JPS6188516A - Wafer processing apparatus - Google Patents

Wafer processing apparatus

Info

Publication number
JPS6188516A
JPS6188516A JP20923184A JP20923184A JPS6188516A JP S6188516 A JPS6188516 A JP S6188516A JP 20923184 A JP20923184 A JP 20923184A JP 20923184 A JP20923184 A JP 20923184A JP S6188516 A JPS6188516 A JP S6188516A
Authority
JP
Japan
Prior art keywords
wafer
gas
wafers
center
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20923184A
Other languages
Japanese (ja)
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20923184A priority Critical patent/JPS6188516A/en
Publication of JPS6188516A publication Critical patent/JPS6188516A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain a grown film of uniform thickness by providing sinks of gas between wafers and exhausting the gas which enters from periphery of wafer to the center of wafers. CONSTITUTION:Wafers 4 are placed in parallel with equal interval within a furnace core tube 1 and the gas leadout ports 5 are provided between wafers. According to this structure, even when wafer has large diameter, gas enters the interior from the periphery of wafer, the gas completing the reaction is exhausted from the center of wafer through the gas exhaust port 5. Thereby, the gas is easily supplied to the center, making small difference of film thickness with the periphery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半4体ウェハをまとめてエピタキシャル成長、
各種物質の気相成長(CVD)等の処理を行う装置に係
り、特にウェハ内における処理結果のバラツキを低減で
きるウェハ処理装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to epitaxial growth of half-quadruple wafers together.
The present invention relates to an apparatus for processing various materials such as vapor phase growth (CVD), and particularly to a wafer processing apparatus that can reduce variations in processing results within a wafer.

近年大規模集積回路(LSI)の高集積化に伴いチンプ
サイズは太き(なり、かつ量産効率を高めるため使用す
るウェハは大口径化され、直径が6インチ、あるいはそ
れ以上のウェハが量産工程、 に使用されるようになっ
た。
In recent years, as large-scale integrated circuits (LSI) have become more highly integrated, the chimp size has become thicker, and in order to increase mass production efficiency, the wafers used have become larger in diameter, and wafers with a diameter of 6 inches or more are used in the mass production process. , came to be used for .

従って大口径ウェハに対する各種装置の問題点を解決し
ておく必要がある。
Therefore, it is necessary to solve the problems of various devices for handling large diameter wafers.

〔従来の技術〕[Conventional technology]

第2図は従来例によるウェハ処理装置の模式的な断面図
である。
FIG. 2 is a schematic cross-sectional view of a conventional wafer processing apparatus.

ここではCVD装置を例にとり説明する。Here, explanation will be given taking a CVD apparatus as an example.

図において、1は炉芯管、2は蓋、3はウェハホルダ(
またはウェハバスケット)、4は各ウェハである。1,
2.3は石英よりなる。
In the figure, 1 is a furnace core tube, 2 is a lid, and 3 is a wafer holder (
or wafer basket), 4 is each wafer. 1,
2.3 is made of quartz.

ウェハの大口径化に伴い、ウェハを平行に並べた図示の
装置では、ガスはウェハの周辺から内側に入り、反応の
終わったガスがまたウェハの周辺から出てゆくため、入
るガスと出るガスが衝突して渦を巻いたり、淀んだりし
て不規則な流れとなる。従ってガスがウェハの中心部に
供給され難く、中心部と周辺との膜厚差が太き(なる。
As wafers become larger in diameter, in the device shown in which wafers are arranged in parallel, gas enters the inside from the periphery of the wafer, and the gas that has completed the reaction exits from the periphery of the wafer. When they collide, they swirl or stagnate, creating irregular flows. Therefore, it is difficult for gas to be supplied to the center of the wafer, and the difference in film thickness between the center and the periphery increases.

そのためウェハの間隔を広げると処理能力が低下し、大
口径化の意味がなくなってしまう。
For this reason, increasing the spacing between wafers will reduce the throughput, and there will be no point in increasing the diameter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ウェハが大口径化されても、ウェハの間隔を広げないで
、ガスをウェハの中心部まで導入できる適切な方法がな
かった。
Even as wafer diameters have increased, there has been no suitable method for introducing gas to the center of the wafer without increasing the spacing between the wafers.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、複数個のウェハを略平行に間隔を
おいて配置でき、該ウェハ間にガスの引出し口を設けて
なる本発明によるウェハ処理装置により達成される。
The above-mentioned problem can be solved by the wafer processing apparatus according to the present invention, in which a plurality of wafers can be arranged substantially parallel to each other at intervals, and a gas outlet is provided between the wafers.

〔作用〕[Effect]

ウェハの間隔にガスのシンクを設けて、ウェハ周辺から
入ってきたガスがウェハの中心部より排気されるように
してガスの供給をスムースにすることにより、成長厚さ
の均一性を向上できる。
The uniformity of the growth thickness can be improved by providing a gas sink between the wafers so that gas entering from the wafer periphery is exhausted from the center of the wafer, thereby smoothing the gas supply.

〔実施例〕〔Example〕

第1図は本発明によるウェハ処理装置の模式的な断面図
である。
FIG. 1 is a schematic cross-sectional view of a wafer processing apparatus according to the present invention.

ここでもCVD装置を例にとり説明する。Here again, explanation will be given using a CVD apparatus as an example.

図において、1は炉芯管、2は蓋、4は各ウェハ、5は
ガス引出し口、6はヒータである。
In the figure, 1 is a furnace core tube, 2 is a lid, 4 is each wafer, 5 is a gas outlet, and 6 is a heater.

説明の便宜上ウェハホルダ(またはウェハバスケント)
4の記入は省略する。
Wafer holder (or wafer bus kent) for convenience of explanation
4 will be omitted.

