JP3702005B2 - Gas phase excitation device - Google Patents

Gas phase excitation device Download PDF

Info

Publication number
JP3702005B2
JP3702005B2 JP15712295A JP15712295A JP3702005B2 JP 3702005 B2 JP3702005 B2 JP 3702005B2 JP 15712295 A JP15712295 A JP 15712295A JP 15712295 A JP15712295 A JP 15712295A JP 3702005 B2 JP3702005 B2 JP 3702005B2
Authority
JP
Japan
Prior art keywords
gas
phase excitation
gas phase
source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15712295A
Other languages
Japanese (ja)
Other versions
JPH08323193A (en
Inventor
仁志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15712295A priority Critical patent/JP3702005B2/en
Publication of JPH08323193A publication Critical patent/JPH08323193A/en
Application granted granted Critical
Publication of JP3702005B2 publication Critical patent/JP3702005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、気相からの薄膜結晶成長において、原料ガスを高効率で励起し、結晶成長温度の低減,結晶成長速度の向上及び結晶性の向上を図る気相励起装置に関する。
【0002】
【従来の技術】
結晶性の良い薄膜を低温でなるべく速い結晶成長速度で得るためには、従来、気相成長法における原料ガスの励起が様々な方法で行われている。
ところで、そのほとんどは、図2縦断面図に示すように、ガスを高真空中(<10-8Torr)に分子線で噴出させるためのノズル03に対して、直交する方向からレーザ等の光04をレンズ等で集束し、1点における励起を行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、この1点における励起では、光を絞り込む必要性から、その励起領域は小さくならざるを得ず、またガス分子と光との衝突断面積があまり大きくない場合などは、効率的な励起を行うことができない。
さらに、ガスの流れる軸と光の軸とが別々になっているため、励起条件を最適化して、それを再現性良く維持するためには、その位置合せに際して多大の労力が必要である。
【0004】
本発明は、このような事情に鑑みて提案されたもので、ガス分子線の励起を簡便にかつ効率的に行うことを可能とする気相励起装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような目的を達成するために、本発明の気相励起装置は、真空容器と、光もしくは荷電粒子線を発生する気相励起光源と、同気相励起光源から上記光もしくは荷電粒子線を上記真空容器へ導入する照射管と、同照射管に接続され原料ガス導入管とを具え、上記照射管において、上記気相励起光源と上記原料ガス導入管の接続部分との間に排気手段を具えたことを特徴とする。
【0006】
【作用】
一般に、分子密度nの気体中を1個の高速粒子が通過するとき、その粒子が気体分子と衝突して励起される確率Pはn及び高速粒子の通過距離Lに比例し、式(1)となる。
P=σe nL ・・・・・(1)
ここで、σe は励起の衝突断面積と呼ばれる量で、分子の種類や高速粒子のエネルギーに依存している。したがって、σe とnが一定の系を仮定すると、励起確率は通過距離のみに依存するので、本発明で用いた同軸の配置はガス導入の際に最大の励起効果をもたらすことが明らかである。
すなわち、光あるいは荷電粒子線を原料ガスの導入方向に沿って照射すると、励起源によってガス分子は解離され、エネルギー的に励起される。この原料ガス導入管を気相励起光源と結合させて真空容器に接続することにより、原料ガスを流れの揃った分子間の衝突の内分子線としてその容器中に導入する。
このとき、気相励起光源に設けられた差動排気系により、原料ガスを発光源に逆流させて発光特性を悪化させることなく、その光源は安定に動作する。
【0007】
【実施例】
まず、本発明の第1実施例を図面について説明すると、図1はその全体縦断面図である。
同図は、Si26をガス分子線源として導入し、S1 薄膜を形成させる反応装置を示すもので、1は図示省略の支持手段により支持された基板2上に薄膜を成長させる成長装置であり、図示省略の排気手段を備えた真空容器13を具えている。4は成長装置1に貫通接続した気相励起光照射管であり、一端は成長装置1に、他端は気相励起光源としての放電室7にそれぞれ接続される。
放電室7内には、圧力調整されたXe,Ar,Heなど希ガスを導入するための希ガス導入管と、放電電圧を印加するための放電電極11が設けられて、気相励起光源を構成している。
【0008】
このような装置において、所定の放電電圧を印加することにより発光した光は、1段目,2段目差動排気手段9,10の接続位置を通過した後、ガス噴出ノズル3より基板2に照射される。
すなわち、上記光は放電室7の発光部分から基板2まで一直線の構造になっており、光の導入口の途中から原料ガス導入管5の導入口を交差させることにより、ガスの流れの軸と光の軸とを同軸に配置することが可能になる。
このとき、原料ガス導入管5からこの光と同軸方向に導入されたガスは効率的に励起された後、基板2に到達し、成長の源となる。
励起光は、前記の希ガスの種類を成膜したい結晶質(単結晶,多結晶,非晶質)によって変えることができる。
その際、2段の差動排気手段9,10は、希ガスの反応装置への混入によって膜質の低下及び原料ガスの放電室への逆拡散による放電特性の低下を防いでいる。
【0009】
ちなみに、この第1実施例において、基板温度600°C,原料ガス導入圧Torrで成長させたところ、同じ光(Xe:λ=147nm,20W)をガスの流れの軸に対して垂直に照射したときに比べて、大きな成長速度が得られ、かつ単結晶としての結晶性も維持されていることが確認された。
【0010】
次に、本発明の第2実施例を説明すると、図1において、Si26 +SiH4/PH3 及びSi26 +SiH4/B26 混合ガスを第1実施例と同一の励起分子線源から導入する。
この第2実施例では、Si薄膜の結晶成長を行うとともに、その薄膜中に半導体化するための不純物(P,B)を効率的に薄膜中に添加している。
このとき、添加するためのガス種に対して最も効率的なエネルギーをもつ光を自由に選択できる。
【0011】
この第2実施例において、基板温度500°C,原料ガス導入圧5Torr(PorB:100ppm)で成長させたところ、同じ光(Xe:147nm,20W)をガスの流れの軸に対して垂直に照射したときに比べて、大きな成長速度と添加濃度が得られ、かつ単結晶としての結晶性も維持されていることが確認された。
【0012】
【発明の効果】
本発明は、気相による薄膜結晶成長において、導入する原料ガスの流れの軸と励起する光の軸を同軸に位置するとともに、気相励起光源と原料導入管の照射管への接続部との間で同照射管に排気手段を接続したことにより、気相の励起効率を向上させ、低温で高速に良質の薄膜結晶を得ることを可能にした。
【0013】
要するに、発明によれば、真空容器と、光もしくは荷電粒子線を発生する気相励起光源と、同気相励起光源から上記光もしくは荷電粒子線を上記真空容器へ導入する照射管と、同照射管に接続され原料ガス導入管とを具え、上記照射管において、上記気相励起光源と上記原料ガス導入管の接続部分との間に排気手段を具えたことにより、希ガスの薄膜結晶を成長させた際、大きな成長速度と添加濃度が得られとともに、単結晶としての結晶性も維持できるものであり、これにより本発明は産業上極めて有益なものである。
【図面の簡単な説明】
【図1】 本発明の実施例で使用したSi薄膜成長装置の概略縦断面図である。
【図2】 従来の気相励起装置を示す概略縦断面図である。
【符号の説明】
1 成長装置
2 基板
3 ガス噴出ノズル
4 気相励起光照射管
5 原料ガス導入管
6 励起ガス分子線
7 放電室
8 希ガス導入管
9 1段目差動排気手段
10 2段目差動排気手段
11 放電電極
12 高圧電源
13 真空容器
[0001]
[Industrial application fields]
The present invention relates to a gas phase excitation apparatus that excites a raw material gas with high efficiency in thin film crystal growth from a gas phase to reduce a crystal growth temperature, increase a crystal growth rate, and improve crystallinity.
[0002]
[Prior art]
In order to obtain a thin film with good crystallinity at a low temperature and at a crystal growth rate as high as possible, the excitation of the source gas in the vapor phase growth method has been conventionally performed by various methods.
