JPS63299363A - Formation of polysilicon film doped with phosphorus - Google Patents

Formation of polysilicon film doped with phosphorus

Info

Publication number
JPS63299363A
JPS63299363A JP13523887A JP13523887A JPS63299363A JP S63299363 A JPS63299363 A JP S63299363A JP 13523887 A JP13523887 A JP 13523887A JP 13523887 A JP13523887 A JP 13523887A JP S63299363 A JPS63299363 A JP S63299363A
Authority
JP
Japan
Prior art keywords
phosphorus
gas
wafer
polysilicon film
film doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13523887A
Other languages
Japanese (ja)
Inventor
Kazuhiro Karatsu
唐津 和裕
Yoshinari Matsushita
圭成 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13523887A priority Critical patent/JPS63299363A/en
Publication of JPS63299363A publication Critical patent/JPS63299363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable the effective forming of a polysilicon film doped with phosphorus good in its particle diameter, by using a vapor growth method to form an amorphous silicon film doped with phosphorus and next using heat treatment to perform polycrystallization. CONSTITUTION:A wafer is mounted on a wafer susceptor 19, and an infrared lamp 17 is used to heat the wafer, and a carrier gas and an inactive gas are supplied inside a reaction chamber 6 from gas supply ports 10 and 24. Next, a disilane gas and a phosphine gas are supplied from the gas supply port 10, and an amorphous silicon film doped with phosphorus is made to grow and formed on the wafer. Next the wafer is projected into a diffusion furnace and provided with heat treatment under a nitrogen atmosphere. Hence, a polysilicon film doped with phosphorus good in its particle diameter can be effectively formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体デバイスのゲート電極や配線材料として
用いられるリンをドープしたポリシリコン膜の形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming a phosphorus-doped polysilicon film used as a gate electrode or wiring material of a semiconductor device.

従来の技術 リンをドープしたポリシリコン膜は、シリコンゲー)M
OSデバイスのゲート電極、あるいは配線材料として重
要な技術となっている。以下、まず従来から行われてい
りリンをドープしたポリシリコン膜の形成方法について
説明する。
Conventional technology The polysilicon film doped with phosphorus is silicon
It has become an important technology as a gate electrode or wiring material for OS devices. First, a conventional method for forming a polysilicon film doped with phosphorous will be described below.

初めにポリシリコン膜を気相成長法により堆積させる。First, a polysilicon film is deposited by vapor phase growth.

第2図に一般に使用されている気相成長装置の概略図を
示す。石英チューブでできた反応管1の中に石英ボート
2に多数枚並べた半導体ウェハ3を投入して0.1〜I
 Torrの減圧下でモノシランガス(StH4)をガ
ス導入口4から流しながら、反応管1の周囲に設けた抵
抗加熱ヒータ6でSOO〜660℃に加熱して成長させ
る。次に拡散炉(上記の気相成長装置と類似した反応管
を有する)に半導体ウェハを移してホスフィン(PH3
)と酸素(o2)を常圧下で流しながら約1oOo℃で
処理する。ご五によりリンをドープしたポリシリコン膜
が形成される。
FIG. 2 shows a schematic diagram of a commonly used vapor phase growth apparatus. A large number of semiconductor wafers 3 arranged in a quartz boat 2 are put into a reaction tube 1 made of a quartz tube, and the temperature is 0.1 to 1.
While flowing monosilane gas (StH4) from the gas inlet 4 under reduced pressure of Torr, the reaction tube 1 is heated to SOO to 660[deg.] C. by a resistance heater 6 provided around the reaction tube 1 for growth. Next, the semiconductor wafer is transferred to a diffusion furnace (having a reaction tube similar to the vapor phase growth apparatus described above) and phosphine (PH3
) and oxygen (o2) at about 1oOoC while flowing under normal pressure. A polysilicon film doped with phosphorus is formed by the process.

