JPS5941842A - Chemical vapor deposition device - Google Patents

Chemical vapor deposition device

Info

Publication number
JPS5941842A
JPS5941842A JP15150382A JP15150382A JPS5941842A JP S5941842 A JPS5941842 A JP S5941842A JP 15150382 A JP15150382 A JP 15150382A JP 15150382 A JP15150382 A JP 15150382A JP S5941842 A JPS5941842 A JP S5941842A
Authority
JP
Japan
Prior art keywords
pipe
reaction
gas
quartz
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15150382A
Other languages
Japanese (ja)
Inventor
Shuichi Ohashi
修一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15150382A priority Critical patent/JPS5941842A/en
Publication of JPS5941842A publication Critical patent/JPS5941842A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Abstract

PURPOSE:To narrow a space between substrates, and to improve capability for treatment by setting up a gas introducing pipe introducing a reaction gas and a second reaction pipe encasing a first reaction pipe in the first reaction pipe encasig a sample. CONSTITUTION:A quartz pipe 15 is installed in the reaction quartz pipe 14 of a CVD device 11, and two series of the gas introducing pipes 16, 17 are welded along a slit formed to the outer circumference of the quartz pipe 15. The slit functions as a scoop-out window along the outer circumference of the quartz pipe 15, and the reaction gas is introduced into the quartz pipe 15 from the jets of the gas introducing pipes 16, 17. The substrates 12 placed on a susceptor 13 are encased in the quartz pipe 15, and the inside of the pipe 15 is decompressed up to fixed pressure while being heated at a fixed temperature of approximately 425 deg.C by a heater 18. A substance, such as monosilane (SiH4), phosphine (PH3) or the like is introduced into one gas introducing pipe 16 and a substance such as oxygen (O2) into the other gas introducing pipe 17 and a gas reaction is induced, and the surfaces of the substrates 12 are coated with PSG films (SiO2- P2O5).

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は集積回路基板の最終保護膜として用いられるり
んシリケートガラス膜(CVD−PSG)等を生膜する
ために使用される装置に係り、特にウェハの処理枚数を
増加させたCVD装置に関すム(b)  技術の背景 半導体素子の集積度が増加するに従い、製造プロセスは
複数多岐な工程を経由し、不安定要因が増加する傾向が
ある。例えば外界からの不安定要因として種々のガスや
イオン物質の吸着がある。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an apparatus used for forming a phosphorous silicate glass film (CVD-PSG) or the like used as a final protective film for an integrated circuit board. Particularly related to CVD equipment that increases the number of wafers processed (b) Technology Background As the degree of integration of semiconductor devices increases, the manufacturing process passes through multiple and diverse steps, and unstable factors tend to increase. . For example, adsorption of various gases and ionic substances is an unstable factor from the outside world.

これはシリコンバルク内に反転層の形成や界面準位の発
生を誘起しデバイス特性に影響を与える。
This induces the formation of an inversion layer and the generation of interface states in the silicon bulk, which affects device characteristics.

一方円部に介在もしくは発生する不安定要因例えば酸化
膜の内部に膜生成時或は処理の過程でアルカリイオンの
汚染を含み、電界によって内部を移動する現象が発生す
る。また’VIO8形構成ではナトリウムイオンの汚染
によって発生する電極間リーク電流の増加、表面電位の
変動がある。
On the other hand, instability factors that are present or generated in the circular part, such as a phenomenon in which the inside of the oxide film contains alkali ion contamination during film formation or during the treatment process, are caused to move inside the oxide film due to the electric field. Furthermore, in the 'VIO8 type configuration, there is an increase in inter-electrode leakage current and fluctuation in surface potential caused by sodium ion contamination.

これら外界及び内部の不安定要因を除去するパッジベー
ジ躍ン技術が近年重要′fx課題゛となっており最終保
護膜として要請される条件は、配線材をなすアルミニウ
ム(AIり膜を保護するためsoo’c以下の低温形成
であ)、AIとの反応を起さぬこと、耐熱、耐湿性でイ
オン汚染を阻止すること、加工性がよい等の条件によシ
特にナト17ウムイオン汚染に優れ低温で成膜されるC
VD−PSGiが多用されている。
The padding technology that removes these external and internal instability factors has become an important 'fx' issue in recent years, and the conditions required for the final protective film are as follows: It has excellent resistance to sodium-17ium ion contamination and is particularly effective at low temperatures. C film formed by
VD-PSGi is widely used.