By the way, most of them, as shown in the longitudinal sectional view of FIG. 2, light from a laser or the like from a direction orthogonal to a nozzle 03 for ejecting a gas in a high vacuum (<10 −8 Torr) with a molecular beam. 04 is focused by a lens or the like to perform excitation at one point.
[0003]
[Problems to be solved by the invention]
However, in this one-point excitation, the excitation area must be made small because of the necessity of narrowing down the light, and if the collision cross-section between the gas molecule and the light is not so large, efficient excitation can be performed. I can't do it.
Furthermore, since the gas flow axis and the light axis are separate, a great deal of labor is required for alignment in order to optimize the excitation condition and maintain it with good reproducibility.
[0004]
The present invention has been proposed in view of such circumstances, and an object of the present invention is to provide a gas phase excitation apparatus that enables simple and efficient excitation of a gas molecular beam.
[0005]
[Means for Solving the Problems]
To achieve the above object, the gas-phase excitation device of the present invention, the vacuum container and, light or a gas phase excitation light source for generating a charged particle beam, said optical or charged particle beam from the gas phase excitation light source a radiation tube for introducing into said vacuum vessel, comprising a raw material gas introduction pipe connected to the irradiating tube, in the irradiation tube, exhaust between the gas phase excitation light source and a connecting portion of the source gas inlet pipe It is characterized by comprising means .
[0006]
[Action]
In general, when one high-speed particle passes through a gas having a molecular density n, the probability P that the particle collides with the gas molecule and is excited is proportional to n and the passage distance L of the high-speed particle. It becomes.
P = σ e nL (1)
Here, σ e is an amount called the collision cross section of excitation, and depends on the type of molecule and the energy of the fast particles. Therefore, assuming a system in which σ e and n are constant, the excitation probability depends only on the passing distance, so it is clear that the coaxial arrangement used in the present invention provides the maximum excitation effect when introducing gas. .
That is, when light or a charged particle beam is irradiated along the introduction direction of the source gas, the gas molecules are dissociated by the excitation source and excited in energy. The source gas introduction tube is connected to a vapor phase excitation light source and connected to a vacuum vessel, whereby the source gas is introduced into the vessel as an inner molecular beam of collision between molecules with uniform flow.
At this time, the light source operates stably without deteriorating the light emission characteristics by causing the source gas to flow backward to the light emission source by the differential exhaust system provided in the vapor phase excitation light source.
[0007]
【Example】
First, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall longitudinal sectional view thereof.
The figure shows a reactor for introducing Si 2 H 6 as a gas molecular beam source to form an S 1 thin film, wherein 1 is a growth for growing a thin film on a substrate 2 supported by support means (not shown). It is an apparatus, and comprises a vacuum vessel 13 provided with exhaust means (not shown). Reference numeral 4 denotes a vapor phase excitation light irradiation tube penetratingly connected to the growth apparatus 1. One end is connected to the growth apparatus 1 and the other end is connected to a discharge chamber 7 as a vapor phase excitation light source .
In the discharge chamber 7, a rare gas introduction tube 8 for introducing a rare gas such as pressure-adjusted Xe, Ar, and He, and a discharge electrode 11 for applying a discharge voltage are provided, and a gas phase excitation light source is provided. Is configured.
[0008]
In such an apparatus, light emitted by applying a predetermined discharge voltage passes through the connection position of the first-stage and second-stage differential exhaust means 9, 10, and then is applied to the substrate 2 from the gas ejection nozzle 3. Irradiated.