発明が解決しようとする問題点 しかしながら上記のような方法では、ポリシリコン膜表
面が酸化されるため、後でフッ酸等のエツチング液によ
り表面の酸化膜を除去する工程が必要となる。また、ポ
リシリコン膜の気相成長においては一般に半導体ウニへ
間の膜厚を均一にするため反応管1のガス導入側の温度
を低くして排気側はど温度が高くなるよって設定してい
る。従って生成したポリシリコン膜はそれぞれの半導体
ウェハで膜厚はほぼ均一となるが粒径が異なってしまう
。さらに拡散炉におけるリンをドープする際粒径の増大
を招いてしまい、最終的に形成されたポリシリコン膜は
結晶粒が大きく、かつ不均一なものとなってしまう。ま
たエツチングに際しては、結晶粒にそって起こりやすい
ため高精度な回路形成が困難となり、今後微細化、高集
積度化がますます進んでいくデバイスに適用するための
課題の一つとなっている。
Problems to be Solved by the Invention However, in the above method, since the surface of the polysilicon film is oxidized, a step of removing the oxide film on the surface using an etching solution such as hydrofluoric acid is required afterwards. Additionally, in the vapor phase growth of polysilicon films, the temperature is generally set to be low on the gas inlet side of the reaction tube 1 and high on the exhaust side in order to make the film thickness uniform across the semiconductor layer. . Therefore, the produced polysilicon film has a substantially uniform film thickness on each semiconductor wafer, but the grain size differs. Furthermore, doping with phosphorus in a diffusion furnace causes an increase in grain size, resulting in the finally formed polysilicon film having large crystal grains and non-uniformity. Furthermore, etching tends to occur along crystal grains, making it difficult to form highly accurate circuits, and this is one of the challenges for applying it to devices that will continue to become smaller and more highly integrated.

そこで、これらを解決する手段として、ポリシリコン膜
の気相成長と同時にリンを堆積させる方法が提唱されて
いる。しかしながら、原料ガスにシランガスを使用した
場合、リンの発生源であるホスフィンガスの添加により
成長速度が大巾に低下してしまう。また、この方法で形
成したリンをドープしたポリシリコン膜はそのままでは
抵抗が高くゲート電極などに使用できないため、後工程
として熱処理が必要となるが、この時に粒径の増大を招
くことになり問題が残る。
Therefore, as a means to solve these problems, a method has been proposed in which phosphorus is deposited simultaneously with the vapor phase growth of a polysilicon film. However, when silane gas is used as the raw material gas, the growth rate is significantly reduced due to the addition of phosphine gas, which is a source of phosphorus. In addition, the phosphorus-doped polysilicon film formed by this method cannot be used as it is for gate electrodes due to its high resistance, so heat treatment is required as a post-process, but this causes an increase in grain size, which is a problem. remains.

そこで本発明は、今後の半導体デバイスの微細化、高集
積度化に対応しうる良好な粒径を有するリンをドープし
たポリシリコン膜の形成方法を提供するものである。
Therefore, the present invention provides a method for forming a phosphorus-doped polysilicon film having a good grain size that can accommodate future miniaturization and higher integration of semiconductor devices.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な手段は、
まず原料ガスにジシランガスとホスフィンガスを用いて
気相成長によりリンをドープした非晶質のシリコン膜を
形成し、次に熱処理を施してリンをドープしたポリシリ
コン膜を得ようというものである。
Means for solving the problems and technical means of the present invention for solving the above problems are as follows:
First, a phosphorus-doped amorphous silicon film is formed by vapor phase growth using disilane gas and phosphine gas as raw material gases, and then a phosphorus-doped polysilicon film is obtained by heat treatment.

作  用 この技術的手段による作用−次のようKなる。For production The effect of this technical means is K as follows.

すなわち、原料ガスにジシランガスを用いるとホスフィ
ンを添加しても成長速度が低下せず、しかもこの気相成
長において、非晶質のシリコン膜を形成することで、次
に熱処理を施しても粒径を従来方法より小さな状態に維
持でき、微細化に適した良好なリンをドープしたポリシ
リコア膜ヲ9jJ果的に形成できるものである。
In other words, when disilane gas is used as the raw material gas, the growth rate does not decrease even when phosphine is added, and by forming an amorphous silicon film in this vapor phase growth, the grain size remains unchanged even after subsequent heat treatment. It is possible to maintain a smaller size than in the conventional method, and to effectively form a good phosphorus-doped polysilicon film suitable for miniaturization.