(C)  従来技術と問題点 第1図はCVD−PSG膜を形成するための従来の低温
減圧CVD装置を示す構成図である。
(C) Prior Art and Problems FIG. 1 is a block diagram showing a conventional low-temperature, low-pressure CVD apparatus for forming a CVD-PSG film.

また第2図は第1図の線A−AIに於ける断面図である
2 is a sectional view taken along line A-AI in FIG. 1.

基板2をサセプタ3に載置し、PSG膜形成用の低温減
圧CVD装置1(以下CVD装置と呼称する)に収容す
る。CVI)装置1は排気口5により一定圧に減圧され
た反応石英管4及びその管内に二系列のステンレスパイ
プで彦るガス導入管6゜7を配設しその外周辺部には成
膜速度を加速させ均一な膜厚となるよう425℃で加熱
するヒータ8を有する。
The substrate 2 is placed on a susceptor 3 and housed in a low-temperature reduced pressure CVD apparatus 1 (hereinafter referred to as a CVD apparatus) for forming a PSG film. CVI) The apparatus 1 is equipped with a reaction quartz tube 4 whose pressure is reduced to a constant pressure through an exhaust port 5, and a gas inlet tube 6゜7 made of two series of stainless steel pipes inside the tube. It has a heater 8 that heats the film at 425° C. so as to accelerate the temperature and obtain a uniform film thickness.

一系列のガス導入管6にはモノシランSiH4゜フォス
フインPH3を導入し他のガス導入管7には酸素02を
導入する。ガス導入管6,7は1/4吋径のステンレス
パイプでシャワー形の噴出口9を備え、ガスを反応石英
管4内に導入することによシガス反応を誘起させ基板2
表面にPSG膜(SiOz−PzOs)を成膜させる。
Monosilane SiH4° phosphine PH3 is introduced into one series of gas introduction pipes 6, and oxygen 02 is introduced into the other gas introduction pipe 7. The gas introduction tubes 6 and 7 are stainless steel pipes with a diameter of 1/4 inch and are equipped with a shower-shaped spout 9, which induces a gas reaction by introducing gas into the reaction quartz tube 4.
A PSG film (SiOz-PzOs) is formed on the surface.

基板2はBack  to  Backに配設されその
間隔はCV 1)装置1の構成条件によって最適か膜厚
分布が得られるよう設定され処理枚数が決まる。
The substrates 2 are arranged back-to-back, and the intervals between them are CV. 1) The number of substrates to be processed is determined by setting the optimum film thickness distribution depending on the configuration conditions of the apparatus 1.

即ちCVD装置lの処理能力となる。In other words, it is the processing capacity of the CVD apparatus l.

その具体例を第2図によって説明する。A specific example thereof will be explained with reference to FIG.

基板20間隔l]の適正値金求めるには反応石英管4の
半径R1,基板2の半径R2とすればb = 2 (R
1−R2)で表わすことができる。図で明らかなように
1も]−Rz=dであるからh=2dとなる1、叩ちd
を小さくする種基板間隔を狭めることができ処理枚数を
増加させることが可能となる。
To find the appropriate value for the spacing l between substrates 20, b = 2 (R
1-R2). As is clear from the figure, 1]-Rz=d, so h=2d 1, hit d
The distance between the substrates can be narrowed and the number of substrates processed can be increased.

しつし反応石英v4にはガス導入g6,7が介在するた
め制約を受けることになる。
The persistent reaction quartz v4 is subject to restrictions because gas introduction g6 and g7 are involved.

(d)発明の目的 本発明は上記の点に鑑みCVD装置において基板間隔を
狭めて処理能力を向上させるガス導入機構の提供を目的
とする。
(d) Object of the Invention In view of the above points, the present invention aims to provide a gas introduction mechanism that narrows the distance between substrates in a CVD apparatus and improves processing capacity.

(e)  発明の構成 上記目的は本発明によれば試料を収容する第1の反応管
と該第1の反応管の外側に長さ方向に沿って取付けられ
、該第1の反応管内に反応ガスを導入するガス導入管と
、該第1の反応管を収容する纂2の反応管を備えること
(Cよって達せられる。
(e) Structure of the Invention According to the present invention, the above-mentioned object includes a first reaction tube that accommodates a sample, and a reaction tube that is attached along the length direction on the outside of the first reaction tube, Providing a gas introduction tube for introducing gas and a second reaction tube for accommodating the first reaction tube (achieved by C).

