JP2001345321A - Oxidation treatment method and device - Google Patents
Oxidation treatment method and deviceInfo
- Publication number
- JP2001345321A JP2001345321A JP2000162950A JP2000162950A JP2001345321A JP 2001345321 A JP2001345321 A JP 2001345321A JP 2000162950 A JP2000162950 A JP 2000162950A JP 2000162950 A JP2000162950 A JP 2000162950A JP 2001345321 A JP2001345321 A JP 2001345321A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction vessel
- oxidation treatment
- heating
- treatment apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコン酸化膜を
形成するための酸化処理方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidizing method for forming a silicon oxide film and an apparatus therefor.
【0002】[0002]
【従来の技術】多数枚の半導体ウエハ(以下ウエハとい
う)をバッチ炉内に搬入し、ウエハ上のシリコン膜を酸
化してシリコン酸化膜(Si02 膜) を形成する方法と
して、酸素(02 )ガス及び塩化水素(HCl)ガスを
用いるドライ酸化法や、酸素ガス及び水素(H2 )ガス
を外部で燃焼させて水蒸気を生成し、この水蒸気と酸素
ガスとを反応管内に導入するウエット酸化法などが知ら
れており、目的とする膜質に応じて酸化法が選択され
る。2. Description of the Related Art A large number of semiconductor wafers (hereinafter referred to as "wafers") are loaded into a batch furnace, and a silicon oxide film (SiO2 film) is formed by oxidizing a silicon film on the wafer to form a silicon oxide film (SiO2 film). And a dry oxidation method using hydrogen chloride (HCl) gas, a wet oxidation method in which oxygen gas and hydrogen (H2) gas are burned outside to generate steam, and the steam and oxygen gas are introduced into the reaction tube. It is known, and an oxidation method is selected according to a target film quality.
【0003】これらの酸化法のうち、ドライ酸化法は、
酸素ガスによりシリコン膜を酸化する一方、塩素のゲッ
タリング効果により表面の不純物が除去される。具体的
には例えば多数枚のウエハをボ−トに棚状に保持させて
縦型の反応管内に搬入し、反応管を囲むヒ−タにより処
理雰囲気を加熱した後、酸素ガス及び塩化水素ガスを常
温で反応管の天井部から反応管内に供給し、下方側から
排気することにより行われる。[0003] Among these oxidation methods, the dry oxidation method includes:
While the silicon film is oxidized by oxygen gas, impurities on the surface are removed by the gettering effect of chlorine. Specifically, for example, a large number of wafers are held in a boat in a shelf shape, loaded into a vertical reaction tube, and a processing atmosphere is heated by a heater surrounding the reaction tube, and then an oxygen gas and a hydrogen chloride gas are heated. Is supplied into the reaction tube from the ceiling of the reaction tube at room temperature and exhausted from the lower side.
【0004】[0004]
【発明が解決しようとする課題】ところでプロセス温度
が高い程スリップと呼ばれる欠陥がウエハに発生しやす
くなることから、また下地に積まれた膜に対する熱の影
響を避けるため、更には省エネルギ−化を図ることなど
から、プロセス温度の低温化が検討されつつある。By the way, the higher the process temperature is, the more easily a defect called a slip is generated on the wafer, and in order to avoid the influence of heat on the film deposited on the underlayer, it is also necessary to save energy. Therefore, lowering the process temperature is being studied.
【0005】しかしながらプロセス温度を低くすると、
ウエハの大口径化が進んでいることと相俟ってウエハの
面内の膜厚の均一性が悪くなり、またウエハ間(面間)
の膜厚のばらつきも大きくなる。However, when the process temperature is lowered,
Along with the increase in the diameter of the wafer, the uniformity of the film thickness within the surface of the wafer deteriorates, and the wafer-to-wafer (between the surfaces)
The variation in the film thickness also increases.
【0006】ボ−ト上におけるウエハの搭載位置と膜厚
の関係について調べてみると、膜厚の均一性は、ボ−ト
の上段側に位置するものほど悪くなる傾向がある。この
理由について本発明者は次のように推測している。図7
の(a),(b),(c)は夫々ウエハW上のガスの流
れ、ウエハWの温度及び膜厚を模式的に示したものであ
る。酸素ガス及び塩化水素ガスはウエハWの周縁(エッ
ジ)から中央に向かって流れ、ウエハ上のシリコンが酸
素ガスにより酸化されていくが、ウエハWの熱は周縁か
ら放熱されるので温度は中央に向かうにつれて高くな
る。このため酸化反応は中央の方が促進されるので、膜
厚均一性が高い場合でも、膜厚は本来中央の方が周縁よ
りも厚くなる傾向にある。Examining the relationship between the mounting position of the wafer on the boat and the film thickness, the uniformity of the film thickness tends to be worse as it is located on the upper side of the boat. The present inventors presume the reason for this as follows. FIG.