実施例 以下、本発明の一実施例を添付図面を参照しながら説明
する。まず、リンをドープした非晶質シリコン膜を気相
成長する。第1図は本実施例で使用した気相成長装置の
概略図を示したものである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. First, an amorphous silicon film doped with phosphorus is grown in a vapor phase. FIG. 1 shows a schematic diagram of the vapor phase growth apparatus used in this example.

反応室6は内部に水冷溝7が施されたステンレスよりな
る壁面部材8と、上部に設けた透明石英プレート9から
構成されている。この透明石英プレート9はoリング等
の既知のガスシール手段で上記壁面部材8に固定されて
いる。反応室6の側壁の一端にはガス供給口1oが設け
てあり、該ガス供給口10にはジシラン、ホスフィンお
よびキャリアガスとして窒素ガスを所定流量供給すべく
流量計11.12.13を介して設けられたガス供給管
14が結合している。反応室6の他端には図示しないロ
ータリーポンプなどの真空排気装置と連結したガス排気
口15が設けである。また反応室6の外部上方には、加
熱ブロック16が取り付けである。この加熱ブロック1
6は赤外線ラング17が複数本配列され、それらの上部
には反射鏡18が配置された構造になっている。反応室
6の内部には、ウェハを載置するSiCでコーティング
されたグラファイトよりなるウェハ支持台19が設置さ
れている。ウェハ支持台19は支持ポスト20により回
転手段21に連結されている。また反応室6の排気側壁
面には、その途中に流量計22を設けた不活性ガス供給
管23に連結され、透明石英プレート9の下面に近接し
た位置に開口を有する不活性ガス供給口24が形成され
ている。更に、不活性ガス供給口24の下方近接した位
置に反応室側壁の突出部26に外周を支持され、透明石
英プレート9の下面との間で不活性ガス供給口24から
供給される不活性ガスが矢印のようにまず透明石英プレ
ート9の下面に沿って流れ、続いてガス供給口10側で
折り返して反応室6内に噴出するように、流路を形成す
る透明石英製の仕切板26が設けである。これは、仕切
板26から不活性ガスを噴出させることによりジシラン
あるいはホスフィンガスが前記透明石英プレート9.お
よび仕切板26に接触することを防止して不要な膜付着
を起こさないためである。
The reaction chamber 6 is composed of a wall member 8 made of stainless steel and having a water cooling groove 7 therein, and a transparent quartz plate 9 provided at the top. This transparent quartz plate 9 is fixed to the wall member 8 using known gas sealing means such as an O-ring. A gas supply port 1o is provided at one end of the side wall of the reaction chamber 6, and disilane, phosphine, and nitrogen gas as a carrier gas are supplied to the gas supply port 10 at predetermined flow rates through flow meters 11, 12, and 13. A provided gas supply pipe 14 is connected. The other end of the reaction chamber 6 is provided with a gas exhaust port 15 connected to a vacuum exhaust device such as a rotary pump (not shown). Further, a heating block 16 is attached above the outside of the reaction chamber 6. This heating block 1
6 has a structure in which a plurality of infrared rungs 17 are arranged and a reflecting mirror 18 is arranged above them. Inside the reaction chamber 6, a wafer support 19 made of graphite coated with SiC is installed on which a wafer is placed. The wafer support 19 is connected to a rotation means 21 by a support post 20. Further, on the exhaust side wall of the reaction chamber 6, an inert gas supply port 24 is connected to an inert gas supply pipe 23 having a flow meter 22 disposed in the middle thereof, and has an opening near the lower surface of the transparent quartz plate 9. is formed. Further, an inert gas is supplied from the inert gas supply port 24 between the outer periphery of the inert gas supply port 24 and the lower surface of the transparent quartz plate 9, the outer periphery of which is supported by a protrusion 26 on the side wall of the reaction chamber at a position close to the bottom of the inert gas supply port 24. A partition plate 26 made of transparent quartz that forms a flow path is arranged so that the gas first flows along the lower surface of the transparent quartz plate 9 as shown by the arrow, and then turns around at the gas supply port 10 side and is ejected into the reaction chamber 6. It is a provision. This is done by blowing out an inert gas from the partition plate 26 to release disilane or phosphine gas into the transparent quartz plate 9. This is also to prevent unnecessary film adhesion by preventing contact with the partition plate 26.

