JPS59216629A - Optical gaseous phase growing method - Google Patents

Optical gaseous phase growing method

Info

Publication number
JPS59216629A
JPS59216629A JP9092383A JP9092383A JPS59216629A JP S59216629 A JPS59216629 A JP S59216629A JP 9092383 A JP9092383 A JP 9092383A JP 9092383 A JP9092383 A JP 9092383A JP S59216629 A JPS59216629 A JP S59216629A
Authority
JP
Japan
Prior art keywords
light
reaction
gas
optical
stokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9092383A
Other languages
Japanese (ja)
Inventor
Yoichiro Numazawa
陽一郎 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9092383A priority Critical patent/JPS59216629A/en
Publication of JPS59216629A publication Critical patent/JPS59216629A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To utilize anti-stokes light generated by utilizing an energy level of one gas in forming, for example, a membrane by optical reaction by using two or more of reaction gases in exciting the energy state of the other reaction gas. CONSTITUTION:In a photochemical gaseous phase growing method for generating chemical reaction by irradiating two or more reaction gases with light, two lights having different wavelengths are simultaneously made to be irradiated and anti-stokes light is generated by utilizing the energy level of one reaction gas to be utilized in exciting the energy state of at least the other one reaction gas. By this method, because anti-stokes light is generated in a reaction tube by using reaction gases, high vibration light which could not be industrially used from the constraints of a light emitting source and the material of a light pervious window can be used in optical gaseous phase growth.

Description

【発明の詳細な説明】 本発明は、二種類以上の混合ガスに光照射することによ
り化学反応を生じさせて、たとえば薄膜全形成する光気
相成長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photo-vapor phase growth method in which a chemical reaction is caused by irradiating a mixed gas of two or more types of gas with light to form, for example, a thin film entirely.

二つ以上の反応ガスを用いて光気相反応により膜形成を
行う場合、用いる反応ガス種全ての電子状態を励起する
ことが結合性等の優れた薄膜を形成するために必要な方
法であることは、良く知られている事実である。しかし
ながら、電子状態を励起するのに必要な光の振動数は、
反応ガス種によって大きく異なりEiJ’視部光外部光
空架外部光に至っている。このため発光源および光透過
窓材質の制約から、低圧水銀ランプで得られる振動数1
.62x l Q” Tc以上の真空紫外光を必要とす
る反応ガスの電子状態励起は工業的に困難である。又、
レーザー光においても同様で、工業的に使用できるレー
ザー光としてはArFイキシマレーザー光源による振動
数1.55X103Tcのレーザー光が最高振動数とぎ
える。このため、工業的には例えば、振動数1.62X
10” Tc以下の光で電子状態を励起できる反応ガス
と、励起できない反応ガスの二つを用いた光気相成長は
、振動数1.62X103Tc以下の光源を用いて、一
方の反応ガスの電子状態のみを励起し光気相成長を行な
っているのが現状である。
When forming a film by photovapor phase reaction using two or more reactive gases, it is necessary to excite the electronic states of all the reactive gases used to form a thin film with excellent bonding properties. This is a well-known fact. However, the frequency of light required to excite the electronic state is
The amount of light varies greatly depending on the type of reactant gas, and amounts to EiJ' viewing area light, external light, and airborne external light. For this reason, due to restrictions on the light emitting source and the material of the light transmission window, the frequency of 1
.. It is industrially difficult to excite the electronic state of a reaction gas, which requires vacuum ultraviolet light of 62x l Q” Tc or higher.
The same applies to laser light, and the highest frequency of laser light that can be used industrially is the laser light with a frequency of 1.55×10 3 Tc produced by an ArF excimer laser light source. For this reason, industrially, for example, the frequency is 1.62X.
Photovapor phase growth using two reactive gases, one whose electronic state can be excited by light of 10" Tc or less and the other whose electronic state cannot be excited, uses a light source with a frequency of 1.62 Currently, photovapor phase growth is performed by exciting only the state.

従って、本発明の目的は、上記の問題点を除去した光気
相成長法を提供することにある。
Therefore, an object of the present invention is to provide a photovapor phase growth method that eliminates the above-mentioned problems.

本発明は、二押類以上の反応ガスを用いて、光反応によ
りたとえば薄幌を形成する工程において、一つのガスの
エネルギー準位を利用して反ストークス光を生じせしめ
、この反ストークス光を少なくとも他の一つの反応ガス
のエネルギー状態の励起に利用することを特徴とする。
The present invention utilizes the energy level of one gas to generate anti-Stokes light in the process of forming, for example, a thin hood by photoreaction using two or more reactive gases. It is characterized in that it is used to excite the energy state of at least one other reaction gas.

