JPS6144183A - Optical cvd method - Google Patents

Optical cvd method

Info

Publication number
JPS6144183A
JPS6144183A JP16595284A JP16595284A JPS6144183A JP S6144183 A JPS6144183 A JP S6144183A JP 16595284 A JP16595284 A JP 16595284A JP 16595284 A JP16595284 A JP 16595284A JP S6144183 A JPS6144183 A JP S6144183A
Authority
JP
Japan
Prior art keywords
cvd
beams
molecular
molecular beams
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16595284A
Other languages
Japanese (ja)
Inventor
Fumihiko Uesugi
文彦 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16595284A priority Critical patent/JPS6144183A/en
Publication of JPS6144183A publication Critical patent/JPS6144183A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a deposited film almost free from inpurities at a high rate of deposition by feeding two or more kinds of gaseous starting materials in the form of molecular beams, irradiating light for excitation on each of the beams, and carrying out CVD on a substrate placed in a region where the excited molecular beams intersect each other. CONSTITUTION:Gaseous SiH4 22 and gaseous N2O 23 as gaseous starting materials for CVD are introduced into the preliminary chambers 24, 25 of molecular beam generators under about 1Torr pressure. Since a reaction cell 26 for CVD has been evacuated to about 10<-8>Torr pressure, the gases 22, 23 are fed into the cell 26 through pinholes 27, 28 in the form of molecular beams 29, 30. Laser light 31 is irradiated on the beam 29 to dissociate SiH4 into Si and H2, and at the same time, laser light 32 is irradiated on the beam 30 to dissociate N2O into N2 and excited O. Si reacts with O in a region 34 where the beams 29, 30 intersect each other, and SiO2 is deposited on a substrate 1 placed in the region 34.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光CVDの方法、とくにCVD用原料の利用効
率を高めた光CvDの方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a photo-CVD method, and in particular to a photo-CVD method that improves the utilization efficiency of CVD raw materials.

(従来技術とその問題点) 従来複数のCVD原料ガスを使用して化合物を光CVD
で堆積させる場合if図のように混合されたCVD原料
ガス14を反応セル11内に導入し、窓12を介して光
を照射してCVDを行なわせる方法が採られていた。例
えば、キム(H,M。
(Prior art and its problems) Conventionally, compounds are processed by photo-CVD using multiple CVD raw material gases.
In the case of deposition, a method has been adopted in which CVD raw material gas 14 mixed as shown in the if diagram is introduced into reaction cell 11 and light is irradiated through window 12 to perform CVD. For example, Kim (H,M.

