor 1 having the flif structure is as follows:
A variable wavelength laser oscillation device 14 is installed, and is configured to irradiate two sides of the substrate 5 with a pulsed laser beam in the direction of ζ into the reactor 1 through a condensing and collimating lens group 15. . This wavelength tunable laser oscillation device 14 is a YAG-
Consists of DYE laser, wavelength 2+5±7n
It is possible to irradiate a pulsed laser beam with a repetition rate of 20±l Otl z.

このような構造の装置を用いて、波長、繰り返しパルス
数、反応温度、圧力、使用原料の各条件を種々に変えて
窒化珪素膜を基板上に形成して、形成された膜の成分、
緒特性を測定した。以下、これら6実施例を示す。
Using an apparatus with such a structure, a silicon nitride film is formed on a substrate by varying the wavelength, number of pulse repetitions, reaction temperature, pressure, and raw materials used, and the components of the formed film are
The characteristics of the material were measured. These six examples will be shown below.

「実施例1j 波長215nx、繰り返しパルス数20 II z 、
反応温度1500c、圧力40Torr、原料S i 
It 、およびNII、1(Ni1./ 5i1/、=
17.5)の条件下で窒化膜を形成した。同時に比較の
ために同条件下で従来の水銀ラング法によっても窒化膜
を形成して緒特性を測定した。それらの結果を表1に示
した。
“Example 1j Wavelength 215nx, number of repetitive pulses 20 II z ,
Reaction temperature 1500c, pressure 40Torr, raw material Si
It, and NII, 1 (Ni1./5i1/, =
A nitride film was formed under the conditions of 17.5). At the same time, for comparison, a nitride film was also formed using the conventional mercury Lang method under the same conditions, and its properties were measured. The results are shown in Table 1.

[表1] 「実嘩例2 」 波長219na、繰り返しパルス数10 II z 、
反応温度250℃1圧力20Torr、 K料Si、I
t、およびN1/n(NI+3/Sit+1.=IO)
の条件下で窒化膜を形成した。同時に比較のために同条
件下で従来のレーザー法によって乙窒化漠を形成して緒
特性を測定した。それらの結果を表2に示した。
[Table 1] "Example 2" Wavelength 219na, number of repeated pulses 10 II z ,
Reaction temperature: 250°C, pressure: 20 Torr, K material: Si, I
t, and N1/n (NI+3/Sit+1.=IO)
A nitride film was formed under these conditions. At the same time, for comparison, a nitrided desert was formed using the conventional laser method under the same conditions, and its properties were measured. The results are shown in Table 2.

[表2] 「実施例3 」 波長209nx、繰り返しパルス数201/z、反応温
度275℃1圧力100Torr、原料5illtc(
!2および〜2+1.(N。
[Table 2] "Example 3" Wavelength 209nx, repetition pulse number 201/z, reaction temperature 275°C, pressure 100Torr, raw material 5illtc (
! 2 and ~2+1. (N.

II、、/ S+1Izc12t =18)の条件下で
窒化膜を形成しj二。
A nitride film was formed under the following conditions: II, , /S+1Izc12t = 18).

その結果を表3に示した。The results are shown in Table 3.

[表3] 「実施例1/  j 波長22On、a、操り返しパルス敢10 II z 
、反応温度275℃、圧力40Torr、原料Si、I
t、および旧!3(Nll:+、/5i21/、=17
)の条件下で窒化膜を形成した。その結果を224に示
した。
[Table 3] “Example 1/j Wavelength 22 On, a, Repulse pulse length 10 II z
, reaction temperature 275°C, pressure 40 Torr, raw material Si, I
t, and old! 3(Nll:+, /5i21/, =17
) A nitride film was formed under the following conditions. The results are shown in 224.

[表4] 「発明の効果」 以上1悦明したように、本発明に係るレーザー光線を用
いた窒化珪素膜の製造力θ4および装]1/によれば、
下記のような浸れたfl1点を得ることかできろ。
[Table 4] "Effects of the Invention" As mentioned above, according to the manufacturing power θ4 and the device]1/ of the silicon nitride film using the laser beam according to the present invention,
Is it possible to get a fl1 point like the one below?

(イ)最適なエネルギー密度、エネルギー人力を原料に
照射し、化学反応を円滑に進めることかてき、それによ
り、屈折率、密度などを含めた均一性の良好な膜を得る
ことができ、成膜速度ら速い。
(b) It is possible to irradiate the raw material with optimal energy density and energy power to smoothly proceed with the chemical reaction, thereby making it possible to obtain a film with good uniformity including refractive index and density. The membrane speed is fast.