本発明によると、反応管内に於いて、反応ガスを用いて
、反ストークス光を生じせしめるため、発光源、光透過
窓材質の制約から、工業的に使用できなかった、高振動
の光を、光気相成長に使用することが可能となる。
According to the present invention, in order to generate anti-Stokes light using a reaction gas in a reaction tube, high-vibration light, which could not be used industrially due to restrictions on the light source and light transmission window material, can be produced. It becomes possible to use it for photo-vapor phase growth.

ここで、本発明による光気相成長法の原理を説明する。Here, the principle of the optical vapor phase growth method according to the present invention will be explained.

第1図(5)は反応ガスAのエネルギー状態を模式的に
示し、第1図(B)は反応ガスBのエネルギー状態を模
式的に示している。この第1図でal、g、は反応ガス
A1反応ガスBそれぞれの基底状態でIJyE!は励起
状態を表わしており、hν=g雪−Elおよびhνm=
E3*−131である。ここで、hはブランクの定数ν
人、νBは反応ガスA。
FIG. 1(5) schematically shows the energy state of reactive gas A, and FIG. 1(B) schematically shows the energy state of reactive gas B. In this Figure 1, al, g are IJyE! in the ground states of reactant gas A1 and reactant gas B, respectively. represents the excited state, hν = g snow - El and hνm =
It is E3*-131. Here, h is the blank constant ν
person, νB is the reactant gas A.

反応ガスBそれぞれの振動数でνA〈νBとする。そこ
で、振動数の小さい反応ガスAに着目し、振動数νl(
νl〉νA)の光を照射すると、シ1−シAニジ2のス
トークス過程が生じる。この状態で、さらにストークス
光と同じ振動数の22=νl−νえの光を照射すると、
共鳴的に、シl+シA−2シl−シ2−シ3の反ストー
クス光を得ることができる。ここでシB=シ3になる様
に、二つの照射光の振動数をシl=シB−シA。
Let νA<νB be the vibration frequency of each of the reaction gases B. Therefore, we focused on the reaction gas A with a small vibration frequency, and the vibration frequency νl(
When irradiated with light of νl>νA), a Stokes process of shi1-shiAniji2 occurs. In this state, if we further irradiate light with the same frequency as Stokes light at 22=νl−ν, we get
Resonantly, it is possible to obtain the anti-Stokes light of C1+C2A-2S1-C2-C3. Here, the vibration frequencies of the two irradiation lights are set as S = S B - S A so that S B = S 3.

シ2=シ1−νを選択するならば、反応ガスAを用いた
反ストークス光ν3により反応ガスBを共鳴励起するこ
とができる。この様にして励起された反応ガスBと、ス
トークス過程により励起されでいる反応ガスAとにより
光合成を行なうのが、本発明の原理である。又、ここで
反応ガスAの代わりに、反応しないガスを用い、反応ガ
スBの励起源としてのみ用いることも可能である。
If S2=S1-ν is selected, the reactive gas B can be resonantly excited by the anti-Stokes light ν3 using the reactive gas A. The principle of the present invention is to carry out photosynthesis using the reactant gas B excited in this manner and the reactant gas A excited by the Stokes process. Furthermore, instead of the reactive gas A, a non-reactive gas may be used and used only as an excitation source for the reactive gas B.

次に、本発明を実施例に基づき詳しく説明する。Next, the present invention will be explained in detail based on examples.

本実施例として、5li14ガスとAl(CH3)3ガ
スの二種のガスを用い、本発明に基づく光気相成長法に
より、シリコンアルミニウムを形成したセリについて述
べる。Al(CH3)3分子の電子状態の励起はh !
’Aミa、Oe Vで、SiH4分子については、h 
νB”8.2eVである。そこで、振動数の小さい八A
(C)is)s分子の電子状tmk利用して反ストーク
ス光を生じせしめ、この光を用いてSiH4分子の電子
状態の共鳴励起を行なった。AA (OHs )3とS
iH4の二種のガスを用いた本実施例においては、二つ
の分子の振動数の差ν8−νいは1−27X10’Tc
である。この振動数にほぼ一致している、振動数1’1
=1.21X10”TcのKrFイキシマレーザー光を
用いた。ここで、8 iH4分子の電子状態は振動回転
により幅をもつためこの差は無視しうる。又、強い反ス
トークス光を発生させるための共鳴条件ν2=ν1−I
/A= 4.8X10zTcのブCは色素レーザー光源
により供給した。
As the present example, we will describe a seri in which silicon aluminum is formed by a photovapor phase epitaxy method based on the present invention using two types of gases, 5li14 gas and Al(CH3)3 gas. The excitation of the electronic state of the Al(CH3) 3 molecule is h!
'A mia, Oe V, and for the SiH4 molecule, h
νB"8.2eV. Therefore, 8A with a small frequency
Anti-Stokes light was generated using the electronic tmk of the (C)is)s molecule, and this light was used to perform resonance excitation of the electronic state of the SiH4 molecule. AA (OHs)3 and S
In this example using two types of gases iH4, the difference in the vibration frequencies of the two molecules ν8-ν or 1-27X10'Tc
It is. The frequency is 1'1, which almost matches this frequency.
= 1.21 x 10" Tc KrF excimer laser light was used. Here, the electronic state of the 8 iH4 molecule has a width due to vibrational rotation, so this difference can be ignored. Also, in order to generate strong anti-Stokes light, The resonance condition ν2=ν1−I
/A=4.8X10zTc was supplied by a dye laser light source.

