JPS60165728A - Forming method for thin film - Google Patents

Forming method for thin film

Info

Publication number
JPS60165728A
JPS60165728A JP2099284A JP2099284A JPS60165728A JP S60165728 A JPS60165728 A JP S60165728A JP 2099284 A JP2099284 A JP 2099284A JP 2099284 A JP2099284 A JP 2099284A JP S60165728 A JPS60165728 A JP S60165728A
Authority
JP
Japan
Prior art keywords
gas
thin film
sample
raw material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099284A
Other languages
Japanese (ja)
Inventor
Keiji Horioka
啓治 堀岡
Haruo Okano
晴雄 岡野
Makoto Sekine
誠 関根
Tsunetoshi Arikado
経敏 有門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2099284A priority Critical patent/JPS60165728A/en
Publication of JPS60165728A publication Critical patent/JPS60165728A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To obtain a thin film of high quality by emitting visible or near ultraviolet rays in the absorption zone of halogen gas to reactive gas containing raw material gas and halogen element to excite the halogen gas and colliding it with the raw material gas to activate the raw material gas. CONSTITUTION:The density of raw material gas SiC4H12 is suitably selected, the gas is mixed with O2, the density of reactive gas Cl2 is selected, fed into a reaction chamber, which is evacuated from an outlet 17, and the entire gas pressure is held at 10Torr or higher. When a pulse laser light 19 having 308nm or longer of wavelength is emitted vertically or horizontally to a sample 12, a thin organic film 21 of high quality may be efficiently accumulated. The raw material gas employs silane and organic silanes, hydrogenated Ge and organic Ges, phosphine and organic phosphines, borane and organic boranes, arsine and organic arsines, organic metal compounds and halogen derivatives thereof, which are mixed with O2 or N2. The emitted light is condensed on the sample, and scanned over the entire surface.

Description

【発明の詳細な説明】 〔開明の技術分野〕 本発明は、光化学反応を利用した薄膜形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a thin film using a photochemical reaction.

〔発明の技術的前照どその問題点〕[Problems with technical foresight of the invention]

近年、半導体集積回路の^集積化が進むに伴い、従来の
2次元的な回路では集積度の限界に近付いている。そこ
で、この限界を打ち破り更に集積度を高めるために、多
層配線や3次元集積回路等の立体的な回路の製造技術の
確立が望まれている。
In recent years, as the integration of semiconductor integrated circuits has progressed, conventional two-dimensional circuits are approaching the limit of their degree of integration. Therefore, in order to overcome this limit and further increase the degree of integration, it is desired to establish a manufacturing technology for three-dimensional circuits such as multilayer wiring and three-dimensional integrated circuits.

ここで、回路の立体化を図るには、層間絶縁膜、半導体
薄膜、更には金属配線膜等の薄膜を下地回路基板に損傷
を与えずに形成させることが必須の条件となる。
Here, in order to create a three-dimensional circuit, it is essential to form thin films such as interlayer insulating films, semiconductor thin films, and even metal wiring films without damaging the underlying circuit board.

従来のiiI膜形成方法としては、蒸着法、CVD法、
プラズマCVD法或いは光CVD法等が用いられている
。しかし、蒸着法pcvn法の場合均質な薄膜を得るに
は基板をaiIi温に保つ必要があり、金属配線層と半
導体接合部で相n拡散を生じたり、半導体中の不純物分
布を変化させてしまう等の悪影響を及ぼす。また、プラ
ズマCVD法ではプラズマ中の荷電粒子が、プラズマと
基板との間に生じた電位差により加速されて基板を衝撃
するために、基板上に欠陥を生じ電気的特性を悪化させ
る等の問題点がある。
Conventional III film forming methods include vapor deposition method, CVD method,
A plasma CVD method, a photo CVD method, or the like is used. However, in the case of the PCVN vapor deposition method, in order to obtain a homogeneous thin film, it is necessary to maintain the substrate at aiIi temperature, which may cause phase n diffusion between the metal wiring layer and the semiconductor junction, or change the impurity distribution in the semiconductor. etc. have negative effects. In addition, in the plasma CVD method, charged particles in the plasma are accelerated by the potential difference generated between the plasma and the substrate and impact the substrate, which causes defects on the substrate and deteriorates electrical characteristics. There is.

これに対し、光CVD法は低温での薄膜形成が可能であ
り、高エネルギーの荷電粒子を発生しないという点で、
前記各方法の問題点を克服する技術として期待されてい
る。しかしながら、光CVD法では薄膜の原料となるガ
スの大部分が可視や近紫外領域の光を吸収しないため、
原料ガスの活性化に短波長の真空紫外領域の光を用いる
必要がある。真空紫外光を用いる場合、光源や反応容器
内に児を導光Jるための窓材が特殊で高価なものとなり
、また空気中を通過すると人体に有害なオゾンを発生す
るので、その取り扱いに注意を要する。また、従来の光
CVD法には、低温では薄膜堆積速度が小さい等の問題
があった。
In contrast, the photo-CVD method is capable of forming thin films at low temperatures and does not generate high-energy charged particles.
This technique is expected to overcome the problems of the above methods. However, in the photo-CVD method, most of the gases that are the raw materials for thin films do not absorb light in the visible or near ultraviolet regions;
It is necessary to use short wavelength light in the vacuum ultraviolet region to activate the source gas. When vacuum ultraviolet light is used, the light source and the window material for guiding the light into the reaction vessel are special and expensive, and when it passes through the air, it generates ozone, which is harmful to the human body, so there are some precautions when handling it. Caution is required. Further, the conventional photo-CVD method has problems such as a slow thin film deposition rate at low temperatures.

