JPS6188571A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPS6188571A
JPS6188571A JP59209966A JP20996684A JPS6188571A JP S6188571 A JPS6188571 A JP S6188571A JP 59209966 A JP59209966 A JP 59209966A JP 20996684 A JP20996684 A JP 20996684A JP S6188571 A JPS6188571 A JP S6188571A
Authority
JP
Japan
Prior art keywords
type
semiconductor
type dopant
conductive film
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59209966A
Other languages
Japanese (ja)
Other versions
JPH07105508B2 (en
Inventor
Yoshihisa Owada
善久 太和田
Kazunaga Tsushimo
津下 和永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59209966A priority Critical patent/JPH07105508B2/en
Publication of JPS6188571A publication Critical patent/JPS6188571A/en
Publication of JPH07105508B2 publication Critical patent/JPH07105508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve sensitivity on the short wavelength side by making an N type dopant in concentration sufficient for increasing the mutau (the product of mobility and lift) of electrons on beam projection to contain into an amorphous semiconductor. CONSTITUTION:When P type a-Si:H in 120Angstrom , substantially intrinsic a-Si:H in 5,000Angstrom and Si:H in 500Angstrom containing N type crystallites are deposited on a glass/SnO2 substrate and intrinsic a-Si:H is shaped by a photodetector on which an Al electrode is evaporated, N2 gas is doped by 10ppm, 40ppm, 100ppm and 400ppm to SiH4. Accordingly, sensitivity on the long wavelength side slightly lowers with the increases of the quantity of N2 doped, but sensitivity on the short wavelength side is enhanced remarkably.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光検出装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a photodetection device.

[従来の技術] 従来より、太@電池や光検知器などの光検出装置が使用
されている。これらの光検出装置は光を電気エネルギー
に変換する装置であり、主要部の原理的構成や動作原理
が実質的に同じであるため、以下の説明では便宜上、主
として太陽電池について説明する。
[Prior Art] Photodetection devices such as thick batteries and photodetectors have been used in the past. These photodetecting devices are devices that convert light into electrical energy, and since the fundamental structure and operating principle of the main parts are substantially the same, in the following description, for convenience, solar cells will be mainly explained.

太陽電池に入射して半導体の能動領域に吸収された光は
、正孔と電子とを生成し、この正孔と電子とが内部電界
により分離され、光電流として知られる電流と光起電圧
として知られる電圧が生じる。電子はn型導電性を示す
半導体領域に向って流れ、正孔はこれと反対の導電性を
示す半導体領域または金属層に向って流れる。
Light incident on a solar cell and absorbed by the active region of the semiconductor generates holes and electrons, which are separated by an internal electric field and produce a current known as photocurrent and a photovoltage. A known voltage develops. Electrons flow toward the semiconductor region exhibiting n-type conductivity, and holes flow toward the semiconductor region or metal layer exhibiting the opposite conductivity.

真性領域すなわち無ドープ領域を有する水素化非晶質シ
リコン太陽電池の基本型については、米国特許第406
4521号明細書に開示されている。
A basic type of hydrogenated amorphous silicon solar cell with an intrinsic or undoped region is described in U.S. Pat. No. 406
It is disclosed in the specification of No. 4521.

またその無ドープ領域にハロゲンを添加した水素化非晶
質シリコン太陽電池については、特開till(53−
42693号公報に開示されている。
Regarding hydrogenated amorphous silicon solar cells in which halogen is added to the undoped region, see Japanese Patent Application Laid-open No.
It is disclosed in Japanese Patent No. 42693.