第2図は、本実施例に用いた装置の概念図を示す。20
1はKrFイキシマレーザー光源で、202は色素レー
ザー光源である。光学系のプリズム203と204.レ
ンズ205および光透過窓206は、紫外光が透過でき
る様合成石英で形成されている。
FIG. 2 shows a conceptual diagram of the apparatus used in this example. 20
1 is a KrF excimer laser light source, and 202 is a dye laser light source. Prisms 203 and 204 of the optical system. The lens 205 and the light transmission window 206 are made of synthetic quartz so that ultraviolet light can pass therethrough.

又、プリズムとレンズの光学系により、二つのし一ザー
光は基板207上で集束する様に構成されている。本実
施例では、二つのレーザー光の強度は基板上で、KrF
V−ブー光(νl)はIW/am2、色素レーザー光(
ν2)は2W/cm2で行なった。
Further, the two laser beams are configured to be focused on the substrate 207 by an optical system of a prism and a lens. In this example, the intensity of the two laser beams is on the substrate, KrF
V-boo light (νl) is IW/am2, dye laser light (
v2) was performed at 2 W/cm2.

次に、本実施例により、7リコンアルミニウム膜全形成
した手順についで述べる。基板207を基板台座208
に設置し、チャンバー内を充分に排気後、パルプ209
を開口し、8iH4ガスとAl(CH3)3ガスの+t
Jt比全2/1で導入し、I Torrの定常流で安定
したところで、Kr、fi’レーザー光源301、色素
レーサー光源vcxすり、fjb数1.21X103′
I”c。
Next, the procedure for forming all seven silicon aluminum films according to this example will be described. The board 207 is attached to the board pedestal 208
After thoroughly evacuating the chamber, pulp 209
+t of 8iH4 gas and Al(CH3)3 gas
When the Jt ratio was introduced at a total of 2/1 and the steady flow of I Torr was stabilized, Kr, fi' laser light source 301, dye laser light source VCX light source, fjb number 1.21X103'
I”c.

4.8Xl O” Tc (7) L/−9−光とフリ
スA 203.204゜レンズ205および光透過窓2
06を通して、基板207に照射し、シリコンアルミニ
ウムを形成した。ここで、色素レーザー光の振動数を、
強い反ストークス光を発生させる共鳴条件νz=4.8
X102ql cから変化させると、シリコンアルミニ
ウムの比抵抗が約10%増大し、本発明の効果が確認さ
れた。
4.8Xl O” Tc (7) L/-9-Light and Frith A 203.204° Lens 205 and Light Transmission Window 2
The substrate 207 was irradiated through 06 to form silicon aluminum. Here, the frequency of the dye laser beam is
Resonance condition for generating strong anti-Stokes light νz=4.8
When changing from X102ql c, the specific resistance of silicon aluminum increased by about 10%, confirming the effect of the present invention.

以上の様に、一つのガスの励起状態を利用し反ストーク
ス光を発生させることにより、本実施でで述べた様に真
空紫外光を必要とする反応ガスの励起と真空紫外光源を
用いずに行うことができる。
As described above, by generating anti-Stokes light using the excited state of one gas, we can eliminate the excitation of the reaction gas that requires vacuum ultraviolet light and the use of a vacuum ultraviolet light source as described in this example. It can be carried out.