(A), (b), and (c) schematically show the gas flow on the wafer W, the temperature and the film thickness of the wafer W, respectively. The oxygen gas and the hydrogen chloride gas flow from the periphery (edge) of the wafer W toward the center, and silicon on the wafer is oxidized by the oxygen gas. However, since the heat of the wafer W is radiated from the periphery, the temperature is set at the center. It gets higher as you go. For this reason, since the oxidation reaction is promoted at the center, even when the film thickness uniformity is high, the film thickness tends to be originally larger at the center than at the periphery.
【0007】一方塩化水素が分解されて生成した水素
と、酸素とが反応して僅かではあるが水蒸気が生成され
る。そしてボ−トの上段側ではガスが十分に温められて
いないので、ガスがウエハWの周縁から中央に向かって
加熱されるにつれて水蒸気の生成量が多くなる。この水
蒸気は酸化膜を増膜する効果があり、水蒸気の生成量の
差が膜厚に大きく効いてくる。この結果膜厚分布はウエ
ハWの中央部の膜厚が大きいいわば山形の分布になっ
て、均一性が悪くなる。そしてガスは反応管の下方側に
向かうにつれて温められるので、ボ−トの下段側では水
蒸気の生成反応はほぼ平衡状態になっており、ウエハW
に沿ってガスが流れる前に既に水蒸気が生成され尽くし
ている。従って処理ガスがウエハWの周縁から中央に向
かって流れたときにウエハWの位置にかかわらず水蒸気
の量はほとんど変わらないので、膜厚の均一性が高くな
る。こうしたことからボ−トの上段側では膜厚の均一性
がかなり悪く、上段側と下段側のウエハ間の膜厚の差が
大きくなっていると考えられる。この結果プロセス温度
の低温化が困難になっているというのが現状である。On the other hand, hydrogen generated by the decomposition of hydrogen chloride reacts with oxygen to produce a small amount of water vapor. Since the gas is not sufficiently heated on the upper side of the boat, the amount of water vapor generated increases as the gas is heated from the peripheral edge to the center of the wafer W. This water vapor has the effect of increasing the thickness of the oxide film, and the difference in the amount of generated water vapor has a great effect on the film thickness. As a result, the film thickness distribution becomes a so-called mountain-shaped distribution in which the film thickness at the central portion of the wafer W is large, and the uniformity is deteriorated. Then, since the gas is heated toward the lower side of the reaction tube, the reaction of generating water vapor is substantially in an equilibrium state on the lower side of the boat, and the wafer W
Water vapor has already been generated and exhausted before the gas flows along. Therefore, when the processing gas flows from the peripheral edge of the wafer W toward the center, the amount of water vapor hardly changes regardless of the position of the wafer W, so that the uniformity of the film thickness is improved. From these facts, it is considered that the uniformity of the film thickness on the upper stage side of the boat is considerably poor, and the difference in the film thickness between the upper and lower wafers is large. As a result, it is currently difficult to lower the process temperature.
【0008】本発明はこのような事情の下になされたも
のであり、その目的は、被処理体に対していわゆるドラ
イ酸化処理を行うにあたって酸化膜の膜厚について高い
均一性が得られ、プロセス温度の低温化に寄与すること
のできる技術を提供することにある。The present invention has been made under such circumstances, and it is an object of the present invention to provide a so-called dry oxidation treatment for an object to be processed, whereby a high uniformity of an oxide film thickness can be obtained. It is an object of the present invention to provide a technology capable of contributing to lowering the temperature.
【0009】[0009]
【課題を解決するための手段】本発明は、シリコン層が
少なくとも表面部に形成された被処理体を反応容器内に
搬入すると共に当該反応容器内を所定の処理温度に加熱
し、水素及び塩素を含む化合物からなるガスと、酸素ガ
スと、を含む処理ガスを反応容器内に供給して前記シリ
コン層を酸化してシリコン酸化膜を形成する方法におい
て、前記処理ガスを反応容器内に供給する前に当該処理
ガスにエネルギ−を与えて微量な水分を生成することを
特徴とする。According to the present invention, an object to be processed having a silicon layer formed on at least a surface thereof is carried into a reaction vessel, and the inside of the reaction vessel is heated to a predetermined processing temperature, and hydrogen and chlorine are removed. In a method of supplying a processing gas containing a gas containing a compound containing oxygen and an oxygen gas into a reaction vessel to oxidize the silicon layer to form a silicon oxide film, the processing gas is supplied into the reaction vessel. The method is characterized in that a small amount of water is generated by applying energy to the processing gas.
【0010】処理ガスにエネルギ−を与える工程は、例
えば反応容器内の処理温度にて水分の生成がそれ以上促
進しない程度まで水分を生成する工程である。この工程
は、処理ガスを例えばガス供給管に設けられた加熱部に
て加熱する工程であり、この場合その加熱温度は、反応
容器内の処理温度よりも高いことが好ましい。水素及び
塩素を含む化合物からなるガスは例えば塩化水素ガスで
ある。The step of applying energy to the processing gas is, for example, a step of generating water to such an extent that the generation of water is not further promoted at the processing temperature in the reaction vessel. This step is a step of heating the processing gas by, for example, a heating unit provided in a gas supply pipe. In this case, the heating temperature is preferably higher than the processing temperature in the reaction vessel. The gas composed of a compound containing hydrogen and chlorine is, for example, hydrogen chloride gas.