(ロ)比較的低温で成膜が可能なので、形成されfこ膜
にストレスが加わることがない。
(b) Since the film can be formed at a relatively low temperature, no stress is applied to the formed film.

(ハ)可変波長レーザーを用い、連続的安定したレーザ
ー光線を長時間に亙って供給できるため、膜形成の連続
化が可能となる。
(c) Since a variable wavelength laser can be used to continuously supply a stable laser beam over a long period of time, continuous film formation is possible.

(ニ)窓付きの短管を反応器に付設し、窓板材の曇りを
防止しているので、連続的にレーザー光線の効果的照射
が行なえ、効率の高い成膜が可能である。
(d) Since a short tube with a window is attached to the reactor to prevent the window plate material from fogging up, continuous and effective laser beam irradiation can be performed and highly efficient film formation is possible.

(ホ) レーザー光線を基板面に水平に照射するように
したので、一度に大量の膜を形成することがてき、しか
ら、いかなるサイズの括仮に対しても成膜が可能である
(e) Since the laser beam is irradiated horizontally onto the substrate surface, a large amount of film can be formed at once, and therefore, it is possible to form a film on any size block.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法を実施するに好適な装置の一例の構成図
である。 l−・・・・・反応器、 3.4・・・・・短管、 5・・・・・・Jlr;板、 6・・・・・・台、 7・・・・・・ヒータ、 8・・・・・・反応ガス導入管、 9・・・・・・排気管、 1O1/1・・・・・・窓、 10a、 1la−石英仮(透明窓板I、t)、12.
13・・・・・・パージガス管、14・・・・・・波長
可変レーザー発振装置、15・・・・・集光、平行化レ
ンズ群。 ・IX;・−,゛二 (ス゛、1/′
The figure is a configuration diagram of an example of an apparatus suitable for carrying out the method of the present invention. l-...Reactor, 3.4...Short tube, 5...Jlr; plate, 6...Stand, 7...Heater, 8...Reaction gas introduction pipe, 9...Exhaust pipe, 1O1/1...Window, 10a, 1la-quartz temporary (transparent window plate I, t), 12.
13... Purge gas pipe, 14... Tunable wavelength laser oscillation device, 15... Condensing and collimating lens group.・IX;・-,゛2(s゛, 1/'

Claims (4)