なお、薄膜jff積速度を増大させるには増感材として
水銀蒸気を混入する方法があるが、水銀のような重原子
が膜に取り込まれると集積回路素子の電気的特性に悪影
響がある。さらに、水銀増感法でも、波長200 [n
m]以下の短波長の紫夕]光を用いる必要があり上記し
た問題を解決することはできなかった。
Incidentally, there is a method of incorporating mercury vapor as a sensitizing material to increase the thin film jff deposition rate, but if heavy atoms such as mercury are incorporated into the film, it has an adverse effect on the electrical characteristics of the integrated circuit element. Furthermore, even in the mercury sensitization method, the wavelength is 200 [n
However, it was not possible to solve the above-mentioned problems because it was necessary to use violet light with a short wavelength of less than m].

〔発明の目的〕[Purpose of the invention]

本発明の目的は、可視若しくは近紫外領域の光を用いて
良質な薄膜を効率良く形成することができ、半導体素子
の高集積化等に寄与し得るm膜形成方法を提供すること
にある。
An object of the present invention is to provide an m-film forming method that can efficiently form a high-quality thin film using light in the visible or near ultraviolet region and can contribute to higher integration of semiconductor devices.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、原料ガスを活性化する手段どして、こ
のガスを直接励起する光を用いる代りに、原料ガスと共
にハロゲン元素を含む反応性ガスを導入し、ハロゲンガ
スの吸収帯内波長の可視或いは近紫外光を照射してハロ
ゲンガスを励起し、この励起されたハロゲンガスと原料
ガスとの衝突により原料ガスを活性化することにある。
The gist of the present invention is to introduce a reactive gas containing a halogen element together with the raw material gas instead of using light that directly excites the gas as a means of activating the raw material gas. The method involves exciting the halogen gas by irradiating it with visible or near ultraviolet light, and activating the source gas by collision between the excited halogen gas and the source gas.

即ち本発明は、光化学反応により試料上に薄膜を堆積形
成するm膜形成方法において、前記試料を該試料上に堆
積すべき原料を含む@利ガスと少なくともハロゲン元素
を含む反応性ガスとの混合5− ガス雰囲気中に晒し、上記混合ガス中に上記反応性ガス
を解離する光を照射するようにした方法である。
That is, the present invention provides a method for forming a thin film by depositing a thin film on a sample by a photochemical reaction, in which the sample is mixed with a reactive gas containing a raw material to be deposited on the sample and a reactive gas containing at least a halogen element. 5- This is a method in which the mixed gas is exposed to a gas atmosphere and light that dissociates the reactive gas is irradiated into the mixed gas.

(発明の効果〕 本発明によれば、可視或いは近紫外光を吸収しない原料
ガスにこの種の光を吸収するハロゲンガスを混入するこ
とによって、上記光で原料ガスを間接的に励起すること
ができる。このため、真空紫外光を用いることなく、扱
い易い可視或いは近紫外光で光CvDを達成することが
できる。、さらに、)w膜の堆積速度を十分速くするこ
とができる。
(Effects of the Invention) According to the present invention, by mixing a halogen gas that absorbs this type of light into a raw material gas that does not absorb visible or near ultraviolet light, it is possible to indirectly excite the raw material gas with the above light. Therefore, optical CvD can be achieved using visible or near-ultraviolet light, which is easy to handle, without using vacuum ultraviolet light.Furthermore, the deposition rate of the )w film can be made sufficiently high.

即ち、原料ガスとハロゲンガスとが反応することにJ:
って、原料ガス中の水素をハロゲンが置換しハ[1ゲン
化誘導体を作る。このようなハロゲン誘導体は原料ガス
に比較して分子量が大きいので、一般に蒸気圧が低く、
基板表面上に凝縮し薄い液状の膜を作る。この液層は更
に原料ガスを溶かし込むことによって、M板表面の原料
ガス濃度を高め反応を促進する効果を持つ。従って、通
常の光CVD法に比較して大きな膜成長速度が得られる
That is, when the raw material gas and the halogen gas react, J:
Thus, hydrogen in the raw material gas is replaced by halogen to produce a halogenated derivative. These halogen derivatives have a large molecular weight compared to the raw material gas, so their vapor pressure is generally low.
It condenses on the substrate surface to form a thin liquid film. This liquid layer has the effect of increasing the concentration of the raw material gas on the surface of the M plate and promoting the reaction by further dissolving the raw material gas. Therefore, a higher film growth rate can be obtained compared to the normal photo-CVD method.