【0011】この方法を実施する酸化処理装置の一例と
しては、被処理体を反応容器内に搬入すると共に、反応
容器内を所定の処理温度に加熱し、水素及び塩素を含む
化合物からなるガスと、酸素ガスと、を含む処理ガスを
反応容器内に供給して被処理体に対して酸化処理を行う
熱処理装置と、前記反応容器内に処理ガスを供給するガ
ス供給管と、前記ガス供給管に設けられ、処理ガスを反
応容器内に供給する前に当該処理ガスを加熱して微量な
水分を生成するための加熱部と、を備えた構成を挙げる
ことができる。熱処理装置としては例えば多数の被処理
体を棚状に保持具に保持して縦型の反応容器内に搬入
し、反応容器を取り囲むヒ−タにより反応容器内を所定
の処理温度に加熱する縦型熱処理装置が用いられる。As an example of an oxidation treatment apparatus for carrying out this method, an object to be treated is carried into a reaction vessel, and the inside of the reaction vessel is heated to a predetermined treatment temperature to produce a gas containing a compound containing hydrogen and chlorine. , An oxygen gas, and a heat treatment apparatus that supplies a processing gas containing the gas into the reaction vessel to oxidize the object to be processed, a gas supply pipe that supplies the processing gas into the reaction vessel, and the gas supply pipe. And a heating section for heating the processing gas before supplying the processing gas into the reaction vessel to generate a trace amount of water. As a heat treatment apparatus, for example, a large number of objects to be processed are held in a holder in a shelf shape, carried into a vertical reaction vessel, and heated inside the reaction vessel to a predetermined processing temperature by a heater surrounding the reaction vessel. A mold heat treatment device is used.
【0012】また加熱部は、通気抵抗体が設けられ、処
理ガスを加熱するための加熱室と、この加熱室を囲むよ
うに設けられると共に金属不純物の少ない抵抗発熱体例
えば高純度の炭素素材をセラミックス例えば石英の中に
封入してなるヒ−タ部と、を備えたものが好適である。Further, the heating section is provided with a ventilation resistor, a heating chamber for heating the processing gas, and a heating chamber provided around the heating chamber and containing a small amount of metal impurities, such as a high-purity carbon material. It is preferable to provide a heater having a heater portion sealed in ceramics such as quartz.
【0013】[0013]
【発明の実施の形態】図1は本発明の酸化処理方法を実
施するために用いられる酸化処理装置の一例を示す図で
ある。この酸化処理装置は、縦型熱処理装置1と、この
縦型熱処理装置1に処理ガスを導入する前に当該処理ガ
スを加熱するための加熱部2とを備えている。前記縦型
熱処理装置1の構造について述べると、この装置1は、
図1及び図2に示すように縦型の熱処理炉3と、保持具
であるウエハボ−ト4と、このウエハボ−ト4を昇降さ
せるボ−トエレベ−タ40と、前記熱処理炉3に接続さ
れたガス供給管5及び排気管30と、を備えている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an example of an oxidation treatment apparatus used to carry out the oxidation treatment method of the present invention. The oxidation treatment apparatus includes a vertical heat treatment apparatus 1 and a heating unit 2 for heating the treatment gas before introducing the treatment gas into the vertical heat treatment apparatus 1. The structure of the vertical heat treatment apparatus 1 will be described.
As shown in FIGS. 1 and 2, a vertical heat treatment furnace 3, a wafer boat 4 as a holder, a boat elevator 40 for raising and lowering the wafer boat 4, and a heat treatment furnace 3 are connected. A gas supply pipe 5 and an exhaust pipe 30.
【0014】縦型の熱処理炉3は例えば石英よりなる反
応容器である反応管31と、この反応管31を囲むよう
に設けられた抵抗発熱体などからなる加熱手段であるヒ
−タ32と、前記反応管31及びヒ−タ32の間にて断
熱体34に支持されて設けられた均熱用容器33と、を
備えている。前記反応管31は下端が開口すると共に、
上面31aの少し下方側に多数のガス穴31bを有する
ガス拡散板31cが設けられている。前記ガス供給管5
は断熱体34を外から貫通して配管されると共に、断熱
体の34の内側でL字に屈曲されて反応管31と均熱用
容器33との間にて垂直に立ち上げられ、反応管31の
上面31aとガス拡散板31cとの間の空間に突入され
ている。The vertical heat treatment furnace 3 includes a reaction tube 31 which is a reaction vessel made of, for example, quartz, a heater 32 which is a heating means provided with a resistance heating element provided around the reaction tube 31, and the like. A heat equalizing container 33 provided between the reaction tube 31 and the heater 32 and supported by a heat insulator 34. The reaction tube 31 has an open lower end,
A gas diffusion plate 31c having a large number of gas holes 31b is provided slightly below the upper surface 31a. The gas supply pipe 5
Is piped through the heat insulator 34 from the outside, bent in an L-shape inside the heat insulator 34 and vertically raised between the reaction tube 31 and the soaking container 33, The projection 31 protrudes into the space between the upper surface 31a and the gas diffusion plate 31c.