上記の無ドープ水素化非晶質シリコン半導体は、約25
0〜350℃の最適基板温度で製造したときわずかにn
型になり、光照射時にこの無ドープ水素化非晶質シリコ
ン半導体のわずかなn型特性が真性水素化非晶質シリコ
ン半導体領域のドナー状欠陥として働く。無ドープ水素
化非晶質シリコン半導体領域がわずかにn型でなく、実
質的に中性であるようにすれば、この領域を有する非晶
質シリコン型太陽電池の空間電荷領域は増大すると考え
られ、この考え方にもとづき特公昭59−29157号
公報においては、n型ドープ剤で無ドープ水素化非晶質
シリコン半導体領域を補償して実質的に中性にし、空間
電荷層を増大させる試みがなされている。
The above undoped hydrogenated amorphous silicon semiconductor has approximately 25
When manufactured at the optimum substrate temperature of 0 to 350°C, only n
When irradiated with light, the slight n-type characteristics of this undoped hydrogenated amorphous silicon semiconductor act as donor-like defects in the intrinsic hydrogenated amorphous silicon semiconductor region. It is believed that if the undoped hydrogenated amorphous silicon semiconductor region is made to be substantially neutral rather than slightly n-type, the space charge region of an amorphous silicon solar cell having this region will increase. Based on this idea, in Japanese Patent Publication No. 59-29157, an attempt was made to compensate the undoped hydrogenated amorphous silicon semiconductor region with an n-type dopant to make it substantially neutral, thereby increasing the space charge layer. ing.

[発明が解決しようとする問題点] 光検出装置において、無ドープ水素化非晶質シリコン半
導体がわずかにn型になることをn型ドープ剤で補償し
て空間電荷領域を増大させると、電子の走行距離が大き
い、光の入射側がn型半導体または金属障壁側のような
光検出装置のばあいには、電子の移動度(μ)と寿命(
τ)との積μτが正孔のμτより相対的に小さくなり、
短波長側の感度が著しく低下し、光の入射側がn型半導
体のばあいには、長波長側の感度が低下するという欠点
を有していることが、本発明者らにより見出された。
[Problems to be Solved by the Invention] In a photodetector, if the undoped hydrogenated amorphous silicon semiconductor slightly becomes n-type, which is compensated for with an n-type dopant to increase the space charge region, electron In the case of a photodetector in which the travel distance is long and the light incident side is an n-type semiconductor or metal barrier side, the electron mobility (μ) and the lifetime (
τ), the product μτ becomes relatively smaller than the hole μτ,
The present inventors have discovered that the sensitivity on the short wavelength side is significantly reduced, and when the light incident side is an n-type semiconductor, the sensitivity on the long wavelength side is reduced. .

本発明はかかる欠点を解決するためになされたものであ
る。
The present invention has been made to solve these drawbacks.

[問題点を解決するための手段] 本発明は、実質的に真性な非晶質半導体を含み電位障壁
を有する光検出装置において、光照射時の電子のμτを
大きくするにたりる濃度のn型ドープ剤を前記非晶質半
導体中に含むことを特徴とする光検出装置に関する。
[Means for Solving the Problems] The present invention provides a photodetection device that includes a substantially intrinsic amorphous semiconductor and has a potential barrier, in which a concentration of n that increases μτ of electrons during light irradiation is used. The present invention relates to a photodetection device characterized in that the amorphous semiconductor contains a type dopant.

[実塙例] 本発明における実質的に真性な非晶質半導体を含み電位
障壁を有する光検出装置とは、ヘテロあるいはホモのp
in型、ショットキ型、HIS型またはマルチジャンク
ション型(pin/pin/pinなど)などの光検出
装置であって、実質的に真性な半導体、すなわちa−8
i:H,a−Si:F:H,a−3iGe:H,a−3
iGe:F:H,a−3iSn:Hのような半導体を含
み、電極と半導体や異なった電導型を有する半導体同士
を接合したり、金属や酸化物電膜と接合したりした電位
障壁を有する光検出装置のことである。
[Practical example] In the present invention, a photodetecting device including a substantially intrinsic amorphous semiconductor and having a potential barrier is a hetero or homo p
A photodetection device such as an in-type, Schottky type, HIS type, or multi-junction type (pin/pin/pin, etc.), which is a substantially intrinsic semiconductor, i.e., a-8
i:H, a-Si:F:H, a-3iGe:H, a-3
Contains semiconductors such as iGe:F:H and a-3iSn:H, and has potential barriers that connect electrodes and semiconductors, semiconductors with different conductivity types, or metals or oxide films. It refers to a photodetector.

