JPS62244126A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS62244126A
JPS62244126A JP8852786A JP8852786A JPS62244126A JP S62244126 A JPS62244126 A JP S62244126A JP 8852786 A JP8852786 A JP 8852786A JP 8852786 A JP8852786 A JP 8852786A JP S62244126 A JPS62244126 A JP S62244126A
Authority
JP
Japan
Prior art keywords
reaction
section
gas supply
vapor phase
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8852786A
Other languages
Japanese (ja)
Inventor
Yoshinari Matsushita
圭成 松下
Kazuhiro Karatsu
唐津 和裕
Tanejiro Ikeda
池田 種次郎
Takeichi Yoshida
吉田 竹一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8852786A priority Critical patent/JPS62244126A/en
Publication of JPS62244126A publication Critical patent/JPS62244126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure the uniformity of the quality and thickness of a vapor growth film on a semiconductor wafer by repeating vapor growth to a second exhaust section from a first reaction-gas supply section and to a first exhaust section from a second reaction-gas supply section under the state in which the temperature of the semiconductor wafer in a reaction pipe is kept constant in the vertical direction. CONSTITUTION:A first reaction-gas supply section 14 and a first exhaust section 15 are mounted to the upper section of a quartz reaction pipe 12 and a second reaction-gas supply section 17 and a second exhaust section 18 to a lower section. A reaction gas is introduced to the second exhaust section 18 from the first reaction-gas supply section 14 and to the first exhaust section 15 from the second reaction-gas supply section 17 under the state in which temperatures among semiconductor wafers 19 in the reaction pipe 12 are kept constant in the vertical direction, and vapor growth is repeated, thus ensuring the uniformity of the quality and thickness of vapor growth films on the semiconductor wafers 19.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造工程における半導体ウェハー
上に薄膜を成長させる気相成長装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus for growing a thin film on a semiconductor wafer in the manufacturing process of semiconductor devices.

従来の技術 半導体製造工程において、デバイスの高集積化や微細化
への取組みと相まって、ウェハーの大口径化も5インチ
から6インチ、8インチと並行して進められている。近
年、多結晶シリコン膜、シリコン窒化膜やシリコン酸化
膜等が導電膜や絶縁膜材料として重要な役割を果たして
いることは云うまでもない。又、デバイスの製造工程に
おける上記薄膜の成長温度条件、成長した薄膜の特性及
びスループット(生産高)等により、気相成長装置を選
択し、使用しているのが現状である。特に、スループッ
トの高い横型拡散炉を用いたバッチ式気相成長装置にお
いて、ウェハーの大口径化及び無人化を考慮した自動化
に対応するため、縦型気相成長装置への展開を図ってい
る。
BACKGROUND ART In the semiconductor manufacturing process, wafer diameters are increasing from 5 inches to 6 inches to 8 inches in parallel with efforts toward higher integration and miniaturization of devices. It goes without saying that in recent years, polycrystalline silicon films, silicon nitride films, silicon oxide films, and the like have played an important role as conductive film and insulating film materials. Currently, a vapor phase growth apparatus is selected and used depending on the growth temperature conditions of the thin film, characteristics of the grown thin film, throughput (output), etc. in the device manufacturing process. In particular, in batch-type vapor phase growth systems using horizontal diffusion furnaces with high throughput, we are working to develop vertical vapor phase growth systems to accommodate automation that takes into account large-diameter wafers and unmanned operation.