6− 〔発明の実施例〕 第1図は本発明の一実施例方法に使用した薄膜形成装U
を示す概略構成図である。図中11は反応室を構成する
真空容器(反応容器)で、この容器11内には試料基板
12を載置するサセプタ13が配置されている。また、
容器11には堆積すべき躾の原料ガスを導入するための
ガス導入口14.15、ハロゲン元素を含む反応性ガス
を導入するためのガス導入口16及び容器11内のガス
を排気するためのガス排気口17が設けられている。一
方、容器11の上方にはハロゲン等の反応性ガスを解離
するための光$118が設けられている。この光源18
は、例えば波長308[nm]のパルスエキシマレーナ
で、1秒間当り8oパルス、平均出力2[W/ctml
で使用されるものとなっている。そして、光8118が
らの光19は容器11の上壁に設けられた光通過窓2o
を介して容器11内に導光され、試料12の上面に対し
垂直に照射されるものとなっている。
6- [Embodiment of the invention] Figure 1 shows a thin film forming apparatus U used in an embodiment method of the invention.
FIG. In the figure, reference numeral 11 denotes a vacuum container (reaction container) constituting a reaction chamber, and a susceptor 13 on which a sample substrate 12 is placed is disposed within this container 11. Also,
The container 11 has gas inlet ports 14 and 15 for introducing raw material gas to be deposited, a gas inlet port 16 for introducing a reactive gas containing a halogen element, and a gas inlet port 16 for exhausting the gas in the container 11. A gas exhaust port 17 is provided. On the other hand, above the container 11, a light beam 118 is provided for dissociating reactive gas such as halogen. This light source 18
For example, is a pulse excimer laser with a wavelength of 308 [nm], 8 o pulses per second, and an average output of 2 [W/ctml
It is used in The light 19 from the light 8118 is passed through a light passing window 2o provided on the upper wall of the container 11.
The light is guided into the container 11 through the beam, and is irradiated perpendicularly to the upper surface of the sample 12.

次に、上記装置を用いた薄膜形成方法について8)1明
する。原料が又としてはテトラメチルシラン(S I 
C4L112 )と酸素(02)との混合ガス、反応性
ガスとしては1n素(CI2)を用い、ざらに試$II
W板12ど1ノでは3i基板を用いた。ここで、試料基
板の材料はC1ラジカルによってエツチングされないも
のである。まず、上記反応性ガスを用いることなく、容
器11内に上記原料ガスのみを導入し、全カス圧を5Q
[torr]とした。
Next, 8) 1 will be explained about the thin film forming method using the above apparatus. The raw material is also tetramethylsilane (S I
Using a mixed gas of C4L112) and oxygen (02), and using 1n element (CI2) as the reactive gas, a rough test $II
A 3i substrate was used for the W board 12 and 1. Here, the material of the sample substrate is one that is not etched by C1 radicals. First, only the raw material gas is introduced into the container 11 without using the reactive gas, and the total gas pressure is reduced to 5Q.
[torr].

この場合、上記原料ガスはいずれも308 [nm]の
波長の光に対して透明であり、光を照射しても反応(,
1起らず、SiO2膜はj[積しなかった。一方、原料
ガスに5[vo1%コの塩素ガスを加えた場合、12図
に示す如(試l!112上にSiO2膜21が11積し
た。このときのS+02膜21の堆積速度のテ1〜ラメ
チルシラン濃度依存性を第3図に示10テ!・ラメデル
シランの濃度が4[VOI%]迄はJrt積速度はテト
ラメチルシランの濃度の増加に対して増加し、1分間当
り最大400[人]の膜ハ1「積するが、4[vo1%
]を越えると表面に油状の液が条間に付着してs + 
02の堆積が生じ雌くなり、8[VOI%]では全< 
jft積しない。第4図にテトラメチルシラン濃度が3
.2[vo1%]の場合の堆積速度の塩素濃度依存性を
示ず。j「積速度は塩素濃度2.5 [vo1%]で最
大どなり、1分間に300[入コの5i02膜21がH
E柚した。
In this case, all of the above raw material gases are transparent to light with a wavelength of 308 [nm], and even when irradiated with light, they do not react (,
1 did not occur, and the SiO2 film did not accumulate. On the other hand, when chlorine gas of 5 [vol. The dependence on the concentration of tetramethylsilane is shown in Figure 3.10Te!・Up to a concentration of ramedelsilane of 4 [VOI%], the Jrt product velocity increases with increasing concentration of tetramethylsilane, reaching a maximum of 400 [VOI%] per minute. ]'s film 1 "is accumulated, but 4 [vo1%
], an oily liquid will adhere to the surface between the rows and s +
Deposition of 02 occurred and it became female, and at 8 [VOI%] all <
jft does not multiply. Figure 4 shows that the tetramethylsilane concentration is 3.
.. 2 [vol 1%], the deposition rate does not show dependence on chlorine concentration. j "The deposition rate is maximum at a chlorine concentration of 2.5 [vo1%], and the 5i02 film 21 in the
E Yuzu did it.