【0015】ウエハボ−ト4は、図1において例えば天
板41及び底板42の間に複数の支柱43を設け、この
支柱43に上下方向に形成された溝にウエハWの周縁を
挿入して保持するように構成されている。ウエハボ−ト
4は反応管31の下端の開口部35を開閉する蓋体44
の上に保温部である例えば保温筒45を介して載置され
ている。保温筒45はタ−ンテ−ブル46の上に載置さ
れ、ボ−トエレベ−タ40に設けられた駆動部Mにより
回転軸47を介して回転できるようになっている。蓋体
44はボ−トエレベ−タ40に設けられており、ボ−ト
エレベ−タ40が昇降することにより、熱処理炉3に対
して、ウエハボ−ト4の搬入出が行われる。The wafer boat 4 is provided with a plurality of columns 43, for example, between a top plate 41 and a bottom plate 42 in FIG. 1, and inserts and holds the peripheral edge of the wafer W in a groove formed in the column 43 in the vertical direction. It is configured to be. The wafer boat 4 has a lid 44 for opening and closing the opening 35 at the lower end of the reaction tube 31.
It is placed on the top via a heat insulation section, for example, a heat insulation cylinder 45. The heat retaining cylinder 45 is mounted on a turntable 46 and can be rotated via a rotary shaft 47 by a driving section M provided on the boat elevator 40. The lid 44 is provided on the boat elevator 40, and the wafer boat 4 is carried into and out of the heat treatment furnace 3 by moving the boat elevator 40 up and down.
【0016】前記加熱部2は、図3に示すように縦型熱
処理装置1の外においてガス供給管5の途中に設けられ
ている。加熱部2は、加熱室を形成する例えば透明石英
からなる加熱管21と、この加熱管21の外側に螺旋状
に形成されたヒ−タ部22と、加熱管21及びヒ−タ部
22を覆う筒状の断熱体23と、を備えており、断熱体
23内には冷媒例えば冷却水を通流させるための冷却水
通路24が形成されている。また加熱管21の中には、
通気抵抗体である例えば多数の透明石英ガラスビ−ズ2
0が多数充填されている。通気抵抗体を設けることによ
り、ガスの滞留時間を長くすると共に、通気抵抗体が加
熱されてガスがこれに接触しながら流れることによりガ
スが効率よく加熱される。The heating section 2 is provided outside the vertical heat treatment apparatus 1 and in the middle of the gas supply pipe 5 as shown in FIG. The heating unit 2 includes a heating tube 21 made of, for example, transparent quartz, which forms a heating chamber, a heater 22 spirally formed outside the heating tube 21, a heating tube 21 and a heater 22. A cooling water passage 24 for allowing a coolant, such as cooling water, to flow therethrough. In the heating tube 21,
For example, a number of transparent quartz glass beads 2 which are ventilation resistors
Many 0s are filled. By providing the ventilation resistor, the residence time of the gas is prolonged, and the gas is heated efficiently by heating the ventilation resistor and flowing while contacting the gas.
【0017】前記ヒ−タ部22は例えば金属不純物の少
ない金属例えば高純度のカ−ボンからなるファイバの束
を複数束編み上げて紐状体を形成し、この紐状体をセラ
ミックス体例えば石英管の中に封入して螺旋状に形成し
たものであり、電力供給線25により通電されて発熱す
る。なお26は熱電対からなる温度センサである。The heater portion 22 is formed by knitting a plurality of fiber bundles made of, for example, a metal having a small amount of metal impurities, for example, a high-purity carbon fiber to form a string. Are formed in a spiral shape by being enclosed in a box, and generate heat when energized by the power supply line 25. Reference numeral 26 denotes a temperature sensor composed of a thermocouple.
【0018】前記ガス供給管5における加熱部2の下流
側にはバルブV0を介して分岐され、分岐管51、52
の夫々には酸素ガス源53及び塩化水素ガス源54が接
続されている。V1,V2はバルブ、MF1、MF2は
ガス流量部であるマスフロ−コントロ−ラである。この
加熱部2は、加熱されたガスが熱処理炉3内に入る前に
冷えないようにするために、できるだけ熱処理炉3に接
近して設けることが好ましい。The gas supply pipe 5 is branched downstream of the heating section 2 through a valve V0, and branched pipes 51 and 52.
Are connected to an oxygen gas source 53 and a hydrogen chloride gas source 54, respectively. V1 and V2 are valves, and MF1 and MF2 are mass flow controllers which are gas flow sections. The heating section 2 is preferably provided as close as possible to the heat treatment furnace 3 in order to prevent the heated gas from cooling before entering the heat treatment furnace 3.