Kim )らにより、ブローシーディング・オプ・ザ・
エイスーインターナショナルeコンファレンス・オン・
ケミカル・ペーパー・デポジション(Proceedi
ngsof the 8th 1n(ernajion
alcon(erence on chemical 
vapor deposition)の258ページか
ら266ページに記載された論文において、5iOzの
堆積速度を律速する原因が、水銀ラングの光照射により
原料ガスのSiH+とN、0のうちN!Oの光分解で生
じた励起状態の酸素原子が反応セル11の壁15に吸着
して必要な励起状態の酸素原子が不足することにあると
述べられている。これに対してボイヤー(P、に、Bo
yer)らはアプライド・フィツクス・レターズ(Ap
pliedPhysics Letters )誌40
巻716ページから719ページに掲載の論文において
励起状態の酸素原子が不足しないようiC,SiH,に
比べて非常に多くのN、Oを入れた混合ガスにArFレ
ーザ光を照射してS iolを基板13上に堆積させる
方法を述べている。しかし、この場合は、N、Oの光分
解により生成した励起状態の酸素原子が、脱励起やN、
0への再結合、活性な窒素と酸素の化合物の形成や、8
iHO= 8iH10などの化合物の形成といった5i
O1を形成しない過程で消耗され、5iO1の形成に有
効に使われないという問題を生じた。更に、NtOをS
iH4に比べて多く混合する為に1堆積したS10゜K
M素が不純物として混入しやすいという問題もあった。
Kim) et al.
Asu International e-Conference on
Chemical Paper Deposition (Proceedi)
ngsof the 8th 1n(ernajion
alcon(erence on chemical
In the paper described on pages 258 to 266 of ``vapor deposition'', the cause that determines the deposition rate of 5iOz is that SiH+ and N of the source gas, N! It is stated that the reason is that excited oxygen atoms generated by photodecomposition of O are adsorbed to the wall 15 of the reaction cell 11, resulting in a shortage of necessary excited oxygen atoms. On the other hand, Boyer (P, ni, Bo
yer) et al. Applied Fixtures Letters (Ap
pliedPhysics Letters) Magazine 40
In the paper published on pages 716 to 719 of Vol. 1, Siol was created by irradiating ArF laser light on a mixed gas containing much more N and O than iC and SiH, in order to avoid a shortage of excited oxygen atoms. A method for depositing on substrate 13 is described. However, in this case, excited state oxygen atoms generated by photolysis of N and O are deexcited and N,
recombination to 0, formation of active nitrogen and oxygen compounds, and 8
5i such as the formation of compounds such as iHO=8iH10
A problem occurred in that it was consumed in the process of not forming O1 and was not effectively used for forming 5iO1. Furthermore, NtO is
S10°K deposited 1 to mix more than iH4
There was also the problem that M element was easily mixed in as an impurity.

(発明の目的) 本発明の目的は、上述のような従来方法の欠点を除去し
、光の照射により所望の堆積膜を得るのに必要な生成物
を効率よく利用でき、しかも堆積膜の不純物を減らせる
新規な光CVD方法を提供することKある。
(Object of the Invention) The object of the present invention is to eliminate the drawbacks of the conventional methods as described above, to efficiently utilize the products necessary to obtain a desired deposited film by irradiation with light, and to eliminate impurities in the deposited film. It is an object of the present invention to provide a novel photo-CVD method that can reduce the

(発明の構成) 本発明は、光CVDにおいて使用する複数のCVD原料
ガスのうち、少なくとも2つの原料ガスをそれぞれ独立
の分子線にして供給し、前記各分子線に各々励起用の光
を照射し、励起された前記分子線を交差させ、前記分子
線の交差領域に設置された基板上でCVDを行なわせる
ことを特徴とする光CVD方法である。
(Structure of the Invention) The present invention supplies at least two source gases among a plurality of CVD source gases used in photo-CVD as independent molecular beams, and irradiates each of the molecular beams with excitation light. This photo-CVD method is characterized in that the excited molecular beams intersect and CVD is performed on a substrate placed in the area where the molecular beams intersect.

(発明の作用・原理) 本発明は上述の方法を採ることくよυ従来技術の問題点
を解決した。使用するCVD原料ガスを高真空に排気さ
れているCVD反応セルへピンホールを通して噴出させ
るとガス分子間の衝突のない、分子間相互作用を無視で
きる分子線となる。
(Operation/Principle of the Invention) The present invention solves the problems of the prior art by employing the method described above. When the CVD raw material gas to be used is ejected through a pinhole into a CVD reaction cell evacuated to a high vacuum, a molecular beam is produced in which there is no collision between gas molecules and intermolecular interactions can be ignored.

したがって、各々の分子線が交差する手前で励起用の光
を照射させることKより、堆積膜形成に必要な励起状態
の脱励起、反応セルの壁への付着、不必要な物質の生成
をなくせるので所望の堆積膜を得るのに必要な生成物を
効率よく利用でき、その結果、大きな堆積速度で不純物
の少ない堆積膜を得ることができる。また各原料ガスを
独立に供給するため、各原料ガスごとに最適な励起光の
波長を選べるので、原料ガスの選択の範囲を広げられる
Therefore, by irradiating the excitation light before each molecular beam intersects, it is possible to eliminate the deexcitation of the excited state necessary for forming a deposited film, the adhesion to the walls of the reaction cell, and the generation of unnecessary substances. Therefore, the products necessary to obtain a desired deposited film can be efficiently utilized, and as a result, a deposited film with few impurities can be obtained at a high deposition rate. Furthermore, since each raw material gas is supplied independently, the optimal wavelength of excitation light can be selected for each raw material gas, so the range of raw material gas selection can be expanded.