前記実質的に真性な非晶質半導体とは、たとえばシリコ
ンを含む実質的に真性な非晶質半導体であり、その具体
例としては、Si、 5iGe。
The substantially intrinsic amorphous semiconductor is, for example, a substantially intrinsic amorphous semiconductor containing silicon, and specific examples thereof include Si and 5iGe.

SiC、5iSn1Sinなどからなり、水素原子やフ
ッ素原子などのハロゲン原子の少なくとも1種で補償さ
れている半導体などがあげられるが、これらに限定され
るものではない。またその厚さとしては、光検出装置に
用いるため、100〜20000人であることが光電流
の点から好ましく、500〜20000人であることが
さらに好ましい。
Examples include, but are not limited to, semiconductors made of SiC, 5iSn1Sin, etc., and compensated with at least one type of halogen atom such as a hydrogen atom or a fluorine atom. In addition, since it is used in a photodetector, its thickness is preferably 100 to 20,000 from the viewpoint of photocurrent, and more preferably 500 to 20,000.

本発明においては、前記実質的に真性な半導体に光照射
時の電子のμτを大きくするにたりる9度のn型ドープ
剤がドープされている。
In the present invention, the substantially intrinsic semiconductor is doped with a 9 degree n-type dopant that increases μτ of electrons upon irradiation with light.

前記n型ドープ剤の具体例としては、N、P、ASなど
があげられ、通常はNH3、NF3 、ホスフィン、A
sH3などを用いて、半導体をグロー放電分解法などに
より堆積せしめる際に、ともに堆積せしめることにより
ドープされる。
Specific examples of the n-type dopant include N, P, AS, etc., and usually NH3, NF3, phosphine, A
When a semiconductor is deposited by a glow discharge decomposition method using sH3 or the like, it is doped by being deposited together with the semiconductor.

前記n型ドープ剤の半導体中における好ましい濃度はn
型ドープ剤や半導体の種類により異なるが、一般に原子
数で1014〜1018/cm3、好ましくは1015
〜5X 10” / cm ”である。該原子数が10
” / cm ’未満になると、はとんど効果がなくな
る傾向にあり、1018/α3をこえると欠陥が増える
ために正孔のμτが小さくなり、絶対感度を著しく低下
させる傾向が生じ、いずれも本発明の目的である光照射
時の電子のμτを大きくし、短波長側の感度を増すこと
ができにくくなる傾向にある。
The preferred concentration of the n-type dopant in the semiconductor is n
Although it varies depending on the type dopant and the type of semiconductor, the number of atoms is generally 1014 to 1018/cm3, preferably 1015.
~5X 10"/cm". The number of atoms is 10
When the value is less than 1018/cm', the effect tends to disappear, and when it exceeds 1018/α3, the number of defects increases, so the μτ of holes decreases, and the absolute sensitivity tends to decrease significantly. It tends to become difficult to increase μτ of electrons during light irradiation and increase sensitivity on the short wavelength side, which is the objective of the present invention.

n型ドープ剤によるドープは実質的に真性な半導体全体
に均一に行なってもよい。しかし、光の入射がp型半導
体、電位障壁をつくる金属または酸化物導電膜側のばあ
いには、p型半導体界面、電位障壁をつくる金属または
酸化物導電膜界面から光の入射と反対側へn型ドープ剤
の濃度が、たとえば1017〜10” / cm ’程
度からだんだん減少するように形成することが、長波長
側の感度を低下させないという点から好ましい。なお、
n型ドープ剤で均一にドープするばあいには、前記界面
から約2000人、好ましくは1500人以内の厚さで
ドープすることが、同様の理由から好ましい。
Doping with an n-type dopant may be done uniformly throughout the substantially intrinsic semiconductor. However, if the light is incident on the p-type semiconductor, the metal or oxide conductive film that creates the potential barrier, the side opposite to the light incidence is from the p-type semiconductor interface, the metal or oxide conductive film that creates the potential barrier. It is preferable to form the layer so that the concentration of the n-type dopant gradually decreases from about 1017 to 10"/cm', for example, from the viewpoint of not reducing the sensitivity on the long wavelength side.
When uniformly doping with an n-type dopant, it is preferable to dope to a thickness within about 2,000 layers, preferably 1,500 layers from the interface for the same reason.