以下図面を参照しながら、上述した従来の気相成長装置
の一例について説明する。第2図、第3図は従来の気相
成長装置の構成図を示すものである。第2図において、
1は・抵抗加熱ヒーターであり、内部に石英反応管2が
収納されている。前記石英反応管2の上部には真空遮断
弁3が又下部にN2ガス供給用開閉弁4及び反応ガス開
閉弁5を介して、N2ガスや反応ガスが石英反応管2内
に供給される。6はキャリアボート7上に装填された半
導体ウェハーであり、キャリアボート7はドア部8で真
空シールされた状態で、図面には記載されていないが外
部に具備された機構により、回転させることができる。
An example of the conventional vapor phase growth apparatus mentioned above will be described below with reference to the drawings. FIGS. 2 and 3 show the configuration of a conventional vapor phase growth apparatus. In Figure 2,
1 is a resistance heater, and a quartz reaction tube 2 is housed inside. N2 gas and reaction gas are supplied into the quartz reaction tube 2 through a vacuum shutoff valve 3 in the upper part of the quartz reaction tube 2 and a N2 gas supply on-off valve 4 and a reaction gas on-off valve 5 in the lower part. 6 is a semiconductor wafer loaded on a carrier boat 7, and the carrier boat 7 is vacuum-sealed by a door 8 and can be rotated by an external mechanism (not shown in the drawing). can.

又ドア部8は前記の機構とは別に外部に設けられた機構
により、上下移動させることができる。
Further, the door portion 8 can be moved up and down by a mechanism provided externally apart from the above-mentioned mechanism.

以上のように構成された気相成長装置について、以下そ
の動作について説明する。
The operation of the vapor phase growth apparatus configured as described above will be described below.

まず、キャリアボート7上に装填された半導体ウェハー
6は、ドア部8に接続された前記上下機構を介して、予
め、抵抗加熱ヒーター1により加熱された石英反応管2
内に挿入される。この時、石英反応管2内はN2ガス開
閉弁4を介してN2ガスで充満されている。挿入完了後
、N2ガス開閉弁4は閉じ、ドア部8がシールされた状
態で真空遮断弁3が開き、石英反応管2内部は、減圧排
気される。その後、前記回転機構により、キャリアボー
ト7は回転し半導体ウェハー6の温度が所定の温度まで
到達する間、同時に真空遮断弁3が閉じ石英反応管2内
のり−クチニックが行なわれる。所定温度及びリークチ
ェックが確認された後、真空遮断弁3及び反応ガス開閉
弁6が開き、反応ガスが石英反応管2内に供給され、半
導体ウェハー6上に気相成長が行なわれる。この時、抵
抗加熱ヒーター1の設定温度は、均一でなく予め傾斜を
つけておき、キャリアボート7上の反応ガス供給側(ド
ア部8に近い部分)と反応ガス排気側(真空遮断弁3に
近い部分)との半導体ウェハー6の膜厚分布を均一にす
ることができる。又、半導体ウェハー6内の面内膜厚分
布は、キャリアボート7上の半導体ウェハー6が回転す
ることにより均一化することができる。気相成長終了後
、反応ガス開閉弁6が閉じ、石英反応管2内は減圧排気
される。次に真空遮断弁3が閉じ、N2ガス開閉弁4を
介してN2ガスが石英反応管2内に供給されて石英反応
管2内は大気圧になる。その後、N2ガス開閉弁4が閉
じ、キャリアボート7上の半導体ウェハー6は回転を停
止した状態で前記上下機構により、石英反応管2の外部
に取シ出さ法会ての気相成長処理は完了する。
First, the semiconductor wafers 6 loaded onto the carrier boat 7 are transferred to the quartz reaction tube 2 which has been heated by the resistance heater 1 in advance via the up-and-down mechanism connected to the door section 8.
inserted within. At this time, the inside of the quartz reaction tube 2 is filled with N2 gas via the N2 gas on-off valve 4. After the insertion is completed, the N2 gas on-off valve 4 is closed, the vacuum cutoff valve 3 is opened with the door 8 sealed, and the inside of the quartz reaction tube 2 is evacuated under reduced pressure. Thereafter, the carrier boat 7 is rotated by the rotation mechanism, and while the temperature of the semiconductor wafer 6 reaches a predetermined temperature, the vacuum cutoff valve 3 is simultaneously closed and the quartz reaction tube 2 is heated. After the predetermined temperature and leak check are confirmed, the vacuum cutoff valve 3 and the reaction gas on-off valve 6 are opened, the reaction gas is supplied into the quartz reaction tube 2, and vapor phase growth is performed on the semiconductor wafer 6. At this time, the set temperature of the resistance heater 1 is not uniform, but is set at an incline in advance. It is possible to make the film thickness distribution of the semiconductor wafer 6 uniform with respect to the adjacent portion). Furthermore, the in-plane film thickness distribution within the semiconductor wafer 6 can be made uniform by rotating the semiconductor wafer 6 on the carrier boat 7. After the vapor phase growth is completed, the reaction gas on-off valve 6 is closed, and the inside of the quartz reaction tube 2 is evacuated under reduced pressure. Next, the vacuum cutoff valve 3 is closed, and N2 gas is supplied into the quartz reaction tube 2 via the N2 gas on-off valve 4, so that the inside of the quartz reaction tube 2 becomes atmospheric pressure. Thereafter, the N2 gas on-off valve 4 is closed, and the semiconductor wafer 6 on the carrier boat 7 is taken out of the quartz reaction tube 2 by the up-and-down mechanism with the rotation stopped, completing the vapor phase growth process. do.