(「)発明の実施例 以下本発明の実施例を図面にょシ詳述する。(“) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例であるCVD装置を示す構成
図である。CVD装置11の反応石英管工4内に再に石
英管15を設け、この石英管15の外周に設けたスリッ
トに沿って2系列のガス導入管16.17を融着する。
FIG. 3 is a configuration diagram showing a CVD apparatus which is an embodiment of the present invention. A quartz tube 15 is again installed in the reactive quartz tube 4 of the CVD apparatus 11, and two series of gas introduction tubes 16 and 17 are fused along the slit provided on the outer periphery of this quartz tube 15.

スリットは石英管15の外周に沿ったくり抜き窓をなし
、ガス導入管16゜170噴出口(第1図9参照)より
反応ガスが石英管15内に導入される。
The slit forms a hollow window along the outer circumference of the quartz tube 15, and the reaction gas is introduced into the quartz tube 15 from the gas introduction tube 16° 170 outlet (see FIG. 1, 9).

この石英管15内にサセプタ13に載置した基板12を
収容し、一定圧に減圧するとともにヒータ18により一
定温度約425℃に加熱する。
The substrate 12 placed on the susceptor 13 is housed in the quartz tube 15, and the pressure is reduced to a constant level and the tube is heated to a constant temperature of about 425° C. by the heater 18.

一系列のガス導入管16にはモノシラン(SiH2)フ
ォスフイン(PH3)を他のガス導入管17には酸素(
02)を導入してガス反応を誘起させ基板12表面1’
mPsG膜(8302−P2O3)を成膜させる。
One series of gas introduction pipes 16 is filled with monosilane (SiH2) and phosphine (PH3), and the other gas introduction pipe 17 is filled with oxygen (oxygen).
02) is introduced to induce a gas reaction on the surface 1' of the substrate 12.
An mPsG film (8302-P2O3) is formed.

このように構成されるCVD装置11を用いて基板12
に成膜される最適の膜厚分布を得る基板間隔h′は従来
構成のCVD装置に比し縮小させることができ処理能力
を向上させることができる。
Using the CVD apparatus 11 configured in this way, the substrate 12
The substrate spacing h' for obtaining the optimum film thickness distribution can be reduced compared to the conventionally configured CVD apparatus, and the processing capacity can be improved.

第4図は第3図のB −B’断面図である。FIG. 4 is a sectional view taken along line B-B' in FIG.

図中石英管15の半径rb基板12の半径r2とすれば
前述したように最適値となる基板間隔h/は次式で表わ
すことができる。
In the figure, if the radius of the quartz tube 15 is rb and the radius of the substrate 12 is r2, the optimum substrate spacing h/ can be expressed by the following equation as described above.

h’= 2 (rl −r 2 ) 図より明らかなようにrl<Rhであるから(r 1−
 r 2 )=D<dである。よってh’== 2D(
hとなって従来構成のh=2d(第2図参照)に比して
大巾に改善される。
h'= 2 (rl - r 2 ) As is clear from the figure, since rl<Rh (r 1 -
r 2 )=D<d. Therefore, h'== 2D(
h, which is greatly improved compared to h=2d in the conventional configuration (see FIG. 2).

本発明の実施例で得られた適正間隔値は従来構成のCV
D装置では14.28mピッチに対して9.52inと
することが可能となった。
The appropriate spacing value obtained in the embodiment of the present invention is the CV of the conventional configuration.
With the D device, it became possible to set the pitch to 9.52 inches against a pitch of 14.28 meters.

従来基板の成膜処理数を増加させるため基板の表面を外
側に配設する所謂Back to Back  とする
バッチ処理が必要であったが本発明のCVD装置11に
よシ処理数の増が期待できることから同一方向に等間隔
に配設することも考慮でき、自動給材方式の採用が可能
となる利点がある。
Conventionally, in order to increase the number of film formation processes for substrates, it was necessary to perform so-called back-to-back batch processing in which the surface of the substrate is placed outside, but with the CVD apparatus 11 of the present invention, an increase in the number of film formation processes can be expected. It is also possible to consider arranging them at equal intervals in the same direction, which has the advantage of making it possible to adopt an automatic material feeding system.