光の入射が逆のばあいでも同じように、p型半導体、電
位障壁をつくる金属または酸化物導電膜界面から光の入
射側へ、n型ドープ剤の濃度が減少するように形成した
り、界面から2000人だけn型ドープ剤でドープする
のが好ましい。
Similarly, when the light incidence is reversed, the concentration of the n-type dopant decreases from the interface of the p-type semiconductor and the metal or oxide conductive film that forms the potential barrier toward the light incidence side. Preferably, only 2000 layers from the interface are doped with an n-type dopant.

以上説明したような、光照射時の電子のμτを大きくす
るにたりる濃度のn型ドープ剤でドープした、実質的に
真性な非晶質半導体を用いて、電位障壁を有する光検出
装置を製造すると、えられた光検出装置は、たとえばp
in型のばあいにはp側から、また旧S型やショットキ
型のばあいには金屑側から光が入射するばあいに、光励
起により発生した電子の走行距離が長いにもかかわらず
μτが大きくなるため、第1図に示すように約550n
m以下の感度が著しく増加する。その結果、蛍光タコの
ように短波長の光に対する電流値が、ドープしないばあ
いの1,5〜2倍にも増大する。
As explained above, a photodetector having a potential barrier is constructed using a substantially intrinsic amorphous semiconductor doped with an n-type dopant at a concentration that increases the μτ of electrons when irradiated with light. Once manufactured, the resulting photodetector device may e.g.
When light enters from the p side in the case of in-type, or from the scrap metal side in the case of old S-type and Schottky types, μτ becomes large, so as shown in Figure 1, it is approximately 550n
Sensitivity below m increases significantly. As a result, the current value for short wavelength light such as fluorescent octopus increases by 1.5 to 2 times that in the case without doping.

つぎに本発明の光検出装置を実施例にもとづぎ説明する
Next, the photodetecting device of the present invention will be explained based on examples.

実Lt5例1〜4および比較例1 ガラス/5n02基板上に、基板温度200℃でp型a
−3i:H(Eg=2.05eV 、  σa=10−
6(−〇・cm))120人、実質的に真性なa−3i
:H(Eg=1.8eV 1△E= 0.8eV、 (
rd= 3 X 10   (Ω・cm)−1)500
0人、n型微結晶を含むSi:H(ΔE= 0.05e
V 。
Actual Lt 5 Examples 1 to 4 and Comparative Example 1 P-type a was formed on a glass/5n02 substrate at a substrate temperature of 200°C.
-3i:H (Eg=2.05eV, σa=10-
6 (-〇・cm)) 120 people, essentially a-3i
:H(Eg=1.8eV 1△E=0.8eV, (
rd= 3 x 10 (Ω・cm)-1)500
0 people, Si:H containing n-type microcrystals (ΔE = 0.05e
V.

+7(1= 5 X−10−’ (Ω・cu)−’ )
  500人を堆積し、N電極を蒸着した光検出装置で
、真性なa−3i:Hを製膜するとぎに112ガスを5
=84に対して10ppm 140ppm 、 100
11pill、 400pD印ドープして(それぞれ実
施例1〜4に相当)、ドープしていないばあい(比較例
1)と収集効率を比較した。結果を第1図に示す。
+7 (1 = 5 X-10-'(Ω・cu)-' )
After depositing 112 gas at 500 nm and using a photodetector with an N electrode to form a film of intrinsic a-3i:H, 112 gas was
= 10ppm for 84 140ppm, 100
11 pills and 400 pD were doped (corresponding to Examples 1 to 4, respectively), and the collection efficiency was compared with the case without doping (Comparative Example 1). The results are shown in Figure 1.