かくして得られた膜の赤外吸収分光を測定したところ、
81−0結合の強い吸収が見られ8102I!が堆積し
ていることが確認された。また、顕微鏡観察するとガス
濃度により膜中に気泡が混じる場合があり、テトラメチ
ルシラン及び塩素濃度が高い程気泡が多くmv4が悪化
するが塩素濃度の方がその影響が大きく、塩素ガス2.
5[vo1%コ、テトラメチルシラン3.2rvo1%
]の場合極めて良質な膜が形成された。このI1積をA
−ジェ分光法を用いて分析すると表面黒上層に炭素と微
量の塩素が検出された。しかし、これらの信号は試料を
キセノンイオンスパッタを用いて処理すると直ちに消失
し、膜中には炭素や塩素は取り込まれていない。また、
膜中の酸素とシリコンと9− の信号強度比は11準試利として用いた熱酸化膜(Si
O2)と−致した。
When we measured the infrared absorption spectroscopy of the film thus obtained, we found that
A strong absorption of 81-0 bond was observed and 8102I! It was confirmed that there was an accumulation of Also, when observed under a microscope, bubbles may be mixed in the film depending on the gas concentration, and the higher the tetramethylsilane and chlorine concentration, the more bubbles there are and the mv4 deteriorates, but the effect is greater with chlorine concentration, and chlorine gas 2.
5 [vo1% co, tetramethylsilane 3.2rvo1%
], an extremely good quality film was formed. This I1 product is A
- When analyzed using gel spectroscopy, carbon and trace amounts of chlorine were detected in the black upper layer of the surface. However, these signals disappear immediately when the sample is processed using xenon ion sputtering, and no carbon or chlorine is incorporated into the film. Also,
The signal strength ratio of oxygen, silicon, and 9- in the film is 11.
O2).

以上の実験は全てU板温度を常温として行ったが、基板
温度を100[℃]とすると、5102膜は堆積されな
かった。従って、前記光通過窓20を100[°C]以
上に加熱しておけば、窓20への8102膜の付着を未
然に防止することができ、これにより窓20へのSiO
2の付着に起因する容器11内への光照射量の減少を防
止することができる。
All of the above experiments were conducted with the U plate temperature at room temperature, but when the substrate temperature was set to 100 [° C.], the 5102 film was not deposited. Therefore, if the light passing window 20 is heated to 100 [°C] or more, it is possible to prevent the 8102 film from adhering to the window 20, thereby preventing the SiO2 film from adhering to the window 20.
It is possible to prevent a decrease in the amount of light irradiated into the container 11 due to the adhesion of No. 2.

ところで、本実施例においては塩素ガスは次の2つの点
で、テトラメチルシランと酸素との反応を促進している
と考えられる。その第1は、光を吸収して励起状態にあ
る塩素ガスがテトラメチルシラン分子或いは酸素分子と
衝突してエネルギーを交換して、励起状態のテトラメチ
ルシラン或いは酸素分子を作る。これらの励起状態の原
料ガスはnいに衝突して反応しSiO2膜を生成物とし
て1t1積さ1!る。この一連の反応は、例えば以下の
反応式で表される。
By the way, in this example, chlorine gas is considered to promote the reaction between tetramethylsilane and oxygen in the following two ways. The first is that chlorine gas, which is in an excited state by absorbing light, collides with tetramethylsilane molecules or oxygen molecules and exchanges energy, producing tetramethylsilane or oxygen molecules in an excited state. These excited source gases collide with each other and react, producing a SiO2 film as a product of 1t1 and 1! Ru. This series of reactions is expressed, for example, by the following reaction formula.

=10− CI 2 +hν→C12x・・・・・・・・・・・・
・・・・旧・・・・・・・・■Si C4Hs 2 +
Cl 2 H−+Si C41−1t 2 NtCI 
2 N・・・・・・・・・■ 02 +C12H−+Q2 H+CI 2・・・・・・
・旧・・・・・■′Si G4H+ 2 H+802−
+S I02+4GO2+61〜120・・・・・・■ Si 041−1t 2 +02 x+702→810
2 +4GO2+61−120・・・・・・■′テトラ
メチルシランは■→■→■或いは■→■′→■′の反応
経路のいずれか或いはその双方を通じて8102を生成
し基板上に堆積させる。
=10− CI 2 +hν→C12x・・・・・・・・・・・・
・・・・Old・・・・・・・■Si C4Hs 2 +
Cl2H-+SiC41-1t2NtCI
2 N......■ 02 +C12H-+Q2 H+CI 2...
・Old...■'Si G4H+ 2 H+802-
+S I02+4GO2+61~120...■ Si 041-1t 2 +02 x+702→810
2+4GO2+61-120...■' Tetramethylsilane produces 8102 through either or both of the reaction routes of ■→■→■ or ■→■'→■' and deposits it on the substrate.