That is, the light is in alignment structure from the light emitting portion to the substrate 2 of the discharge chamber 7, by crossing the inlet of the raw material gas introduction pipe 5 in the middle of the inlet of light, of the gas flow axis And the optical axis can be arranged coaxially.
At this time, the gas introduced from the source gas introduction pipe 5 in the direction coaxial with the light is efficiently excited and then reaches the substrate 2 to become a growth source.
The excitation light can be changed according to the crystalline (single crystal, polycrystal, amorphous) desired to form a film of the rare gas.
At that time, the two-stage differential exhaust means 9 and 10 prevent the deterioration of the film quality due to the mixing of the rare gas into the reactor and the deterioration of the discharge characteristics due to the reverse diffusion of the raw material gas into the discharge chamber.
[0009]
Incidentally, in this first embodiment, when the substrate was grown at a substrate temperature of 600 ° C. and a source gas introduction pressure of 5 Torr, the same light (Xe: λ = 147 nm, 20 W) was irradiated perpendicularly to the gas flow axis. It was confirmed that a large growth rate was obtained and the crystallinity as a single crystal was maintained as compared with the case of the above.
[0010]
Next, a description will be given of a second embodiment of the present invention, in FIG. 1, Si 2 H 6 + SiH 4 / PH 3 and Si 2 H 6 + SiH 4 / B a 2 H 6 gas mixture first embodiment the same excitation and Introduced from a molecular beam source.
In this second embodiment, crystal growth of the Si thin film is performed, and impurities (P, B) for making a semiconductor into the thin film are efficiently added to the thin film.
At this time, light having the most efficient energy with respect to the gas species to be added can be freely selected.
[0011]
In this second embodiment, the substrate was grown at a substrate temperature of 500 ° C. and a source gas introduction pressure of 5 Torr (PorB: 100 ppm), and the same light (Xe: 147 nm, 20 W) was irradiated perpendicularly to the gas flow axis. It was confirmed that a larger growth rate and added concentration were obtained than in the case of the above, and the crystallinity as a single crystal was maintained.
[0012]
【The invention's effect】
In the thin film crystal growth by the vapor phase, the present invention is arranged such that the flow axis of the raw material gas to be introduced and the axis of the light to be excited are coaxial, and the vapor phase excitation light source and the connection portion of the raw material introduction tube to the irradiation tube By connecting an evacuation means to the same irradiation tube, it was possible to improve the excitation efficiency of the gas phase and to obtain a good quality thin film crystal at a low temperature and a high speed.
[0013]
In short, according to the present invention, a vacuum container, a gas-phase excitation light source for generating light or charged particle beam, a radiation tube for introducing from the gas phase excitation light source to said light or charged particle beam into the vacuum vessel, comprising a source gas inlet pipe connected to the irradiating tube, in the irradiation tube, Ri by the fact that comprises an exhaust means between the gas phase excitation light source and a connecting portion of the raw material gas introduction pipe, a rare gas when growing the thin-film crystal, with Ru obtained addition concentration and a large deal of growth rate, a shall be maintained crystallinity as the single crystal, thereby the present invention is the extremely valuable industrial .
[Brief description of the drawings]
1 is a schematic longitudinal sectional view of the Si thin film growth apparatus used in real施例of the present invention.
FIG. 2 is a schematic longitudinal sectional view showing a conventional gas phase excitation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Growth apparatus 2 Substrate 3 Gas ejection nozzle 4 Gas-phase excitation light irradiation tube 5 Raw material gas introduction tube 6 Excitation gas molecular beam 7 Discharge chamber 8 Noble gas introduction tube 9 First stage differential exhaust means 10 Second stage differential exhaust means 11 Discharge electrode 12 High voltage power supply 13 Vacuum vessel