また、高圧にしたCVD原料ガスを高真空に排気されて
いるCVD反応セルへピンホールとオリフィスを通して
噴出させると、原料ガスは流体力学的ジェy)Kなって
広がシなからすすむ超音速分子線となる。そのため、分
子間相互作用を無視できるだけでなく、液化したシ固化
したりすることなく極低温の原料ガスを得ることができ
るので、原料ガスの励起前のエネルギーレベルをそろえ
ることができ、さらに原料ガスのエネルギーレベル間の
相互作用が少ないのでレーザによって容易に原料ガスを
堆積膜形成に必要な励起状態にすることができる。
In addition, when high-pressure CVD raw material gas is ejected through a pinhole and orifice into a CVD reaction cell that is evacuated to a high vacuum, the raw material gas becomes a hydrodynamic jet and spreads out, causing supersonic molecules to propagate. It becomes a line. Therefore, not only can intermolecular interactions be ignored, but also extremely low temperature raw material gas can be obtained without liquefying or solidifying, making it possible to equalize the energy level of the raw material gas before excitation. Since there is little interaction between the energy levels of the source gas, the laser can easily bring the source gas into the excited state necessary for forming the deposited film.

したがって分子線を使うことで改善される上述の利点を
超音速分子線を使うことKよって一層のばすことができ
る。
Therefore, the above-mentioned advantages obtained by using a molecular beam can be further enhanced by using a supersonic molecular beam.

(実施例) 以下、本発明について図面を参照して説明する。(Example) Hereinafter, the present invention will be explained with reference to the drawings.

第2図は本発明の方法を具現する装置の例を示す模式的
な断面図である。例えば、S10.を基板21に堆積さ
せる場合、CvD原料ガス22.23としてそれぞれ約
ITorrのSiH*ガスとN、Oガスと八 を分子線発生装置の前室24,25に導λする。
FIG. 2 is a schematic cross-sectional view showing an example of an apparatus implementing the method of the present invention. For example, S10. When depositing on the substrate 21, SiH* gas and N, O gases of about I Torr are introduced into the front chambers 24 and 25 of the molecular beam generator as CvD source gases 22 and 23, respectively.

CVD用反応セル26は約10−’Torrまで排気さ
れており、前室24,25に開けられた直径0.75鮨
のピンホール27,28を通りてCVD用反応セ/l/
26の中に原料ガスが分子線29.30となって出てい
く。SiH,の分子線29とN、Oの分子線30は途中
でArFレーザ光31,32の照射を受け、SiH4は
Si  と水素に#離し、N20は窒素分子と励起状態
の酸素原子に解離して、分子線の交差領域34でSiと
Oが反応して5i02が形成され基板21に堆積する。
The CVD reaction cell 26 is evacuated to about 10-' Torr, and the CVD reaction cell 26 is evacuated through pinholes 27 and 28 with diameters of 0.75 made in the front chambers 24 and 25.
The raw material gas exits into molecular beam 26 as molecular beam 29.30. The molecular beams 29 of SiH, and the molecular beams 30 of N and O are irradiated with ArF laser beams 31 and 32 on the way, and SiH4 dissociates into Si and hydrogen, and N20 dissociates into nitrogen molecules and excited oxygen atoms. Then, Si and O react in the molecular beam intersection region 34 to form 5i02, which is deposited on the substrate 21.

基板21はヒータ33で加熱することもできる。The substrate 21 can also be heated with a heater 33.