【0019】次に上述実施の形態の作用について説明す
る。先ずシリコン層が表面部に形成された多数枚例えば
60枚の被処理体であるウエハWをウエハボ−ト4に棚
状に保持させ、ヒ−タ32により予め所定の温度に加熱
された反応管31内にボ−トエレベ−タ40により搬入
し、炉口である開口部35を蓋体44により気密に閉じ
る(図1の状態)。続いて所定の処理温度例えば800
℃まで反応管31内を昇温する。ウエハWを搬入する工
程及び反応管31内を昇温する工程においては、反応管
31内を図では見えないガス供給管から例えば僅かに酸
素ガスを混入させた窒素ガスを供給しておき、反応管3
1内が処理温度になるとガスの供給を止め、図示しない
排気手段により排気管30を介して反応管31内を排気
することにより反応管31内を微減圧状態にし、この状
態でウエハWの温度を安定させてから酸化処理を行う。Next, the operation of the above embodiment will be described. First, a large number of wafers W to be processed, for example, 60 wafers each having a silicon layer formed on the surface thereof, are held in a shelf shape on a wafer boat 4, and are heated to a predetermined temperature by a heater 32 in advance. The boat 35 is carried into the interior 31 by a boat elevator 40, and the opening 35 serving as a furnace port is airtightly closed by a lid 44 (the state shown in FIG. 1). Subsequently, a predetermined processing temperature, for example, 800
The inside of the reaction tube 31 is heated up to ° C. In the step of loading the wafer W and the step of raising the temperature inside the reaction tube 31, for example, a nitrogen gas mixed with a slight amount of oxygen gas is supplied into the reaction tube 31 from a gas supply pipe not visible in the drawing. Tube 3
When the inside of the reaction tube 1 reaches the processing temperature, the supply of gas is stopped, and the inside of the reaction tube 31 is slightly depressurized by exhausting the inside of the reaction tube 31 through an exhaust pipe 30 by an exhaust means (not shown). After stabilizing, an oxidation treatment is performed.
【0020】一方縦型熱処理装置1の外部に設けられた
加熱部2においては、加熱管21内を例えば1000℃
の加熱雰囲気にしておき、バルブV0を開いて酸素ガス
及び塩化水素ガスよりなる処理ガスを加熱管21内を通
流させる。処理ガスは加熱管21内の透明石英ガラスビ
−ズ20に接触しながらそれらの隙間を通って流出し、
ここを通る間に1000℃付近に加熱される。これによ
り酸素ガス及び塩化水素ガスが下記式のように反応して
微量な例えば数百ppmオ−ダの水蒸気が生成されると
考えられる。 2HCl→H2 +Cl2 H2 +1/2O2 →H2 0 こうして加熱された処理ガスが熱処理炉3内に入り、均
熱管33の内側を通って加熱されながら上昇し、反応管
31の上部に流入する。更にこの処理ガスはガス孔31
bから反応管31内の処理領域に供給され、下部の排気
管30から排気される。このとき処理ガスは棚状に積ま
れたウエハWの間に入り込み、酸素ガスによりウエハW
表面部のシリコン層が酸化されてシリコン酸化膜が生成
される。この処理ガスの中には既述のように微量な水蒸
気が含まれており、この水蒸気により酸化膜が増膜され
る。On the other hand, in the heating section 2 provided outside the vertical heat treatment apparatus 1, the inside of the heating pipe 21 is heated to, for example, 1000 ° C.
, And the valve V0 is opened to allow a processing gas composed of oxygen gas and hydrogen chloride gas to flow through the heating pipe 21. The processing gas flows out through the gaps while contacting the transparent quartz glass beads 20 in the heating tube 21,
While passing here, it is heated to around 1000 ° C. As a result, it is considered that the oxygen gas and the hydrogen chloride gas react as shown in the following formula to generate a minute amount of water vapor, for example, on the order of several hundred ppm. 2HCl → H2 + Cl2 H2 + 1 / 2O2 → H2 0 The processing gas thus heated enters the heat treatment furnace 3, rises while being heated through the inside of the soaking tube 33, and flows into the upper part of the reaction tube 31. Further, the processing gas is supplied to the gas holes 31.
b to the processing area in the reaction tube 31, and is exhausted from the lower exhaust pipe 30. At this time, the processing gas enters between the wafers W stacked on the shelf, and the wafer W
The silicon layer on the surface is oxidized to form a silicon oxide film. As described above, the processing gas contains a trace amount of water vapor, and the water vapor increases the oxide film.
【0021】このような実施の形態によれば、後述の実
施例の結果からも分かるようにウエハWの面内における
膜厚の均一性が高く、またウエハW間における膜厚の均
一性も高い。この理由については次のように考えられ
る。処理ガス(酸素ガス及び塩化水素ガスの混合ガス)
は加熱部2にて例えば1000℃付近に加熱され、水蒸
気が生成された後、二次側のガス供給管5を流れる間に
多少冷えるが、一旦生成された水蒸気は温度が低くなっ
ても量が減ることはないので、つまり上記の化学式にお
いて酸素と水素とから水蒸気が生成される反応の平衡が
生成物側には移動しないので、反応管31内の処理温度
よりも高い温度で水蒸気を生成しておけば、処理ガスは
反応管31内にて、それ以上水蒸気を生成しない。According to this embodiment, the uniformity of the film thickness in the plane of the wafer W is high and the uniformity of the film thickness between the wafers W is high, as can be seen from the results of the examples described later. . The reason is considered as follows. Processing gas (mixed gas of oxygen gas and hydrogen chloride gas)
Is heated in the heating unit 2 to, for example, around 1000 ° C., and after the steam is generated, it cools down a little while flowing through the gas supply pipe 5 on the secondary side. Since the equilibrium of the reaction in which water vapor is generated from oxygen and hydrogen in the above chemical formula does not shift to the product side, water vapor is generated at a temperature higher than the processing temperature in the reaction tube 31. If so, the processing gas does not generate any more steam in the reaction tube 31.