第3図は、横型拡散炉を用いた従来の気相成長装置の従
来例であり、キャリアボート上の半導体ウェハー9は石
英反応管10の底部に置かれているため、回転すること
が不可能であシ、半導体ウェハー9の大口径化に伴なっ
て、半導体ウェハー面内での膜厚分布は悪くなる。
FIG. 3 shows a conventional example of a conventional vapor phase growth apparatus using a horizontal diffusion furnace, and since the semiconductor wafer 9 on the carrier boat is placed at the bottom of the quartz reaction tube 10, it is impossible to rotate it. However, as the diameter of the semiconductor wafer 9 increases, the film thickness distribution within the semiconductor wafer surface becomes worse.

発明が解決しようとする問題点 しかしながら上記のような構成では、反応管内での半導
体ウェハー間の膜厚分布を均一にするため、温度に傾斜
をつけているので、膜厚分布は均一であるが、膜質(例
えば、結晶径、ストレス及び不純物の拡散分布)の異な
った薄膜が気相成長するという問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, the temperature is sloped in order to make the film thickness distribution uniform among the semiconductor wafers in the reaction tube, so the film thickness distribution is uniform. However, there was a problem in that thin films with different film qualities (eg, crystal diameter, stress, and impurity diffusion distribution) were grown in a vapor phase.

本発明は上記問題点に鑑み、反応管内のキャリアボート
上の基板間の温度を上下方向に一定にした状態で気相成
長膜の生成を行い、膜厚及び膜質分布を均一にできる気
相成長装置を提供するものである。
In view of the above-mentioned problems, the present invention generates a vapor-phase grown film while keeping the temperature between the substrates on the carrier boat in the reaction tube constant in the vertical direction, thereby making the film thickness and film quality distribution uniform. It provides equipment.

問題点を解決するための手段 上記問題点を解決するために本発明の気相成長装置は、
周辺に加熱体を上下方向に配置し、半導体ウェハーを鉛
直軸回りに回転可能に保持した気相成長装置において、
前記加熱体の内部に収納された反応管の上部に第1の反
応ガス供給部及び第1の排気部、下部に第2の反応ガス
供給部及び第2の排気部とを備えたものである。
Means for Solving the Problems In order to solve the above problems, the vapor phase growth apparatus of the present invention includes:
In a vapor phase growth apparatus in which a heating element is arranged vertically around the periphery and a semiconductor wafer is held rotatably around a vertical axis,
The reaction tube housed inside the heating body is provided with a first reaction gas supply part and a first exhaust part at the upper part, and a second reaction gas supply part and a second exhaust part at the lower part. .