本実施例のようKSIH4とN、Oを分子線にすると、
ArFレーザ光31.32の照射によって生じた生成物
、特に8i01の形成に重要な役割をはだす励起状態の
酸素原子が、従来のように途中で衝突して脱励起したシ
、他の生成物と再結合して失なわれることなく、分子線
の交差領域34に供給される。
When KSIH4, N, and O are made into molecular beams as in this example,
The products produced by irradiation with ArF laser light 31.32, especially the excited oxygen atoms that play an important role in the formation of 8i01, collide and de-excite on the way as in the conventional method, and other products. The molecular beam is supplied to the intersection region 34 of the molecular beam without being lost by recombination with the molecular beam.

また、分子線には指向性がちシ、CVD反応セル26は
常に排気口37から排気されているので、光解離生成物
が壁に付着したり、ArFレーザ光31ν32をCVD
反応セル26に導入する為の窓35゜36に付着して光
の透過率が低下することがない。
Furthermore, since molecular beams tend to have directivity, and the CVD reaction cell 26 is always exhausted from the exhaust port 37, photodissociation products may adhere to the walls, and the ArF laser beam 31ν32 may be
The light transmittance does not decrease due to adhesion to the windows 35 and 36 for introducing the light into the reaction cell 26.

したがって、従来よりもArFレーザ光の照射によって
できた“励起状態の酸素原子を効率よく使うことができ
、しかもその結果、使用するN、Oの量を従゛来よシ減
らせるので、堆積膜中の窒素の不純物を減らすことがで
きる。本実施例では5i01を約10nm/分で堆積さ
せることができ、堆積膜に含まれる窒素含有率を従来よ
シ約5割減らすことができた。
Therefore, the excited state oxygen atoms created by ArF laser light irradiation can be used more efficiently than before, and as a result, the amount of N and O used can be reduced compared to before, so the deposited film In this example, 5i01 could be deposited at a rate of about 10 nm/min, and the nitrogen content in the deposited film could be reduced by about 50% compared to the conventional method.

第2図は、分子線を使用する場合の一実施例であるが、
超音速分子線を使用する方法によシ、堆積速度を向上さ
せることが可能である。この場合、第2図の前室24,
25とピンホール27.28とからなる分子線発生装置
のかわシに、CvD用原料の5jH4とN、Oのガスに
対して2台の超音速分子線発生装置を使う。約500 
TorrのSiH4と約600 TorrのN、Oを直
径Q、 l nutのノズルを通して常に約10”To
rrに排気された前室24.25に噴出させる。次に噴
出された分子流のうち超音速分子流を取り出す為に逆ホ
ーン形の開口の直径Q、55mのスキマーをピンホール
27.28のかわシに取り付け、このスキマー全通して
CVD反応セル26の内部に噴出させることによりSi
H4とN、Oの超音速分子線が得られる。超音速分子線
は前室24125に数百Torrのガスを入れて発生さ
せるので分子線の場合より数密度が太きい。また、超音
速分子線は断熱膨張によシ発生させるので、分子が約4
Kにまで冷えて、内部エネルギー状態がよくそろってい
るので、レーザの照射でできる生成物のエネルギー状態
もよくそろい、分子線を用いる場合よりも一層効率よく
その生成物を反応に寄与させることができる。この場合
はSi Oxを約60 nm7分で堆積させることがで
きた。
Figure 2 shows an example of using molecular beams.
It is possible to increase the deposition rate by using a supersonic molecular beam. In this case, the front chamber 24 in FIG.
Two supersonic molecular beam generators are used for the CvD raw materials 5jH4, N, and O gases in place of the molecular beam generators consisting of 25 and pinholes 27 and 28. Approximately 500
Torr of SiH4 and about 600 Torr of N and O were passed through a nozzle with a diameter of Q, l nut at about 10”Torr.
It is ejected into the front chamber 24.25 which is exhausted to rr. Next, in order to take out the supersonic molecular flow out of the ejected molecular flow, a skimmer with an inverted horn-shaped opening with a diameter Q and 55 m is attached to the pinhole 27.28, and the entire skimmer is passed through the CVD reaction cell 26. By spouting it into the inside of
Supersonic molecular beams of H4, N, and O are obtained. Since the supersonic molecular beam is generated by introducing a gas of several hundred Torr into the front chamber 24125, the number density is thicker than that of a molecular beam. In addition, supersonic molecular beams are generated by adiabatic expansion, so the molecules are approximately 4
Since it is cooled down to K and the internal energy state is well aligned, the energy states of the products formed by laser irradiation are also well aligned, and the products can contribute to the reaction more efficiently than when using molecular beams. can. In this case, approximately 60 nm of SiOx could be deposited in 7 minutes.