第1表から判るように、N2ドープ量が増すにつれて長
波長感度がやや低下するものの、層波長測の感度が著し
く改善されることが判る。
As can be seen from Table 1, as the amount of N2 doping increases, the long wavelength sensitivity slightly decreases, but it can be seen that the sensitivity of the layer wavelength measurement is significantly improved.

具体例で効果をみるために蛍光12001uxでのv−
1特性を調べた。またタイムオアフライト法で1層の電
子のμ。τ。を測定した。それらの結果を第1表に示す
To see the effect in a concrete example, v- at fluorescence 12001ux
1 characteristic was investigated. Also, μ of one layer of electrons using the time-or-flight method. τ. was measured. The results are shown in Table 1.

[以下余白] 第1表に示すように、N2 ドープすると著しく特性の
改善されることがわかる。またillの電子のμ。τ。
[Margin below] As shown in Table 1, it can be seen that doping with N2 significantly improves the characteristics. Also μ of ill electron. τ.

がt12ドープによって大きくなっていることが判る。It can be seen that the value becomes larger due to t12 doping.

。 なおN2ドープによって模中に取り込まれる実際の量は
約1モル%であることが5INSで認められた。
. It was found in 5INS that the actual amount incorporated into the mold by N2 doping was about 1 mol%.

[発明の効果コ 本発明の光検出装置を用いると、短波長側の分光感度が
著しく改善されるので、可視領域で用いられるセンサー
として好ましい特性になる。
[Effects of the Invention] When the photodetection device of the present invention is used, the spectral sensitivity on the short wavelength side is significantly improved, and this has favorable characteristics as a sensor used in the visible region.

また蛍光燈のように可視光の多いもとで用いられる太陽
電池として用いると大きな電流かえられるため、民生機
器(電卓、時計など)の電源として著しい効果が発揮さ
れる。
Also, when used as a solar cell in environments with a lot of visible light, such as fluorescent lights, it can generate a large amount of current, making it extremely effective as a power source for consumer devices (calculators, watches, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の光検出措置の実施態桟である実施例
1〜4でえられた光検出装置および比較例1でえられた
光検出装置のOバイアスでの光電流の波長依存性をフォ
トン数を一定にして相対感度で示したグラフである。 ;1′1図 波長(mm)
FIG. 1 shows the wavelength dependence of photocurrent at O bias of the photodetectors obtained in Examples 1 to 4 and the photodetector obtained in Comparative Example 1, which are implementation frames of the photodetection measure of the present invention. This is a graph showing the relative sensitivity with the number of photons held constant. ;1'1 figure wavelength (mm)

Claims (1)