作  用 本発明は上記した構成によって、反応管内部の温度に傾
斜を与えない場合においても、第1の反応ガス供給部か
ら第2の排気部へ反応ガスを供給させた後、逆に第2の
反応ガス供給部から第1の排気部へ反応ガスを供給させ
て気相成長を行なうことにより、上下方向における気相
成長反応を略均−にてき膜厚の均一性を確保することが
可能となり、しかも反応管内部の温度を上下方向に均一
にすることが可能であるので、膜質の均一性をも確保で
きる。
Effect of the present invention With the above-described configuration, even when the temperature inside the reaction tube is not given a gradient, the reaction gas is supplied from the first reaction gas supply section to the second exhaust section, and then the reaction gas is supplied to the second exhaust section. By supplying the reactive gas from the reactive gas supply section to the first exhaust section to perform vapor phase growth, it is possible to approximately equalize the vapor phase growth reaction in the vertical direction and ensure uniform film thickness. Moreover, since it is possible to make the temperature inside the reaction tube uniform in the vertical direction, it is also possible to ensure uniformity of the film quality.

実施例 以下本発明の実施例の気相成長装置について、基準を参
照しながら説明する。
EXAMPLES Hereinafter, vapor phase growth apparatuses according to examples of the present invention will be described with reference to standards.

第1図は本発明の実施例における気相成長装置の構成図
を示すものである。多結晶シリコンC以下PO17−3
Lと記す)が気相成長を行なう第1図において、11は
抵抗加熱ヒーター(加熱体)であり、内部に石英反応管
(反応管)12が収納されている。前記石英反応管12
の上部に、N2ガス供給用の第1のN2ガス開閉弁13
2反応ガス供給用の第1の反応ガス開閉弁(第1の反応
ガス供給部)14.及び第1の真空遮断弁(第1の排気
部)15が接続されている。又、前記石英反応管12の
下部に、N ガス供給用の第2のN2ガス開閉弁16、
反応ガス供給用の第2の反応ガス開閉弁(第2の反応ガ
ス供給部)17及び第2の真空遮断弁(第2の排気部)
18が接続されている。半導体ウェハー19はキャリア
ボー)20上に装填されており、キャリアボート2oは
ドア部21で真空シールされた状態で、図面には記載さ
れていないが外部に具備された機構により、回転させる
ことができる。又ドア部21は前記の機構とは別に外部
に設けられた機構により、上下移動させることができる
FIG. 1 shows a configuration diagram of a vapor phase growth apparatus in an embodiment of the present invention. Polycrystalline silicon C and below PO17-3
In FIG. 1, a resistive heater (denoted as L) performs vapor phase growth, 11 is a resistance heater (heating body), and a quartz reaction tube (reaction tube) 12 is housed inside. The quartz reaction tube 12
A first N2 gas on-off valve 13 for supplying N2 gas is installed on the top of the
1. First reaction gas on-off valve for supplying two reaction gases (first reaction gas supply section) 14. and a first vacuum cutoff valve (first exhaust section) 15 are connected. Further, a second N2 gas on-off valve 16 for supplying N2 gas is provided at the bottom of the quartz reaction tube 12,
A second reaction gas on-off valve (second reaction gas supply section) 17 for supplying the reaction gas and a second vacuum cutoff valve (second exhaust section)
18 are connected. The semiconductor wafer 19 is loaded onto a carrier boat 20, and the carrier boat 2o is vacuum-sealed with a door 21 and can be rotated by an external mechanism (not shown in the drawings). can. Further, the door portion 21 can be moved up and down by a mechanism provided externally in addition to the above-mentioned mechanism.

以上のように構成された気相成長装置について、以下第
1図を用いてその動作を説明する。
The operation of the vapor phase growth apparatus configured as described above will be described below with reference to FIG. 1.

まず第1図はPo1y−3i の気相成長装置を示すも
のであって、キャリアボート20上に装填されたウェハ
ー19はドア部21に接続された前記上下機構を介して
、予め抵抗加熱ヒーター11により約616°C前後に
加熱された石英反応管12内に挿入される。この時、石
英反応管12内は第1及び第2のN2ガス開閉弁13.
16を介してN2ガスで充満されている。挿入完了後、
前記N2ガス開閉弁13.16は閉じ、ドア部21がシ
ールされた状態で第1及び第2の真空遮断弁15.18
が開き、石英反応管12内部は減圧排気される。
First, FIG. 1 shows a Po1y-3i vapor phase growth apparatus, in which wafers 19 loaded on a carrier boat 20 are preliminarily transferred to a resistance heater 11 via the vertical mechanism connected to a door 21. The tube is inserted into a quartz reaction tube 12 heated to about 616°C. At this time, inside the quartz reaction tube 12 are first and second N2 gas on-off valves 13.
16 with N2 gas. After the insertion is complete,
The N2 gas on-off valve 13.16 is closed, and the first and second vacuum cutoff valves 15.18 are closed with the door section 21 sealed.
is opened, and the inside of the quartz reaction tube 12 is evacuated under reduced pressure.