この他に分子線と超音速分子線を組み合わせる方法が可
能であることは明らかである。
It is clear that other methods combining molecular beams and supersonic molecular beams are possible.

また、本発明によれば、原料ガスの選択の自由度が増し
、5iO1の堆積膜を得る為のCVD原料ガスとしてS
iH+とO2を使用することもできる。従来SiH+と
01の混合ガスは圧力、温度、フロー速度を安定に保つ
ことが困難であった。しかし、本発明の方法ではSiH
4と01を別々に供給するので前記の困難を避けること
ができる。
Further, according to the present invention, the degree of freedom in selecting the raw material gas is increased, and S
iH+ and O2 can also be used. Conventionally, it has been difficult to maintain stable pressure, temperature, and flow rate of a mixed gas of SiH+ and 01. However, in the method of the present invention, SiH
Since 4 and 01 are supplied separately, the above-mentioned difficulty can be avoided.

また、SiH,にF!レーザ光を照射し、N、OにAr
Fレーザ光を照射するごとく、原料ガスごとに最適な画
起光を照射できるので5iO1の堆積速度を更に大きく
することもできる。
Also, SiH, F! Irradiate the laser beam and apply Ar to N and O.
As with irradiation with F laser light, the optimum imaging light can be irradiated for each source gas, so the deposition rate of 5iO1 can be further increased.

なお、本実施例では8i0zの堆積について述べたが、
本発明の方法は、光CVDが可能な化合物に広く適用で
きることは明らかで、例えばSi3N4を堆積させる場
合は、CVD用原料ガスとしてSiH4とNH,を使用
し、各々のガスを超音速分子線にしてCVD反応セル内
に導入し、SiH,の超音速分子線にはF2レーザ光を
照射し、NH,の超音速分子線にはArFレーザ光を照
射して基板上にSi3N4を約70 nm 7分で堆積
させることができた。また、堆積膜中の水素含有率を従
来の約半分に減少させることかできた。
Note that although this example describes the deposition of 8i0z,
It is clear that the method of the present invention can be widely applied to compounds for which photoCVD is possible. For example, when depositing Si3N4, SiH4 and NH are used as CVD source gases, and each gas is converted into a supersonic molecular beam. The supersonic molecular beam of SiH, is irradiated with F2 laser light, and the supersonic molecular beam of NH, is irradiated with ArF laser light to deposit Si3N4 on the substrate to a thickness of approximately 70 nm. It could be deposited in minutes. Furthermore, the hydrogen content in the deposited film could be reduced to approximately half that of the conventional method.