【特許請求の範囲】 1 実質的に真性な非晶質半導体を含み電位障壁を有す
る光検出装置において、光照射時の電子のμτを大きく
するにたりる濃度のn型ドープ剤を前記非晶質半導体中
に含むことを特徴とする光検出装置。 2 前記光検出装置がpin型、HIS型またはショッ
トキ型の装置である特許請求の範囲第1項記載の光検出
装置。 3 実質的に真性な非晶質半導体が、Si、SiGe、
SiC、SiN、SiSnからなり、水素原子、ハロゲ
ン原子の少なくとも1種で補償されている半導体である
特許請求の範囲第1項記載の光検出装置。 4 n型ドープ剤がN、PまたはAsである特許請求の
範囲第1項記載の光検出装置。 5 n型ドープ剤の濃度が原子数で10^1^4〜10
^1^3/cm^3である特許請求の範囲第1項記載の
光検出装置。 6 p型半導体界面または酸化物導電膜界面からn型ド
ープ剤の濃度が減少している特許請求の範囲第1項記載
の光検出装置。 7 p型半導体界面または酸化物導電膜界面から最大2
000Åの厚さにn型ドープ剤でドープされている特許
請求の範囲第6項記載の光検出装置。 8 光の入射がp型半導体、電位障壁をつくる金属また
は酸化物導電膜側である特許請求の範囲第1項、第2項
、第3項、第4項、第5項、第6項または第7項記載の
光検出装置。 9 光の入射と反対側がp型半導体、電位障壁をつくる
金属または酸化物導電膜側である特許請求の範囲第1項
、第2項、第3項、第4項、第5項、第6項または第7
項記載の光検出装置。
[Scope of Claims] 1. In a photodetecting device that includes a substantially intrinsic amorphous semiconductor and has a potential barrier, an n-type dopant is added to the amorphous at a concentration that increases μτ of electrons during light irradiation. 1. A photodetecting device characterized in that the photodetecting device is contained in a quality semiconductor. 2. The photodetection device according to claim 1, wherein the photodetection device is a pin type, HIS type, or Schottky type device. 3 Substantially intrinsic amorphous semiconductors include Si, SiGe,
2. The photodetecting device according to claim 1, which is a semiconductor made of SiC, SiN, or SiSn and compensated with at least one of hydrogen atoms and halogen atoms. 4. The photodetecting device according to claim 1, wherein the n-type dopant is N, P or As. 5 The concentration of n-type dopant is 10^1^4 to 10 in number of atoms.
^1^3/cm^3 The photodetecting device according to claim 1. 6. The photodetecting device according to claim 1, wherein the concentration of the n-type dopant decreases from the p-type semiconductor interface or the oxide conductive film interface. 7 Up to 2 points from the p-type semiconductor interface or oxide conductive film interface
7. The photodetector device of claim 6, which is doped with an n-type dopant to a thickness of 0.000 Å. 8. Claims 1, 2, 3, 4, 5, 6 or 8, wherein the light is incident on the p-type semiconductor, metal or oxide conductive film side that forms a potential barrier. The photodetection device according to item 7. 9. Claims 1, 2, 3, 4, 5, and 6, in which the side opposite to the light incidence is a p-type semiconductor, a metal or oxide conductive film forming a potential barrier. Section or 7th
The photodetection device described in Section 1.
JP59209966A 1984-10-05 1984-10-05 Photo detector Expired - Lifetime JPH07105508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209966A JPH07105508B2 (en) 1984-10-05 1984-10-05 Photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209966A JPH07105508B2 (en) 1984-10-05 1984-10-05 Photo detector

Publications (2)

Publication Number Publication Date
JPS6188571A true JPS6188571A (en) 1986-05-06
JPH07105508B2 JPH07105508B2 (en) 1995-11-13

Family

ID=16581626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209966A Expired - Lifetime JPH07105508B2 (en) 1984-10-05 1984-10-05 Photo detector

Country Status (1)

Country Link
JP (1) JPH07105508B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100486A (en) * 1980-01-14 1981-08-12 Fuji Photo Film Co Ltd Photoelectric conversion element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100486A (en) * 1980-01-14 1981-08-12 Fuji Photo Film Co Ltd Photoelectric conversion element

Also Published As

Publication number Publication date
JPH07105508B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4253881A (en) Solar cells composed of semiconductive materials
US4878097A (en) Semiconductor photoelectric conversion device and method for making same
EP0309000B1 (en) Amorphous semiconductor and amorphous silicon photovoltaic device
US5580820A (en) Method of forming a semiconductor material having a substantially I-type crystalline layer
CA1091361A (en) Semiconductor device having an amorphous silicon active region
JPS6325515B2 (en)
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
JPH02260662A (en) Photovoltaic device
JPH0147025B2 (en)
JPS59971A (en) Compensating amorphous silicon solar battery
US4409424A (en) Compensated amorphous silicon solar cell
JPS5846074B2 (en) Method of manufacturing photovoltaic device
Neumann‐Spallart et al. Photoelectrochemical properties of semiconducting cadmium mercury telluride thin films with bandgaps between 1.47 and 1.08 eV
JPH0340515B2 (en)
US4772933A (en) Method for compensating operationally-induced defects and semiconductor device made thereby
JP2896793B2 (en) Method for manufacturing photovoltaic device
JPS6188571A (en) Photodetector
JPH0122991B2 (en)
JPH11274527A (en) Photovoltaic device
JPS6134268B2 (en)
JPS62256481A (en) Semiconductor device
JPS6143870B2 (en)
JPS6248394B2 (en)
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPH10247737A (en) Functional thin film and photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term