その後、前記回転機構により、キャリアボート2゜は回
転し、半導体ウェハー19の温度が抵抗加熱ヒーター1
1の設定温度と等しくなる迄(約10〜16分間)保持
され、又、同時に第1及び第2の真空遮断弁15.18
が閉じ石英反応管12内のり−クチニックが行なわれる
。到達温度及びリークチェックが確認された後、石英反
応管12下部に接続されているモノシラン(SiH4)
ガス(反応ガス)を供給する第2の反応ガス開閉弁17
及び石英反応管12上部に接続されてい第1の真空遮断
弁16が開き、約0.2〜0.3 Torrの圧力で半
導体ウェハー19へのPo1y−3Lの気相成長が行な
われる。又、ある程度の気相成長が行なわれた後、第2
の反応ガス開閉弁1Tは閉じ、石英反応管12内部は減
圧排気され、又第1の真空遮断弁16は閉じる。次に、
石英反応管12下部に接続されている第2の真空遮断弁
18及び石英反応管12上部に接続されている第1の反
応ガス開閉弁14が開き、約0.2〜0,37orrの
圧力で半導体ウェハー19へのPO17−3tの気相成
長が行なわれる。この時、抵抗加熱ヒーター11の設定
温度は傾斜をつけず、キャリヤボード20上の基板はほ
ぼ均一な温度である。前記のように5in4ガスの流れ
方向を上から下、下から上へとくり返し行ない、気相成
長時の膜厚の均一性を確保する。但し、各々の気相成長
処理時の半導体ウェハー19間の膜厚分布は予め測定し
ておく。気相成長終了後、第1及び第2の反応ガス開閉
弁14.17が閉じた状態で石英反応管12内は減圧排
気される。
Thereafter, the carrier boat 2° is rotated by the rotation mechanism, and the temperature of the semiconductor wafer 19 is increased by the resistance heating heater 1.
The temperature is maintained until it becomes equal to the set temperature of 1 (about 10 to 16 minutes), and at the same time the first and second vacuum cutoff valves 15.18
is closed, and the adhesive inside the quartz reaction tube 12 is formed. After the reached temperature and leak check are confirmed, the monosilane (SiH4) connected to the lower part of the quartz reaction tube 12
Second reaction gas on-off valve 17 that supplies gas (reaction gas)
Then, the first vacuum cutoff valve 16 connected to the upper part of the quartz reaction tube 12 is opened, and Po1y-3L is vapor-phase grown onto the semiconductor wafer 19 at a pressure of about 0.2 to 0.3 Torr. Also, after a certain amount of vapor phase growth has been carried out, the second
The reaction gas on-off valve 1T is closed, the inside of the quartz reaction tube 12 is evacuated under reduced pressure, and the first vacuum cutoff valve 16 is closed. next,
The second vacuum shutoff valve 18 connected to the lower part of the quartz reaction tube 12 and the first reaction gas on-off valve 14 connected to the upper part of the quartz reaction tube 12 are opened, and the pressure is about 0.2 to 0.37 orr. Vapor phase growth of PO17-3t onto the semiconductor wafer 19 is performed. At this time, the set temperature of the resistance heater 11 is not inclined, and the temperature of the substrate on the carrier board 20 is almost uniform. As described above, the flow direction of the 5in4 gas is repeated from top to bottom and from bottom to top to ensure uniformity of film thickness during vapor phase growth. However, the film thickness distribution between the semiconductor wafers 19 during each vapor phase growth process is measured in advance. After the vapor phase growth is completed, the inside of the quartz reaction tube 12 is evacuated under reduced pressure with the first and second reaction gas on-off valves 14, 17 closed.