一方、第2の点は以下のように8;1明される。即ち、
テI・ラメチルシラン中の水素原子或いはメチルMtr
Mjlkし−r、例工1.i’ S i CH2Cl 
(CH3)3のような蒸気圧の小さな塩素化テI・ラメ
チルシラン類を形成するが、これらは蒸気圧が低いため
に基板上に凝縮し極薄い液状の膜となる。
On the other hand, the second point is explained as follows. That is,
Hydrogen atom or methyl Mtr in TeI-ramethylsilane
Mjlkshi-r, Example 1. i' S i CH2Cl
Chlorinated tetramethylsilanes such as (CH3)3 having a low vapor pressure are formed, but because of their low vapor pressure, they condense on the substrate and form an extremely thin liquid film.

この膜は、光を照射することにより容易に分解除去され
るため、リソグラフィ用の1m膜どしても使用すること
ができる。この基板上の塩素化テi・ラメチルシラン(
SiC4H+ 2−N GIN )はテ1〜ラメチルシ
ラン及び酸素を溶し込むことによって棋根上における反
応■→■或いは■′→■′を(イ進しS l 02膜の
堆積速度を高める。さらに、SiO2が気相中でなく主
どして基板表面上で形成されるので、5iO21!と基
板との間の密着性を良くし、!I9質を向上させる効果
を有する。また、窓20を100 [℃]程度に加熱し
ておけば、窓20へは塩素化テトラメチルシラン類が凝
縮しないので、窓20に堆積するSiO2膜は気相反応
ににるbののみどなる。このような気相反応によるSi
O2膜は生成速度が小さいので、窓20への8102の
付着は殆ど問題とならない。たとえ長時間かかって一定
量のS i 02が窓20に付着したと仮定しても、気
相反応による5102膜は密着性が(釘弱いために布等
で簡単に拭い取ることができる。
Since this film is easily decomposed and removed by irradiation with light, it can be used as a 1 m film for lithography. Chlorinated teiramethylsilane (
SiC4H+ 2-N GIN) promotes the reaction (■→■ or ■'→■') on the substrate by dissolving Te1-ramethylsilane and oxygen, increasing the deposition rate of the SiO2 film. is formed mainly on the surface of the substrate rather than in the gas phase, which has the effect of improving the adhesion between 5iO21! and the substrate and improving the quality of !I9.Furthermore, the window 20 is ℃], the chlorinated tetramethylsilanes will not condense on the window 20, so the SiO2 film deposited on the window 20 will only be exposed to the gas phase reaction. by Si
Since the production rate of the O2 film is low, the adhesion of 8102 to the window 20 poses almost no problem. Even if it is assumed that a certain amount of S i 02 adheres to the window 20 over a long period of time, the 5102 film produced by the gas phase reaction has poor adhesion (because the nails are weak, it can be easily wiped off with a cloth or the like).

また、塩素ガス及びテ]・ラメチルシランガス濃度を増
加するとj「積5iOz膜中に気泡上のものができ膜が
荒れるのは以下の理由によるものと考えられる。即ち、
テトラメチルシラン11麿を増加することは反応■の生
成物である塩素化テ1ヘラメチルシランの分圧を高める
効果を持つ。一方、塩素濃度を高めることは塩素化テト
ラメチルシランの塩素分圧比を高め分子−を大きくする
が、これに伴い塩素化テトラメチルシランの蒸気圧が低
下する効果を有する。以上の2つの効果はいずれも基板
上への塩素化テI−ラメチルシランの凝縮膳を増大させ
るが、不必要に多量の塩素化テトラメチルシランは81
02膜に取り込まれる等して5102J[の膜質を悪化
させる。
In addition, when the concentration of chlorine gas and teramethylsilane gas is increased, bubbles are formed in the 5 iOz film and the film becomes rough. This is thought to be due to the following reasons.
Increasing the amount of tetramethylsilane has the effect of increasing the partial pressure of chlorinated tetramethylsilane, which is the product of reaction (1). On the other hand, increasing the chlorine concentration increases the chlorine partial pressure ratio of chlorinated tetramethylsilane and increases the molecular size, but this has the effect of lowering the vapor pressure of chlorinated tetramethylsilane. Both of the above two effects increase the concentration of chlorinated tetramethylsilane on the substrate, but an unnecessarily large amount of chlorinated tetramethylsilane
02 film, deteriorating the film quality of 5102J[.

このように本実施例によれば、S I G4tl+ 2
+02からなる原料ガスにCI2からなる反応性ガスを
混入することにより、CI2の吸収波長帯内の波長の可
視光或いは近紫外光で試料12上に810211112
1を堆積させることができる。このため、真空紫外光を
用いる従来の光CVDと比較して、光源の取り扱いが容
易で、且つ装置のコストを低減させることができる。ま
た、CI2の混入により前述した通り堆積速度を従来り
より大幅13− に速めることができ、立体的な回路の製造等に極めて有
効である。
As described above, according to this embodiment, S I G4tl+ 2
By mixing a reactive gas consisting of CI2 into a raw material gas consisting of
1 can be deposited. Therefore, compared to conventional optical CVD using vacuum ultraviolet light, the light source is easier to handle and the cost of the apparatus can be reduced. In addition, as mentioned above, by mixing CI2, the deposition rate can be significantly increased by 13-30% compared to the conventional method, which is extremely effective for manufacturing three-dimensional circuits.