【0022】従ってウエハボ−ト4に積まれているウエ
ハWの間に処理ガスが入り込むときには水蒸気がいわば
生成尽くされてしまっているので、ウエハWの周縁から
中央に向かって流れる処理ガスに含まれる水蒸気の量は
どの位置でもほぼ同じである。この結果ウエハボ−ト4
の上段に位置するウエハWにおいても、面内での水蒸気
による増膜作用の程度がほぼ同じであるため、膜厚の面
内均一性が高くなる。従来ではウエハボ−ト4の下段側
に向かうにつれて水蒸気の生成が進むことから、上段側
では膜厚の均一性が悪く、下段側にいくほど膜厚の均一
性が高かったが、この実施の形態では、下段側のガスの
雰囲気を上段側で生成しているということができ、ウエ
ハWの間での膜厚分布のばらつきも小さくなる、つまり
面間の膜厚の均一性が高くなる。Therefore, when the processing gas enters between the wafers W stacked on the wafer boat 4, the steam is generated and exhausted, so to speak, is included in the processing gas flowing from the peripheral edge to the center of the wafer W. The amount of water vapor is almost the same at every position. As a result, the wafer boat 4
Also in the wafer W positioned at the upper stage, the degree of film-increasing action by water vapor in the plane is almost the same, so that the in-plane uniformity of the film thickness is increased. In the prior art, since the generation of water vapor progresses toward the lower side of the wafer boat 4, the uniformity of the film thickness is poor on the upper side, and the uniformity of the film thickness is higher on the lower side. In this case, it can be said that the lower gas atmosphere is generated on the upper side, and the variation in the film thickness distribution among the wafers W is reduced, that is, the uniformity of the film thickness between the surfaces is increased.
【0023】なお厳密には水蒸気が増膜に寄与するた
め、ウエハWの中央に向かうにつれて多少少なくなると
考えられるが、「従来技術」の項目で述べたようにウエ
ハWの周縁よりも中央の温度の方が高く、本来中央の膜
厚が大きくなる傾向にあることから、周縁における増膜
の程度が大きいことにより、周縁の膜厚を盛り上げる作
用が働き、結果として膜厚の均一性を高めているともい
える。Strictly speaking, since the water vapor contributes to the increase in the film thickness, it is considered that the amount of water decreases somewhat toward the center of the wafer W. Is higher, and the film thickness at the center originally tends to be larger.Therefore, by increasing the thickness of the film at the periphery, the effect of raising the film thickness at the periphery acts, thereby increasing the uniformity of the film thickness. It can be said that there is.
【0024】反応管3内にて水蒸気の生成が進む現象
は、低温ほど膜厚の面内均一性、面間均一性に与える影
響が大きいので、この実施の形態によれば処理の低温化
に大きく寄与することができる。The phenomenon in which the generation of water vapor proceeds in the reaction tube 3 has a greater effect on the in-plane uniformity and the inter-plane uniformity of the film thickness at lower temperatures. It can greatly contribute.
【0025】以上において本発明で用いる水素と塩素と
を含む化合物のガスとしては塩化水素ガスに限らず、例
えばジクロロシラン(SiH2Cl2)ガスなどであって
もよい。また処理ガスにエネルギーを与えて水分を生成
する工程は加熱部2で加熱することに限られるものでは
なく、例えばマイクロ波などの電力やレーザ光などのエ
ネルギーを与えてガスを活性化させて行う工程などであ
ってもよい。この場合、反応管内に処理ガスを導入した
ときにそれ以上水蒸気が生成されない程度に水蒸気を予
め生成しておくことが好ましい。更に反応容器内でウエ
ハに対して酸化処理を行う装置としてはバッチ処理を行
う装置に限らず例えば枚葉式の熱処理装置であってもよ
い。In the above description, the compound gas containing hydrogen and chlorine used in the present invention is not limited to hydrogen chloride gas, but may be, for example, dichlorosilane (SiH 2 Cl 2) gas. Further, the step of applying energy to the processing gas to generate moisture is not limited to heating by the heating unit 2, and is performed by activating the gas by applying energy such as microwave power or laser light. It may be a process or the like. In this case, it is preferable to generate steam in advance to such an extent that no more steam is generated when the processing gas is introduced into the reaction tube. Further, the apparatus for oxidizing the wafer in the reaction vessel is not limited to the apparatus for performing batch processing, but may be, for example, a single-wafer heat treatment apparatus.
【0026】[0026]
【実施例】既述の実施の形態に係る装置を用いて行った
試験結果について述べる。EXAMPLES The results of tests performed using the apparatus according to the above-described embodiment will be described.