上記構成による気相成長装置を用いてリンをドープした
非晶質シリコン膜を成長させた。まずウェハをウェハ支
持台19に載置し、回転手段で回転させながら赤外線ラ
ンプ17によりウェハ温度を650℃に設定した。つい
で流量計13によりキャリアガスとしての窒素ガスをQ
 573 / mi n 。
A phosphorus-doped amorphous silicon film was grown using a vapor phase growth apparatus having the above configuration. First, a wafer was placed on a wafer support stand 19, and the wafer temperature was set at 650° C. using an infrared lamp 17 while being rotated by a rotating means. Next, nitrogen gas as a carrier gas is supplied to Q using the flow meter 13.
573/min.

および流量計22で不活性ガスとして同様に窒素ガス2
1j / minをそれぞれガス供給口10.および不
活性ガス供給口24から反応室e内に供給し、同時にガ
ス排気口15から排気しながら反応室6の圧力をほぼ5
 Torrに保持した。次にこの状態で流量計11.1
2を通じてジシラン20cc/ min 。
and nitrogen gas 2 as an inert gas in the flow meter 22.
1j/min for each gas supply port 10. and is supplied into the reaction chamber e from the inert gas supply port 24, and at the same time exhausts the gas from the gas exhaust port 15 to reduce the pressure in the reaction chamber 6 to approximately 5.
It was held at Torr. Next, in this state, flowmeter 11.1
Disilane 20cc/min through 2.

ホスフィン2.4 cc/ minの割合で供給し2分
間成長を行った。ウェハ上に形成された膜は電子線回折
で確認したところノ・ローパターンが示され非晶質であ
った。
Phosphine was supplied at a rate of 2.4 cc/min and growth was performed for 2 minutes. When the film formed on the wafer was confirmed by electron beam diffraction, it showed a no-row pattern and was found to be amorphous.

次に結晶化をはかるため熱処理をほどこし丸。Next, heat treatment is applied to the circles in order to crystallize them.

従来例で説明した拡散炉にウェハを投入し窒素雰囲気下
1000’C,30分処理した。このようにして形成し
たリンをドープしたポリシリコン膜を従来方法で形成し
た膜と透過型電子顕微鏡を用いて比較評価した結果、本
実施例で形成したポリシリコン膜は結晶粒の均一性、大
きさも良好なものであることがわかった。
The wafer was placed in the diffusion furnace described in the conventional example and processed at 1000'C for 30 minutes in a nitrogen atmosphere. As a result of comparing and evaluating the phosphorus-doped polysilicon film formed in this way with a film formed using a conventional method using a transmission electron microscope, it was found that the polysilicon film formed in this example had uniform crystal grains, It was also found to be good.

なお、上記の実施例ではキャリアガスおよび不活性ガス
として窒素を用いたが、これに限定されるものでなく例
えばヘリウム等反応を起さないガスであれば使用可能で
ある。また、本実施例では熱処理に抵抗加熱ヒータを加
熱源とする装置を使用したが、ランプ加熱を採用した熱
処理炉のほうが処理時間が短かくてすみ本発明の効果が
さらにあがることが期待される。
Although nitrogen was used as the carrier gas and inert gas in the above embodiments, the present invention is not limited to this, and any gas that does not cause a reaction, such as helium, can be used. Furthermore, in this example, a device using a resistance heater as the heat source was used for heat treatment, but it is expected that a heat treatment furnace that uses lamp heating would require shorter treatment time and would further enhance the effects of the present invention. .