(g)  発明の効果 以上詳細に説明したように本発明のガス導入機構を備え
たCVD装置により、従来に比して処理能力は向上し、
自動化が期待できる等優れた効果がある。
(g) Effects of the Invention As explained in detail above, the CVD apparatus equipped with the gas introduction mechanism of the present invention has improved processing capacity compared to the conventional one.
It has excellent effects such as promising automation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCVD装置を示す構成図、第2図は第1
図のh−A断面図、第3図は本発明の一実施例であるC
VD装置を示す構成図、第4図は第3図のB −B’断
面図を示す。図中11はCVD装置、12は基板、13
はサセプタ、14は反応石英管、15は石英管、16.
17はガス導入管、18けヒータを示す。 矛/i
Figure 1 is a configuration diagram showing a conventional CVD apparatus, and Figure 2 is a diagram showing the configuration of a conventional CVD apparatus.
3 is a sectional view taken along line hA in the figure, and FIG.
FIG. 4 is a block diagram showing the VD device, and FIG. 4 is a sectional view taken along line B-B' in FIG. In the figure, 11 is a CVD device, 12 is a substrate, 13
is a susceptor, 14 is a reaction quartz tube, 15 is a quartz tube, 16.
17 indicates a gas introduction pipe and 18 heaters. spear/i

Claims (1)

【特許請求の範囲】[Claims] 試料を収容する第1の反応管と、該第1の反応管の外側
に長さ方向に沿って取付けられ、該第1の反応管内に反
応ガスを導入するガス導入管と、該第1の反応管を収容
する第2の反応管を備えて成ることを特徴とするCVD
装置。
a first reaction tube that accommodates a sample; a gas introduction tube that is attached along the length of the outside of the first reaction tube and that introduces a reaction gas into the first reaction tube; A CVD characterized by comprising a second reaction tube accommodating the reaction tube.
Device.
JP15150382A 1982-08-31 1982-08-31 Chemical vapor deposition device Pending JPS5941842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15150382A JPS5941842A (en) 1982-08-31 1982-08-31 Chemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15150382A JPS5941842A (en) 1982-08-31 1982-08-31 Chemical vapor deposition device

Publications (1)

Publication Number Publication Date
JPS5941842A true JPS5941842A (en) 1984-03-08

Family

ID=15519929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15150382A Pending JPS5941842A (en) 1982-08-31 1982-08-31 Chemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPS5941842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839145A (en) * 1986-08-27 1989-06-13 Massachusetts Institute Of Technology Chemical vapor deposition reactor
JPH08316156A (en) * 1995-05-24 1996-11-29 Nec Kyushu Ltd Apparatus for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839145A (en) * 1986-08-27 1989-06-13 Massachusetts Institute Of Technology Chemical vapor deposition reactor
JPH08316156A (en) * 1995-05-24 1996-11-29 Nec Kyushu Ltd Apparatus for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3067940B2 (en) Silicon nitride thin film deposition
KR950001839B1 (en) Lateral cvd apparatus
JPH06318551A (en) Formation of thin film and its apparatus
US4217375A (en) Deposition of doped silicon oxide films
US5622566A (en) Film-forming apparatus
EP0047112B1 (en) Method of forming phosphosilicate glass films
US4487787A (en) Method of growing silicate glass layers employing chemical vapor deposition process
JP3432601B2 (en) Film formation method
JPS5941842A (en) Chemical vapor deposition device
JP2001345321A (en) Oxidation treatment method and device
JPS6230329A (en) Dry etching device
JPS6168393A (en) Hot wall type epitaxial growth device
KR0147826B1 (en) Vertical heat treatment apparatus
JPS6140770Y2 (en)
JP2001345314A (en) Device and method for heat treatment
JPS63181315A (en) Equipment for heat treatment
JPH024973A (en) Formation of film
JPH02290015A (en) Semiconductor manufacturing equipment
JPS63299363A (en) Formation of polysilicon film doped with phosphorus
JPS62244126A (en) Vapor growth device
JPH04304624A (en) Vertical heating oven for wafer process
JPS5961120A (en) Vapor phase growing device
JPH02205017A (en) Production device for semiconductor device
JPH10147874A (en) Reaction furnace
JPH08139035A (en) Cvd method and equipment