【0027】(実施例1)以下の処理条件により20c
mサイズウエハの表面にシリコン酸化膜を形成した。(Example 1) Under the following processing conditions, 20c
A silicon oxide film was formed on the surface of the m-size wafer.
【0028】反応管内の温度:800℃ ガス流量:O2/HCl=10/0.5(slm) 処理時間:90分 加熱部の温度:1000℃ ウエハの搭載枚数:100枚 反応管内の圧力:−49Pa(−5mmH2O) ウエハボートの上段、中段、下段に位置するウエハのシ
リコン酸化膜の膜厚を測定し、各ウエハの面内均一性に
ついて調べると共に、加熱部のヒータをオフにした状態
で同様の測定を行ったところ図4に示す結果が得られ
た。なお面内均一性とは、膜厚について2×面内平均値
/(最大値−最小値)で表わされる値である。Temperature in reaction tube: 800 ° C. Gas flow rate: O 2 /HCl=10/0.5 (slm) Processing time: 90 minutes Temperature of heating section: 1000 ° C. Number of wafers mounted: 100 Pressure in reaction tube: − 49 Pa (−5 mmH 2 O) The thickness of the silicon oxide film of the wafers located on the upper, middle, and lower stages of the wafer boat is measured, and the in-plane uniformity of each wafer is checked, and the same is performed with the heater of the heating unit turned off. As a result, the results shown in FIG. 4 were obtained. The in-plane uniformity is a value expressed by 2 × in-plane average value / (maximum value−minimum value) of the film thickness.
【0029】この結果から、処理ガスを加熱部で加熱し
てから反応管内に供給することにより、上段側から中段
側にかけての面内膜厚均一性が改善されていることが分
かり、面内(ウエハ間)においても膜厚が揃っているこ
とが分かる。From these results, it was found that the in-plane film thickness uniformity from the upper stage to the middle stage was improved by supplying the processing gas into the reaction tube after heating it in the heating section. It can be seen that the film thicknesses are uniform even between wafers.
【0030】(実施例2)以下の処理条件により20c
mサイズウエハの表面にシリコン酸化膜を形成した。(Embodiment 2) Under the following processing conditions, 20c
A silicon oxide film was formed on the surface of the m-size wafer.
【0031】反応管内の温度:800℃ ガス流量:O2/HCl=10/0.3(slm) 加熱部の温度:1000℃ ウエハの搭載枚数:100枚 反応管内の圧力:−49Pa(−5mmH2O) 酸化処理時間の長さを2分、15分、30分、60分の
4通りに設定し、夫々において中段のウエハの面内膜厚
均一性について調べると共に面間の膜厚の均一性につい
ても調べたところ、図5に示す結果が得られた。ただし
面間均一性とは、ボート上における各ウエハ(実際には
所定枚数のモニタウエハ)の膜厚の平均値を求め、それ
らの平均値の最大の値と最小の値の差をAとし、各ウエ
ハの膜厚平均値の平均の値をBとすると、2×B/Aで
表わされる値である。Temperature in reaction tube: 800 ° C. Gas flow rate: O 2 /HCl=10/0.3 (slm) Temperature of heating section: 1000 ° C. Number of wafers mounted: 100 Pressure in reaction tube: −49 Pa (−5 mmH 2 O) The length of the oxidation treatment time was set to four times of 2 minutes, 15 minutes, 30 minutes, and 60 minutes. In each case, the uniformity of the in-plane film thickness of the middle wafer was examined, and the uniformity of the film thickness between the surfaces was also determined. Upon examination, the results shown in FIG. 5 were obtained. However, the inter-surface uniformity means that the average value of the film thickness of each wafer (actually, a predetermined number of monitor wafers) on the boat is determined, and the difference between the maximum value and the minimum value of the average values is A, Assuming that the average value of the average film thickness of each wafer is B, it is a value represented by 2 × B / A.
【0032】この結果から分かるように酸化処理時間が
長い程、即ち厚膜になる程面内、面間均一性の改善効果
は大きくなっているが、膜厚が3nm程度の薄膜領域で
あっても均一性の改善効果がある。As can be seen from the results, the longer the oxidation treatment time, that is, the thicker the film, the greater the effect of improving the in-plane and inter-plane uniformity. Also has the effect of improving uniformity.
【0033】(実施例3)ウエハを搭載せずにウエハボ
ートを反応管内に搬入すると共に反応管内の温度を80
0℃に設定し、ガス流量をO2/HCl=10/1(s
lm)とし、加熱部の温度を1000℃にした場合とオ
フにした場合の夫々について排気管から排気されるガス
中の水素濃度を調べた。(Embodiment 3) A wafer boat is carried into a reaction tube without mounting a wafer, and the temperature in the reaction tube is set to 80
0 ° C. and the gas flow rate was O2 / HCl = 10/1 (s
lm), and the hydrogen concentration in the gas exhausted from the exhaust pipe was examined when the temperature of the heating unit was set to 1000 ° C. and when the temperature was turned off.