第5図は他の実施例方法に使用した薄膜形成装置を示す
概略構成図である。この装置が前記第1図に示した装置
と異なる点は、光の照射方向にある。即ち、前記光源1
8を容器11の左方に配置し、光19を試料基板12に
対して平行に照射するようにした。このように基板12
を直接照射しない状態でも光を直接照射した場合と略等
しい堆積速度でSiO2膜21を堆積することができた
FIG. 5 is a schematic diagram showing a thin film forming apparatus used in another example method. This device differs from the device shown in FIG. 1 in the direction of light irradiation. That is, the light source 1
8 was placed on the left side of the container 11, and the light 19 was irradiated parallel to the sample substrate 12. In this way, the substrate 12
Even without direct irradiation with light, the SiO2 film 21 could be deposited at approximately the same deposition rate as in the case of direct irradiation with light.

しかし、I!質は光を試料基板上に直接照射した場合の
方が清らかであった。
But I! The quality was clearer when the light was directly irradiated onto the sample substrate.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記光を試料上に照射する手段として試
料を一括照射する代りに、第6図に示寸如<1tFl−
の長径より長い長方形上のビームを用い、このビームを
試料全域に亙り該試料に対し相対的に走査するようにし
てもよい。さらに、第7図に示す如く小径の矩形状ビー
ムを用いることにより、試料」二に選択的に薄膜を形成
すること14− も可能である。また、光源としては、干渉性のレーザに
限るものではなく、水銀ランプ等の非干渉性の光源を用
いることも可能である。さらに、光源は必ずしも容器外
に配置する必要はなく、容器内に配置するようにしても
よい。
Note that the present invention is not limited to the embodiments described above. For example, instead of irradiating the sample all at once as a means of irradiating the sample with the light, as shown in FIG.
A rectangular beam having a length longer than the major axis of the sample may be used, and the beam may be scanned over the entire sample area relative to the sample. Furthermore, by using a small-diameter rectangular beam as shown in FIG. 7, it is also possible to selectively form a thin film on the sample. Further, the light source is not limited to a coherent laser, but a non-coherent light source such as a mercury lamp can also be used. Furthermore, the light source does not necessarily need to be placed outside the container, but may be placed inside the container.

また、前記原料ガスとして′はテl〜ラメチルシランの
代りにシラン或いはテトラメチルシラン以外の有機シラ
ン類やハロゲン化有機シラン類を、酸素の代りにN20
等の酸化剤を用いて5I02191を堆積さゼることも
できる。さらに、前記反応性ガスとしては、塩素以外に
弗素、臭素、ヨウ素等を用いることも可能である。また
、原料ガスの組み合わせを代えることによって、S l
 02以外の薄膜を堆積させることができる。例えば、
シラン或いは有機シラン類及びそのハロゲン誘導体のみ
を原料ガスとしてシリコン薄膜を、これらに窒素。
In addition, as the raw material gas,' is silane or organic silanes other than tetramethylsilane or halogenated organic silanes instead of tetramethylsilane, and N20 instead of oxygen.
5I02191 can also be deposited using an oxidizing agent such as. Furthermore, as the reactive gas, it is also possible to use fluorine, bromine, iodine, etc. in addition to chlorine. In addition, by changing the combination of raw material gases, S l
Thin films other than 0.02 can be deposited. for example,
A silicon thin film is formed using only silane, organic silanes, and their halogen derivatives as the raw material gas, and nitrogen is added to the silicon thin film.