発明の効果 以上のように本発明は、まず気相成長でリンをドープし
た非晶質シリコンを形成後、熱処理により多結晶化を行
うものであり、良好な粒径を有するリンをドープしたポ
リシリコン膜を効率的に得ることができ、微細化、高集
積化が進む半導体デバイスに適した方法である。
Effects of the Invention As described above, the present invention first forms phosphorus-doped amorphous silicon by vapor phase growth, and then polycrystallizes it by heat treatment. This method can efficiently obtain a silicon film and is suitable for semiconductor devices that are becoming smaller and more highly integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用した気相成長装置の概略
図、第2図は従来の気相成長に使用された気相成長装置
の断面概略図である。 6・・・・・・反応室、17・・・・・・赤外線ランプ
、19・・・・・・ウェハ支持台。
FIG. 1 is a schematic diagram of a vapor phase growth apparatus used in an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a vapor phase growth apparatus used for conventional vapor phase growth. 6...Reaction chamber, 17...Infrared lamp, 19...Wafer support stand.

Claims (1)

【特許請求の範囲】[Claims] ホスフィンガスとジシランガスの気相成長により、リン
をドープした非晶質シリコン膜を形成した後、熱処理に
よりシリコンの多結晶化を行うことを特徴とするリンを
ドープしたポリシリコン膜の形成方法。
A method for forming a phosphorus-doped polysilicon film, which comprises forming an amorphous silicon film doped with phosphorus by vapor phase growth of phosphine gas and disilane gas, and then polycrystallizing the silicon by heat treatment.
JP13523887A 1987-05-29 1987-05-29 Formation of polysilicon film doped with phosphorus Pending JPS63299363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13523887A JPS63299363A (en) 1987-05-29 1987-05-29 Formation of polysilicon film doped with phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13523887A JPS63299363A (en) 1987-05-29 1987-05-29 Formation of polysilicon film doped with phosphorus

Publications (1)

Publication Number Publication Date
JPS63299363A true JPS63299363A (en) 1988-12-06

Family

ID=15147039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13523887A Pending JPS63299363A (en) 1987-05-29 1987-05-29 Formation of polysilicon film doped with phosphorus

Country Status (1)

Country Link
JP (1) JPS63299363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821871B2 (en) 2000-06-14 2004-11-23 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device, substrate treatment method, and semiconductor manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821871B2 (en) 2000-06-14 2004-11-23 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device, substrate treatment method, and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3067940B2 (en) Silicon nitride thin film deposition
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
JP3265042B2 (en) Film formation method
JP3121131B2 (en) Low temperature and high pressure silicon deposition method
JP3184000B2 (en) Method and apparatus for forming thin film
JP3207832B2 (en) CVD reactor and method for producing epitaxially grown semiconductor wafers
JPH0786174A (en) Film deposition system
US20060021570A1 (en) Reduction in size of hemispherical grains of hemispherical grained film
JPH02258689A (en) Method for forming crystalline thin film
JPH0786173A (en) Film deposition
KR100393751B1 (en) How to make a film
KR100413914B1 (en) Film Formation Method
JPS63299363A (en) Formation of polysilicon film doped with phosphorus
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JP3038524B2 (en) Semiconductor manufacturing equipment
JPH07176490A (en) Cvd apparatus
JPH11260734A (en) Manufacture of semiconductor device
JP2000068215A (en) Method for growing vapor phase thin film and device therefor
JP3100702B2 (en) Reduced pressure chemical reaction method and apparatus
JP2000150815A (en) Manufacture of semiconductor device and semiconductor manufacturing device
JP2792353B2 (en) Vapor phase growth equipment
JPH05211123A (en) Growth method of silicon epitaxial film
JP3112796B2 (en) Chemical vapor deposition method
JPH0834185B2 (en) Vapor phase growth equipment
JPS62244126A (en) Vapor growth device