【特許請求の範囲】[Claims] (1)圧力0.2T0rr〜100Torr、温度10
0℃〜500℃の環境下に水平に基板を設置するととも
に、この環境下に珪素化合物および窒素化合物を導入し
、波長215±7nm、繰り返し数20±10Hzの波
長可変パルスレーザー光線を前記基板面に水平に照射し
て、この基板上に窒化珪素膜を形成することを特徴とす
るレーザー光線を用いた窒化珪素膜の製造方法。
(1) Pressure 0.2T0rr~100Torr, temperature 10
A substrate is placed horizontally in an environment of 0°C to 500°C, a silicon compound and a nitrogen compound are introduced into this environment, and a variable wavelength pulsed laser beam with a wavelength of 215 ± 7 nm and a repetition rate of 20 ± 10 Hz is applied to the substrate surface. 1. A method for manufacturing a silicon nitride film using a laser beam, which comprises irradiating the laser beam horizontally to form a silicon nitride film on the substrate.
(2)珪素化合物がSiH_4、Si_2H_6、Si
_3H_8、SiH_2cl_2、SiH_4cl_2
の群から選ばれる1種以上の化合物で、窒素化合物がN
_2、NH_3、N_2H_4の群から選ばれる1種以
上の化合物であり、N/Si比が1〜25である特許請
求の範囲第1項に記載のレーザー光線を用いた窒化珪素
膜の製造方法。
(2) The silicon compound is SiH_4, Si_2H_6, Si
_3H_8, SiH_2cl_2, SiH_4cl_2
one or more compounds selected from the group of
2. The method for producing a silicon nitride film using a laser beam according to claim 1, wherein the compound is one or more compounds selected from the group consisting of _2, NH_3, and N_2H_4, and has an N/Si ratio of 1 to 25.
(3)内部に基板を水平に設置する台を有するとともに
、側部に珪素化合物ガスおよび窒素化合物ガスを内部に
導入するための反応ガス導入管が設けられ、内部を0.
2Torr以下、500℃以上に設定することができ、
レーザー光線を通過させるための透明な窓を持つ短管を
その端部に有する反応器と、前記短管の窓を通過して前
記基板面に平行に波長215±7nm、繰り返し数20
±10Hzの波長可変パルスレーザー光線を照射するレ
ーザー発信装置とを具備してなるレーザー光線を用いた
窒化珪素膜の製造装置。
(3) It has a stand on which the substrate is horizontally placed inside, and a reaction gas introduction pipe for introducing silicon compound gas and nitrogen compound gas into the inside is provided on the side, and the inside is set at zero.
Can be set to 2 Torr or less and 500°C or more,
A reactor having a short tube at its end with a transparent window for passing a laser beam, and a laser beam passing through the window of the short tube parallel to the substrate surface with a wavelength of 215±7 nm and a repetition rate of 20.
A device for manufacturing a silicon nitride film using a laser beam, comprising a laser transmitter that irradiates a pulsed laser beam with a variable wavelength of ±10 Hz.
(4)短管の長さが反応器本体の長さの1/1〜1/5
0で、短管の窓の透明板材の径寸法が同透明板材の厚み
寸法の3〜40倍である特許請求の範囲第3項に記載の
レーザー光線を用いた窒化珪素膜の製造装置。
(4) The length of the short tube is 1/1 to 1/5 of the length of the reactor body
4. The apparatus for producing a silicon nitride film using a laser beam according to claim 3, wherein the diameter of the transparent plate of the window of the short tube is 3 to 40 times the thickness of the transparent plate.
JP10784086A 1986-05-12 1986-05-12 Method and apparatus for manufacturing silicon nitride film using laser beam Pending JPS62263643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10784086A JPS62263643A (en) 1986-05-12 1986-05-12 Method and apparatus for manufacturing silicon nitride film using laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10784086A JPS62263643A (en) 1986-05-12 1986-05-12 Method and apparatus for manufacturing silicon nitride film using laser beam

Publications (1)

Publication Number Publication Date
JPS62263643A true JPS62263643A (en) 1987-11-16

Family

ID=14469381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10784086A Pending JPS62263643A (en) 1986-05-12 1986-05-12 Method and apparatus for manufacturing silicon nitride film using laser beam

Country Status (1)

Country Link
JP (1) JPS62263643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376564A (en) * 2000-12-26 2002-12-18 Nec Corp Deposition of silicon nitride layer on semiconductor wafer at pressure of over 10000 Pa

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376564A (en) * 2000-12-26 2002-12-18 Nec Corp Deposition of silicon nitride layer on semiconductor wafer at pressure of over 10000 Pa
US6656853B2 (en) 2000-12-26 2003-12-02 Nec Electronics Corporation Enhanced deposition control in fabricating devices in a semiconductor wafer
GB2376564B (en) * 2000-12-26 2005-05-18 Nec Corp Enhanced deposition control in fabricating devices in a semiconductor wafer

Similar Documents

Publication Publication Date Title
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
US4678536A (en) Method of photochemical surface treatment
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JPS6189627A (en) Formation of deposited film
JPS62263643A (en) Method and apparatus for manufacturing silicon nitride film using laser beam
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JPS60128265A (en) Device for forming thin film in vapor phase
JPH0351675B2 (en)
Bäuerle Laser induced chemical vapor deposition
JPS60260125A (en) Selective formation of semiconductor substrate
JPS6187342A (en) Nitriding method of si by multiple-beam projection
JPS59129774A (en) Selective formation of nitrided film
JPH01244609A (en) Production of semiconductor thin film
JPS61198733A (en) Method of forming thin-film
JPH0347140B2 (en)
JPS62213116A (en) Manufacture of multilayer laminated thin films
Hess IR and UV laser-induced chemical vapor deposition: Chemical mechanism for a-Si: H and Cr (O, C) film formation
JPS59129773A (en) Selective formation of oxidized film
JPS63130777A (en) Device for forming functional deposited film by photochemical vapor growth method
JPS61248422A (en) Formation of deposited film by photochemical vapor deposition and apparatus for the same
JPS63312978A (en) Thin film forming device
JPS59216629A (en) Optical gaseous phase growing method
JPS62271419A (en) Manufacture of crystalline silion thin film
EP0289963A1 (en) Apparatus for, and methods of, obtaining the movement of a substance to a substrate