本実施例では、SiH4とAl(CHs)sの二種の反
応ガスの組み合わせによるシリコンアルミニウムの形成
について述べたが、本発明の原理は、二極類以上の混合
ガスを用いる他の多くの光気相成長においても適用する
ことが可能であり、本発明の果たす効果は太きい。
Although this example describes the formation of silicon aluminum by a combination of two reactive gases, SiH4 and Al(CHs)s, the principle of the present invention can be applied to many other optical It can also be applied to vapor phase growth, and the effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1げ腎1発明の原理を説するだめの図である。 第2図は本実施例に用いた装置の概念図である。 第2図において、 201・・・・・・KrFイキシマレーザー光源、20
2・・・・・・色素レーザー光源、203・・・・・・
プリズム、204・・・・・・プリズム、205・・・
・・・レンズ、206・・・・・・光透過窓、207・
・・・・・基板、208・・・・・・基板台座、第 1
 図
FIG. 1 is a diagram illustrating the principle of the first invention. FIG. 2 is a conceptual diagram of the apparatus used in this example. In FIG. 2, 201...KrF excimer laser light source, 20
2...Dye laser light source, 203...
Prism, 204... Prism, 205...
...Lens, 206...Light transmission window, 207.
... Board, 208 ... Board pedestal, 1st
figure

Claims (1)

【特許請求の範囲】[Claims] 二)Iia以上の反応ガスに光を照射し、化学反応を生
じさせる光化学気相成長法に於いて、異った二つの波長
の光音同時に照射し、一つの反応ガスのエネルギー準位
を利用して反ストークス光を生じせしめ、該反ストーク
ス光を少なくとも他の−づの反応ガスのエネルギー状態
の励起に利用することを特許とする光気相成長法。
2) In the photochemical vapor deposition method in which a reactive gas of Iia or higher is irradiated with light to cause a chemical reaction, the energy level of one reactive gas is utilized by simultaneously irradiating light with two different wavelengths. A patented optical vapor phase growth method in which anti-Stokes light is generated by using the anti-Stokes light, and the anti-Stokes light is used to excite the energy states of at least other reactant gases.
JP9092383A 1983-05-24 1983-05-24 Optical gaseous phase growing method Pending JPS59216629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092383A JPS59216629A (en) 1983-05-24 1983-05-24 Optical gaseous phase growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092383A JPS59216629A (en) 1983-05-24 1983-05-24 Optical gaseous phase growing method

Publications (1)

Publication Number Publication Date
JPS59216629A true JPS59216629A (en) 1984-12-06

Family

ID=14011944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092383A Pending JPS59216629A (en) 1983-05-24 1983-05-24 Optical gaseous phase growing method

Country Status (1)

Country Link
JP (1) JPS59216629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220139A (en) * 1984-04-13 1985-11-02 Fuji Electric Corp Res & Dev Ltd Induction of reaction by light
JP2011025170A (en) * 2009-07-27 2011-02-10 Lintec Corp Light-irradiating device and light-irradiating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220139A (en) * 1984-04-13 1985-11-02 Fuji Electric Corp Res & Dev Ltd Induction of reaction by light
JPH0153577B2 (en) * 1984-04-13 1989-11-14 Fuji Denki Sogo Kenkyusho Kk
JP2011025170A (en) * 2009-07-27 2011-02-10 Lintec Corp Light-irradiating device and light-irradiating method

Similar Documents

Publication Publication Date Title
US4608117A (en) Maskless growth of patterned films
US4615904A (en) Maskless growth of patterned films
EP0184352B1 (en) Method of surface treatment
JPH0685391B2 (en) Deposited film formation method
JPS59216629A (en) Optical gaseous phase growing method
JP2695744B2 (en) Method for forming a protective layer on a support
US5205870A (en) Vapor deposition apparatus
JPS5932122A (en) Surface character modifying apparatus
JPS60128265A (en) Device for forming thin film in vapor phase
JPS595621A (en) Forming method for thin-film
JPS59129774A (en) Selective formation of nitrided film
JPS5961919A (en) Manufacture of thin film
JP2007063637A (en) Method for producing organic thin film, and optical cvd system
JPH0580245B2 (en)
JPS5961122A (en) Manufacture of semiconductor device
JP2840419B2 (en) Light treatment method and light treatment device
JPS614223A (en) Formation of bit pattern on thin-film device
JPS62263643A (en) Method and apparatus for manufacturing silicon nitride film using laser beam
JPS6377109A (en) Photo-cvd equipment
JP3702005B2 (en) Gas phase excitation device
O'KEEFE Optical Studies Related to the Infrared Laser Multiphoton Decomposition of Silane
JPS6080803A (en) Production of optical waveguide
JPH06166544A (en) Production of functional glass
JPS59129773A (en) Selective formation of oxidized film
JPH02244613A (en) Optical cvd method