次に、第1及び第2の真空遮断弁15.18が閉じた状
態で第1及び第2のN2ガス開閉弁13゜16を開いて
、N2ガスが石英反応管12内に供給されて、石英反応
管12内は大気圧になる。その後、第1及び第2のN2
ガス開閉弁13.16が閉じ、キャリヤボート20上の
半導体ウェハー19は回転を停止した状態で前記上下機
構により、石英反応管12の外部に取り出されて全ての
気相成長処理は完了する。
Next, with the first and second vacuum cut-off valves 15, 18 closed, the first and second N2 gas on-off valves 13.16 are opened, and N2 gas is supplied into the quartz reaction tube 12. The inside of the quartz reaction tube 12 becomes atmospheric pressure. After that, the first and second N2
The gas on-off valves 13 and 16 are closed, and the semiconductor wafers 19 on the carrier boat 20 are taken out of the quartz reaction tube 12 by the up-and-down mechanism while rotation is stopped, and all vapor phase growth processing is completed.

以上のように本実施例によれば、石英反応管12の上部
に、tllの反応ガス供給部14と第1の排気部16.
下部に第2の反応ガス供給部17と第2の排気部18を
設けることにより、反応管12内の半導体ウェハー19
間の温度を上下方向に一定にした状態で、f$1の反応
ガス供給部14から第2の排気部18、第2の反応ガス
供給部17から第1の排気部16へと反応ガスを導いて
、気相成長を繰り返し行なうことで半導体ウヱハー19
上の気相成長膜の膜質及び膜厚の均一性を確保すること
ができる。
As described above, according to this embodiment, the reaction gas supply section 14 and the first exhaust section 16 .
By providing the second reaction gas supply section 17 and the second exhaust section 18 at the lower part, the semiconductor wafer 19 inside the reaction tube 12 is
The reaction gas is supplied from the reaction gas supply section 14 of f$1 to the second exhaust section 18 and from the second reaction gas supply section 17 to the first exhaust section 16 while keeping the temperature between them constant in the vertical direction. By repeating vapor phase growth, semiconductor wafers19
Uniformity in film quality and film thickness of the above vapor phase grown film can be ensured.

なお、本実施例においては加熱体11として抵抗加熱ヒ
ーターを用いたが、ランプ加熱ヒーターを用いてもよい
。また、気相成長層は、Po1y−8iだけではなく、
反応ガスの組成を変えることにより、813N4膜(シ
リコン窒化膜)やSiO2膜(シリコン酸化膜)等でも
よい。
In this embodiment, a resistance heater is used as the heating element 11, but a lamp heater may also be used. In addition, the vapor growth layer is not only Po1y-8i, but also
By changing the composition of the reaction gas, an 813N4 film (silicon nitride film), a SiO2 film (silicon oxide film), etc. may be used.