アンモニア、ヒドラジン等窒素を含むガスを組合わせて
窒化シリコン薄膜を堆積させることも可能である。さら
に、シラン或いは有機シラン類及びそのハロゲン誘導体
を、シリコン以外のゲルマニウム、リン、ホウ素、ヒ素
、アルミニウム、ガリウム等の元素の水素化化合物或い
は有機化合物及びそのハロゲン誘導体に置き代えること
により、これらの元素の単体、酸化物、窒化物の薄膜を
堆積させる場合にも本発明は有効である。また、ガリウ
ムを含むカスとヒ素を含むガスとを組み合わ1!ること
にJ:リカリウムヒ素等の化合物半導体を堆積させるこ
ともできる。さらに、リン、ホウ素等を含むガスを微量
添加することによって、これらの元素がドープされた薄
膜を堆積させることも可能である。その他、本発明はそ
の要旨を逸脱しない範囲で種々変形して実施することが
できる。
It is also possible to deposit a silicon nitride thin film using a combination of nitrogen-containing gases such as ammonia and hydrazine. Furthermore, by replacing silane, organic silanes, and their halogen derivatives with hydrogenated compounds or organic compounds of elements other than silicon, such as germanium, phosphorus, boron, arsenic, aluminum, and gallium, and their halogen derivatives, these elements can be The present invention is also effective when depositing thin films of single substances, oxides, and nitrides. Also, by combining scum containing gallium and gas containing arsenic, 1! In particular, it is also possible to deposit compound semiconductors such as J: lypotium arsenide. Furthermore, by adding a small amount of gas containing phosphorus, boron, etc., it is also possible to deposit a thin film doped with these elements. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に使用した薄膜形成装置
を示1*略(a成図、第2図は上記装置を用いた薄膜形
成方法を説明するための断面図、第3図は薄膜J[積速
度のテl−ラメチルシラン濃度依存14を示す特性図、
第4図は薄膜Iff積速度の塩素ガス濃度依存性を示す
特性図、第5図は他の実施例に使用した薄膜形成装置を
示す概略構成図、第6図及び第7図はそれぞれ変形例を
説明するための斜視図である。 11・・・真空容器、12・・・試料基板、13・・・
4f t?ブタ、14.15.16・・・ガス導入口、
17・・・ガス排気口、1日・・・光源、19・・・光
、20・・・光通過窓、21・・・S l 02 II
。 出願人代理人 弁理士 鈴江武彦 17− 第1 図 第2図 1 第3 図 子ト)メ手ルシラン濃友[voL%J □第4図
Fig. 1 shows a thin film forming apparatus used in a method according to an embodiment of the present invention. is a characteristic diagram showing the dependence of the stacking velocity on the tera-methylsilane concentration14 in the thin film J,
Fig. 4 is a characteristic diagram showing the dependence of the thin film Iff on the chlorine gas concentration, Fig. 5 is a schematic diagram showing the thin film forming apparatus used in other examples, and Figs. 6 and 7 are modified examples, respectively. It is a perspective view for explaining. 11... Vacuum container, 12... Sample substrate, 13...
4ft? Pig, 14.15.16...Gas inlet,
17...Gas exhaust port, 1st...Light source, 19...Light, 20...Light passing window, 21...S l 02 II
. Applicant's agent Patent attorney Takehiko Suzue 17- Figure 1 Figure 2 Figure 1 Figure 3 Tomo Mete Luciran Notomo [voL%J □ Figure 4

Claims (8)

【特許請求の範囲】[Claims] (1)光化学反応により試料上に薄膜をJ「積形酸する
薄膜形成方法において、前記試料を該試料上に堆積すべ
き原料を含む原料ガスと少なくともハロゲン元素を含む
反応性ガスとの混合ガス雰囲気中に晒し、上記混合ガス
中に上記反応性ガスを解離する光を照射することを特徴
とするIII形成方法。
(1) In a thin film forming method in which a thin film is formed on a sample by a photochemical reaction, the sample is mixed with a raw material gas containing the raw material to be deposited on the sample and a reactive gas containing at least a halogen element. A method for forming III, which comprises exposing the mixed gas to an atmosphere and irradiating the mixed gas with light that dissociates the reactive gas.
(2)前記試料は、前記反応性ガスのラジカルによって
エツチングされないものであることを特徴とする特許請
求の範囲第1項記載の薄膜形成方法。
(2) The thin film forming method according to claim 1, wherein the sample is not etched by the radicals of the reactive gas.
(3)前記原石ガスは、シラン及び有機シラン類。 水素化ゲルマニム及び有機ゲルマニム類、ホスフィン及
び有機ホスフィン類、ボラン及び有機ボラン類、アルシ
ン及び有機アルシン類、有機アルミニウム類、有機ガリ
ウム類等の有機金属化合物並びにこれらのハロゲン誘導
体であることを特徴とする特YT請求の範囲第1項記載
の薄膜形成方法。
(3) The raw gas is silane and organic silanes. Organometallic compounds such as germanium hydride and organogermanims, phosphines and organophosphines, borane and organoboranes, arsine and organoarsines, organoaluminums, organogalliums, and halogen derivatives thereof. A thin film forming method according to claim 1.
(4)前記原石カスは、酸素或いは窒素との混合ガスで
あることを特徴とする特許請求の範囲第3頂記軟の薄膜
形成方法。
(4) The method for forming a soft thin film as set forth in claim 3, wherein the raw stone scum is a mixed gas with oxygen or nitrogen.
(5)前記光は、干渉性或いは非干渉性のものであるこ
とを特徴とする特許請求の範囲第1項記載のi#膜形成
方法。
(5) The i# film forming method according to claim 1, wherein the light is coherent or incoherent.
(6)前記光は、前記試料に対し垂直或いは平行に照制
さ1するものであることを特徴とする特許請求の鞘II
M第1項記載の薄膜形成方法。
(6) The sheath II of claim 1, wherein the light is directed perpendicularly or parallel to the sample.
The method for forming a thin film according to item M.
(7)前記光は、前記試料上で集光され、この集光領域
が試料全面に亙って該試料に対し相対的に走査されるも
のであることを特徴とする特許請求の範囲第1項記載の
薄膜形成方法。
(7) The light is focused on the sample, and the light focusing area is scanned over the entire surface of the sample relative to the sample. Thin film forming method described in section.
(8)前記原料ガスと反応性ガスとの混合ガスの全圧力
を、1 o [torr1以上に設定したことを特徴と
する特許請求の範囲第1項記載の薄膜形成方法。
(8) The thin film forming method according to claim 1, wherein the total pressure of the mixed gas of the raw material gas and the reactive gas is set to 1 o [torr1 or more.
JP2099284A 1984-02-08 1984-02-08 Forming method for thin film Pending JPS60165728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099284A JPS60165728A (en) 1984-02-08 1984-02-08 Forming method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099284A JPS60165728A (en) 1984-02-08 1984-02-08 Forming method for thin film