この例では、ウェハが大口径化されても、ガスはウェハ
の周辺から内側に入り、反応の終わったガスはガス引出
し口5により、ウェハ4の中心部から出てゆくため、入
るガスと出るガスが規則正しく流れ、ガスがウェハの中
心部に供給され易く、中心部と周辺との膜厚差が小さく
なる。
In this example, even if the diameter of the wafer is increased, the gas enters inside from the periphery of the wafer, and the gas that has completed the reaction exits from the center of the wafer 4 through the gas outlet 5. Gas flows regularly, gas is easily supplied to the center of the wafer, and the difference in film thickness between the center and the periphery is reduced.

従ってウェハの間隔を広げる必要がなく、大口径化され
ても、ウェハの処理枚数は低下しない。
Therefore, there is no need to widen the interval between wafers, and even if the diameter is increased, the number of wafers processed does not decrease.

実施例として8“φウェハを5mm間隔に並べた燐珪酸
ガラス(PSG)のCVD装置において、ガス引出し口
5としてウェハの略中夫に開口端(シンク)がある石英
細管を配置し、これらの石英細管をまとめて排気管とし
、これを排気ポンプに接続した。
As an example, in a phosphosilicate glass (PSG) CVD apparatus in which 8"φ wafers are arranged at 5 mm intervals, a quartz capillary tube with an opening end (sink) is arranged approximately in the middle of the wafer as the gas outlet 5, and these The quartz tubes were put together to form an exhaust pipe, and this was connected to an exhaust pump.

この結果、PSGの膜厚分布は従来は1μm±10%で
あったが、1μm±5%になった。
As a result, the PSG film thickness distribution, which was conventionally 1 μm±10%, has become 1 μm±5%.

ここで、ガス引出し口5はウェハの出し入れに障害にな
らないように1時退避できるような構造にする。
Here, the gas outlet 5 is constructed so that it can be temporarily retracted so as not to become an obstacle to loading and unloading the wafer.

またはガス引出し口5はウェハバスケット4と1体化し
てもよい。
Alternatively, the gas outlet 5 may be integrated with the wafer basket 4.

実施例では、引出し口5のシンクが各間隔毎に1個ある
場合を示したが、複数個設けてもよい。
In the embodiment, a case is shown in which there is one sink for each drawer opening 5 at each interval, but a plurality of sinks may be provided.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、ウェハが大
口径化されても、ウェハの間隔を広げないで、ガスをウ
ェハの中心部まで導入でき、処理精度の高い装置が得ら
れる。
As described above in detail, according to the present invention, even if the diameter of the wafer is increased, gas can be introduced to the center of the wafer without increasing the distance between the wafers, and an apparatus with high processing accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるウェハ処理装置の模式的な断面図
、 第2図は従来例によるウェハ処理装置の模式的な断面図
である。 図において、 1は炉芯管、      2は蓋、 3はウェハホルダ、  4はウェハ、 5はガス引出し口、   6はヒータ を示す。 草l @ に 第2図 ゲ Jノ
FIG. 1 is a schematic cross-sectional view of a wafer processing apparatus according to the present invention, and FIG. 2 is a schematic cross-sectional view of a conventional wafer processing apparatus. In the figure, 1 is a furnace core tube, 2 is a lid, 3 is a wafer holder, 4 is a wafer, 5 is a gas outlet, and 6 is a heater. Grass l @ 2nd figure ge Jno

Claims (1)

【特許請求の範囲】[Claims]  複数個のウェハを略平行に間隔をおいて配置でき、該
ウェハ間にガスの引出し口を設けてなることを特徴とす
るウェハ処理装置。
A wafer processing apparatus characterized in that a plurality of wafers can be arranged substantially parallel to each other at intervals, and a gas outlet is provided between the wafers.
JP20923184A 1984-10-05 1984-10-05 Wafer processing apparatus Pending JPS6188516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20923184A JPS6188516A (en) 1984-10-05 1984-10-05 Wafer processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20923184A JPS6188516A (en) 1984-10-05 1984-10-05 Wafer processing apparatus

Publications (1)

Publication Number Publication Date
JPS6188516A true JPS6188516A (en) 1986-05-06

Family

ID=16569524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20923184A Pending JPS6188516A (en) 1984-10-05 1984-10-05 Wafer processing apparatus

Country Status (1)

Country Link
JP (1) JPS6188516A (en)

Similar Documents

Publication Publication Date Title
JP2839720B2 (en) Heat treatment equipment
JPS5827638A (en) Method and apparatus for guiding gas for lpcvd method in tubular reactor
JPH03146674A (en) Chemical treatment device assisted by diffusion plasma
JPS5914543B2 (en) plasma deposition equipment
JPS62199019A (en) Wafer treatment device
JPH0322523A (en) Vapor growth device
JPS6188516A (en) Wafer processing apparatus
JPH04236425A (en) Plasma processing equipment
JPS58108735A (en) Basket for vertical type reaction tube
JP2669168B2 (en) Microwave plasma processing equipment
JPS6058608A (en) Heat processing furnace
JPS5931977B2 (en) Plasma CVD equipment
JPS62252931A (en) Vapor growth apparatus for compound semiconductor
JPH1050613A (en) Epitaxial growth device
JPH0322522A (en) Vapor growth device
JPH11150077A (en) Thermal diffusion equipment of semiconductor wafer
JPS622524A (en) Vapor-phase growth device
JPS5941842A (en) Chemical vapor deposition device
JPH02205017A (en) Production device for semiconductor device
JPH0213494Y2 (en)
WO1991004572A1 (en) Substrate support device for cvd apparatus
JPS5970763A (en) Thin film forming device
JPS60200531A (en) Processor
JPH04332122A (en) Reduced pressure cvd device
JPS6056230B2 (en) Reactive sputter etching method