(発明の効果) 以上、本発明の交差分子線を用いた光CVD方法によシ
、堆積膜形成に必要な分子の内部エネルギー状態をそろ
えることができ、しかも所望の堆積膜を得るのに必要な
生成物を効率よく利用でき、その結果大きな堆積速度で
不純物の少ない堆積膜を得ることができる。また各原料
ガスごとに最適な光の波長を選べるので原料ガスの選択
の自由度を広げられる。
(Effects of the Invention) As described above, the optical CVD method using crossed molecular beams of the present invention makes it possible to align the internal energy states of molecules necessary for forming a deposited film, and moreover, it is possible to align the internal energy states of molecules necessary for forming a deposited film. As a result, a deposited film with few impurities can be obtained at a high deposition rate. Furthermore, since the optimum wavelength of light can be selected for each raw material gas, the degree of freedom in selecting the raw material gas can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す断面図、第2図は本発明の方法に
よる一実施例を示す平面断面図である。
FIG. 1 is a sectional view showing a conventional example, and FIG. 2 is a plan sectional view showing an embodiment according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 光CVDにおいて使用する複数のCVD原料ガスのうち
少なくとも2つの原料ガスをそれぞれ独立の分子線にし
て供給し、前記各分子線に各々励起用の光を照射して励
起し、励起された前記分子線を交差させ、前記分子線の
交差領域に設置された基板上に生成物を堆積させること
を特徴とする光CVD方法。
At least two of a plurality of CVD source gases used in photo-CVD are supplied as independent molecular beams, and each of the molecular beams is irradiated with excitation light to excite the excited molecules. A photo-CVD method characterized by intersecting lines and depositing a product on a substrate placed in the area where the molecular beams intersect.
JP16595284A 1984-08-08 1984-08-08 Optical cvd method Pending JPS6144183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16595284A JPS6144183A (en) 1984-08-08 1984-08-08 Optical cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16595284A JPS6144183A (en) 1984-08-08 1984-08-08 Optical cvd method

Publications (1)

Publication Number Publication Date
JPS6144183A true JPS6144183A (en) 1986-03-03

Family

ID=15822131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16595284A Pending JPS6144183A (en) 1984-08-08 1984-08-08 Optical cvd method

Country Status (1)

Country Link
JP (1) JPS6144183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005087A1 (en) * 1986-12-25 1988-07-14 Kawasaki Steel Corporation Optical cvd process
US5108543A (en) * 1984-11-07 1992-04-28 Hitachi, Ltd. Method of surface treatment
JP2011032511A (en) * 2009-07-31 2011-02-17 Hitachi Zosen Corp Method and apparatus for forming thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108543A (en) * 1984-11-07 1992-04-28 Hitachi, Ltd. Method of surface treatment
WO1988005087A1 (en) * 1986-12-25 1988-07-14 Kawasaki Steel Corporation Optical cvd process
EP0298126A1 (en) * 1986-12-25 1989-01-11 Kawasaki Steel Corporation Optical cvd process
EP0298126B1 (en) * 1986-12-25 1994-06-15 Kawasaki Steel Corporation Optical cvd process
JP2011032511A (en) * 2009-07-31 2011-02-17 Hitachi Zosen Corp Method and apparatus for forming thin film

Similar Documents

Publication Publication Date Title
US4816286A (en) Process for synthesis of diamond by CVD
US5164040A (en) Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
US4986214A (en) Thin film forming apparatus
JPH06314660A (en) Method and apparatus for forming thin film
US5308651A (en) Photochemical vapor deposition process
JPH1098032A (en) Formation of thin film and thin film forming device
JPS6144183A (en) Optical cvd method
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPS6141769A (en) Optical cvd device
Schram Is plasma unique? The presence of electrons and the importance of charge
RU2100477C1 (en) Process of deposition of films of hydrogenized silicon
JPH1018042A (en) Thin film forming device
JPH0480116B2 (en)
Ehbrecht et al. Laser-driven synthesis of carbon and silicon clusters from gas-phase reactants
JPH0459769B2 (en)
JPS6150372B2 (en)
JPS60178622A (en) Manufacture of semiconductor device
JP2951770B2 (en) Manufacturing method of optical functional element
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd
JP3702005B2 (en) Gas phase excitation device
Henck et al. Spectroscopic study of the vacuum ultraviolet windowless photodissociation of silicon hydrides for silicon‐based film deposition
JPH02310372A (en) Photo-reactor
Severens et al. Hydrogen content of plasma deposited a-Si: H
JPH03223463A (en) Synthetic method for cubic boron nitride
JPH036379A (en) Chemical vapor growth device