Publications (1)

Publication Number Publication Date
JPS60165728A true JPS60165728A (en) 1985-08-28

Family

ID=12042620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099284A Pending JPS60165728A (en) 1984-02-08 1984-02-08 Forming method for thin film

Country Status (1)

Country Link
JP (1) JPS60165728A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145882A (en) * 1985-12-20 1987-06-29 Canon Inc Continuous manufacturing equipment for photovoltaic element
JPS62152122A (en) * 1985-12-26 1987-07-07 Canon Inc Deposited film forming device
JPS62156812A (en) * 1985-12-28 1987-07-11 Canon Inc Thin film semiconductor element and forming method thereof
JPS62156813A (en) * 1985-12-28 1987-07-11 Canon Inc Thin film semiconductor element and forming method thereof
JPS62156811A (en) * 1985-12-28 1987-07-11 Canon Inc Thin film semiconductor element and forming method thereof
JPS62163313A (en) * 1986-01-14 1987-07-20 Canon Inc Thin-film multilayer structure and forming method thereof
JPS62163312A (en) * 1986-01-14 1987-07-20 Canon Inc Thin-film multilayer structure and forming method thereof
JPS63147315A (en) * 1986-12-10 1988-06-20 Fujitsu Ltd Vapor growth method for silicon layer
US5413967A (en) * 1991-05-16 1995-05-09 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor devices
JPH08213389A (en) * 1995-10-09 1996-08-20 Semiconductor Energy Lab Co Ltd Insulating film
US5556968A (en) * 1990-11-07 1996-09-17 Nycomed Salutar, Inc. Polyazamacrocycle chelating agents with amide linkages

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145882A (en) * 1985-12-20 1987-06-29 Canon Inc Continuous manufacturing equipment for photovoltaic element
JPS62152122A (en) * 1985-12-26 1987-07-07 Canon Inc Deposited film forming device
JPS62156812A (en) * 1985-12-28 1987-07-11 Canon Inc Thin film semiconductor element and forming method thereof
JPS62156813A (en) * 1985-12-28 1987-07-11 Canon Inc Thin film semiconductor element and forming method thereof
JPS62156811A (en) * 1985-12-28 1987-07-11 Canon Inc Thin film semiconductor element and forming method thereof
JP2566914B2 (en) * 1985-12-28 1996-12-25 キヤノン株式会社 Thin film semiconductor device and method of forming the same
JPS62163313A (en) * 1986-01-14 1987-07-20 Canon Inc Thin-film multilayer structure and forming method thereof
JPS62163312A (en) * 1986-01-14 1987-07-20 Canon Inc Thin-film multilayer structure and forming method thereof
JPS63147315A (en) * 1986-12-10 1988-06-20 Fujitsu Ltd Vapor growth method for silicon layer
US5556968A (en) * 1990-11-07 1996-09-17 Nycomed Salutar, Inc. Polyazamacrocycle chelating agents with amide linkages
US5413967A (en) * 1991-05-16 1995-05-09 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor devices
JPH08213389A (en) * 1995-10-09 1996-08-20 Semiconductor Energy Lab Co Ltd Insulating film

Similar Documents

Publication Publication Date Title
JPS6175529A (en) Dry etching method and apparatus therefor
JPS60258915A (en) Method and device for depositing laser chemical phase
JPH049369B2 (en)
JPS60165728A (en) Forming method for thin film
Bergonzo et al. Low pressure photodeposition of silicon nitride films using a xenon excimer lamp
JPS6173332A (en) Optical treating device
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS5982732A (en) Manufacture for semiconductor device
JPS63239811A (en) Optical reactor
JPS61276325A (en) Etching method for silicon substrate
JP3086926B2 (en) Method for forming silicon oxide film
EP0298126B1 (en) Optical cvd process
JPH108257A (en) Production of carbon nitride and carbon nitride
JPS6027121A (en) Photo chemical vapor deposition device
Nissim et al. Light Assisted CVD For Thin Dielectric Film Deposition
EP0319021A2 (en) Apparatus for laser chemical vapour deposition
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPH0689455B2 (en) Thin film formation method
JPS61255015A (en) Thin film forming method
JPS61255014A (en) Thin film growing method
JPS61196528A (en) Thin film forming apparatus
JPH01184278A (en) Depositing method for high-purity metal
JPH07105343B2 (en) Thin film forming method and apparatus
JPS61288431A (en) Manufacture of insulating layer