Claims (1)

真空容器と、光もしくは荷電粒子線を発生する気相励起光源と、同気相励起光源から上記光もしくは荷電粒子線を上記真空容器へ導入する照射管と、同照射管に接続され原料ガス導入管とを具え、上記照射管において、上記気相励起光源と上記原料ガス導入管の接続部分との間に排気手段を具えたことを特徴とする、気相励起装置。A vacuum chamber, and gas phase excitation light source for generating light or charged particle beam, a radiation tube for introducing from the gas phase excitation light source to said light or charged particle beam into the vacuum vessel, which is connected to the irradiation tube material A gas phase excitation apparatus comprising: a gas introduction pipe; and an evacuation unit provided between the gas phase excitation light source and a connecting portion of the source gas introduction pipe in the irradiation tube .
JP15712295A 1995-05-31 1995-05-31 Gas phase excitation device Expired - Lifetime JP3702005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15712295A JP3702005B2 (en) 1995-05-31 1995-05-31 Gas phase excitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15712295A JP3702005B2 (en) 1995-05-31 1995-05-31 Gas phase excitation device

Publications (2)

Publication Number Publication Date
JPH08323193A JPH08323193A (en) 1996-12-10
JP3702005B2 true JP3702005B2 (en) 2005-10-05

Family

ID=15642698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15712295A Expired - Lifetime JP3702005B2 (en) 1995-05-31 1995-05-31 Gas phase excitation device

Country Status (1)

Country Link
JP (1) JP3702005B2 (en)

Also Published As

Publication number Publication date
JPH08323193A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US4816286A (en) Process for synthesis of diamond by CVD
US7384666B2 (en) Method and apparatus for fabricating quantum dot functional structure, quantum dot functional structure, and optically functioning device
Pummer et al. Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen
CN1101175A (en) Gaseous mixture power laser apparatus
JPH1098032A (en) Formation of thin film and thin film forming device
JP3702005B2 (en) Gas phase excitation device
Liu et al. Photodissociation of hydrogen sulfide at 157.6 nm: Observation of SH bimodal rotational distribution
JPH08299951A (en) Ultraviolet ray irradiating device
US5205870A (en) Vapor deposition apparatus
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPS63171640A (en) Method and device for forming excimer and application to laser
Dobele Generation of coherent VUV radiation and its application to plasma diagnostics
Davis Dye laser pumped atomic iodine laser
US4237428A (en) 15.9 Micron acetylene laser
Ehbrecht et al. Laser-driven synthesis of carbon and silicon clusters from gas-phase reactants
Choi et al. Evidence for quantization of the transition state for cis–trans isomerization
US4225831A (en) CW Scalable donor-acceptor gas transfer laser
JPS6144183A (en) Optical cvd method
JPS63158799A (en) Multistep electrodeless plasma reactor
JPH0668984A (en) Tandem type electrostatic accelerator
EP0368525A1 (en) Method and apparatus for generating inverted population for stimulated emission
JPS59111322A (en) Manufacture of thin-film
Misra et al. Laser Induced Fluorescence Spectroscopy of the Hydroxyl Radical
Döbele et al. Two‐photon excitation of molecular hydrogen and stimulated emission in the vacuum ultraviolet
JPH05243283A (en) Epitaxial growth device and growth method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

EXPY Cancellation because of completion of term