発明の効果 以上のように本発明は、周辺に加熱体を上下方向に配置
し、半導体ウェハーを鉛直軸回りに回転可能に保持した
気相成長装置において、前記加熱体の内部に収納された
反応管の上部に第1の反応ガス供給部及び第1の排気部
、下部に第2の反応ガス供給部及び第2の排気部を設け
ることにより、反応管内の半導体ウェハーの温度を上下
方向に一定にした状態で第1の反応ガス供給部から第2
の排気部、第2の反応ガス供給部から第1の排気部へと
気相成長を繰り返し行なうことで、半導体ウェハー上の
気相成長膜の膜質及び膜厚の均一性を確保することがで
きる。
Effects of the Invention As described above, the present invention provides a vapor phase growth apparatus in which a heating body is arranged vertically around the periphery and a semiconductor wafer is rotatably held around a vertical axis. By providing a first reaction gas supply section and a first exhaust section at the top of the tube, and a second reaction gas supply section and second exhaust section at the bottom, the temperature of the semiconductor wafer inside the reaction tube can be kept constant in the vertical direction. in the state where the first reactant gas supply section
By repeatedly performing vapor phase growth from the exhaust section and the second reaction gas supply section to the first exhaust section, uniformity in film quality and thickness of the vapor phase grown film on the semiconductor wafer can be ensured. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における気相成長装置の構成図
、第2図及び第3図は夫々従来の気相成長装置の構成図
である。 11・・・・・・加熱体、12・・・・・・反応管、1
4・・・・・・第1の反応ガス供給部、16・・・・・
・第1の排気部、17・・・・・・第2の反応ガス供給
部、18・・・・・・第2の排気部、19・・・・・・
半導体ウェハー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@1
図 +1−Jl抗乃口1す1(−タCηo1シ\イ4()+
2−石炎城営C及X、豹 第2図 、9 第3図
FIG. 1 is a block diagram of a vapor phase growth apparatus according to an embodiment of the present invention, and FIGS. 2 and 3 are block diagrams of conventional vapor phase growth apparatuses, respectively. 11... Heating body, 12... Reaction tube, 1
4...First reaction gas supply section, 16...
・First exhaust part, 17... Second reaction gas supply part, 18... Second exhaust part, 19...
semiconductor wafer. Name of agent: Patent attorney Toshio Nakao and 1 other person @1
Figure + 1-Jl Anti-Noguchi 1s1 (-taCηo1shi\ii4()+
2- Shiyanchengying C and X, Leopard Figure 2, 9 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 周辺に加熱体を上下方向に配置し、半導体ウェハーを鉛
直鉛回りに回転可能に保持した気相成長装置において、
前記加熱体の内部に収納された反応管の上部に第1の反
応ガス供給部及び第1の排気部、下部に第2の反応ガス
供給部及び第2の排気部とを備えたことを特徴とする気
相成長装置。
In a vapor phase growth apparatus in which a heating element is arranged vertically around the periphery and a semiconductor wafer is held rotatably in the vertical direction,
A first reaction gas supply section and a first exhaust section are provided at the upper part of the reaction tube housed inside the heating body, and a second reaction gas supply section and a second exhaust section are provided at the lower part. Vapor phase growth equipment.
JP8852786A 1986-04-17 1986-04-17 Vapor growth device Pending JPS62244126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8852786A JPS62244126A (en) 1986-04-17 1986-04-17 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8852786A JPS62244126A (en) 1986-04-17 1986-04-17 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS62244126A true JPS62244126A (en) 1987-10-24

Family

ID=13945310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8852786A Pending JPS62244126A (en) 1986-04-17 1986-04-17 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS62244126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36328E (en) * 1988-03-31 1999-10-05 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus including temperature control mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36328E (en) * 1988-03-31 1999-10-05 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus including temperature control mechanism

Similar Documents

Publication Publication Date Title
US6338756B2 (en) In-situ post epitaxial treatment process
US6808564B2 (en) In-situ post epitaxial treatment process
US5932286A (en) Deposition of silicon nitride thin films
JP5393895B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP3023982B2 (en) Film formation method
US9885123B2 (en) Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow
JP2001345279A (en) Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
JPH06293595A (en) Deposited polysilicon film improved in evenness and device therefor
JPS60200966A (en) Composite coating
JPH0786174A (en) Film deposition system
US5783257A (en) Method for forming doped polysilicon films
KR20210050445A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
WO2001061736A1 (en) Method of processing wafer
JPH0786173A (en) Film deposition
JPS62244126A (en) Vapor growth device
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JP3422345B2 (en) Method of forming tungsten film
JP2001308085A (en) Heat-treating method
JP3124302B2 (en) Film formation method
JPS62208637A (en) Vapor growth
JPH07193009A (en) Vapor growth device and vapor growth method using vapor growth device
JPH05251347A (en) Film formation method
JP2001102313A (en) Device and method for treating substrate
JPH0669131A (en) Formation of semiconductor thin film
JPS63299363A (en) Formation of polysilicon film doped with phosphorus