【0034】結果は図6に示す通りである。なお分析開
始時間とは、ガスを流し始めてからの経過時間である。
この結果から加熱部をオンにしたときには水素濃度が少
ないことが分かるが、これはH2+1/2O2→H2Oの
反応が進んでいるため、H2(水素)濃度が少なくなっ
ていると推測される。また加熱部をオフにすると、この
反応が加熱部オンの場合に比べて進んでいないためH2
濃度が高いと考えられる。The results are as shown in FIG. Note that the analysis start time is the elapsed time from the start of gas flow.
From this result, it can be seen that when the heating unit is turned on, the hydrogen concentration is low, but it is presumed that the H2 (hydrogen) concentration is low because the reaction of H2 + 1 / 2O2 → H2O is progressing. Also, when the heating unit is turned off, this reaction does not proceed as compared with the case where the heating unit is turned on, so H2
It is considered that the concentration is high.
【0035】[0035]
【発明の効果】以上のように本発明によれば、被処理体
に対していわゆるドライ酸化を行うにあたって酸化膜の
膜厚について高い均一性が得られ、プロセス温度の低温
化に寄与することができる。As described above, according to the present invention, when performing so-called dry oxidation on an object to be processed, high uniformity of the thickness of the oxide film can be obtained, which contributes to lowering the process temperature. it can.
【図1】本発明の酸化処理方法に用いられる酸化処理装
置の一例を示す縦断側面図である。FIG. 1 is a vertical sectional side view showing an example of an oxidation treatment apparatus used in an oxidation treatment method of the present invention.
【図2】図1の酸化処理装置に用いられる縦型熱処理装
置の外観図である。FIG. 2 is an external view of a vertical heat treatment apparatus used in the oxidation treatment apparatus of FIG.
【図3】図1の酸化処理装置に用いられる加熱部を示す
断面図である。FIG. 3 is a cross-sectional view showing a heating unit used in the oxidation treatment apparatus of FIG.
【図4】ウエハボ−トの位置による膜厚均一性を調べた
結果を示す特性図である。FIG. 4 is a characteristic diagram showing a result of examining film thickness uniformity depending on a position of a wafer boat.
【図5】酸化処理時間と膜厚均一性との関係を調べた結
果を示す特性図である。FIG. 5 is a characteristic diagram showing a result of examining a relationship between an oxidation treatment time and film thickness uniformity.
【図6】処理ガスを加熱部により加熱した場合としない
場合とにおける反応管の排気口側の水素濃度の測定結果
を示す説明図である。FIG. 6 is an explanatory diagram showing the measurement results of the hydrogen concentration on the exhaust port side of the reaction tube when the processing gas is heated by the heating unit and when it is not heated.
【図7】従来の酸化処理方法の問題点を説明するための
説明図である。FIG. 7 is an explanatory diagram for explaining a problem of a conventional oxidation treatment method.
1 縦型熱処理装置 2 加熱部 W 半導体ウエハ 20 透明石英ガラスビ−ズ 21 加熱管 22 ヒ−タ部 23 断熱体 3 熱処理炉 31 反応管 32 ヒ−タ部 4 ウエハボ−ト 40 ボ−トエレベ−タ 44 蓋体 5 ガス供給管 53 酸素ガス源 54 塩化水素ガス源 DESCRIPTION OF SYMBOLS 1 Vertical heat treatment apparatus 2 Heating part W Semiconductor wafer 20 Transparent quartz glass bead 21 Heating tube 22 Heater part 23 Heat insulator 3 Heat treatment furnace 31 Reaction tube 32 Heater part 4 Wafer boat 40 Boat elevator 44 Lid 5 Gas supply pipe 53 Oxygen gas source 54 Hydrogen chloride gas source
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成13年1月17日(2001.1.1
7)[Submission date] January 17, 2001 (2001.1.1)
7)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 勝利 神奈川県津久井郡城山町町屋1丁目2番41 号 東京エレクトロン東北株式会社相模事 業所内 (72)発明者 三浦 一敏 神奈川県津久井郡城山町町屋1丁目2番41 号 東京エレクトロン東北株式会社相模事 業所内 Fターム(参考) 5F045 AA20 AB32 AC11 AC13 BB02 BB03 DP19 EE07 EK06 EK09 5F058 BA20 BC02 BF55 BF62 BG02 BJ01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsushi Ishii 1-2-4, Machiya, Shiroyama-cho, Tsukui-gun, Kanagawa Prefecture Inside the Sagami Office of Tokyo Electron Tohoku Co., Ltd. (72) Inventor Kazutoshi Miura Shiroyama-cho, Tsukui-gun, Kanagawa Prefecture 1-241 Machiya Tokyo Electron Tohoku Co., Ltd. Sagami Office F-term (reference) 5F045 AA20 AB32 AC11 AC13 BB02 BB03 DP19 EE07 EK06 EK09 5F058 BA20 BC02 BF55 BF62 BG02 BJ01
Claims (12)
れた被処理体を反応容器内に搬入すると共に当該反応容
器内を所定の処理温度に加熱し、水素及び塩素を含む化
合物からなるガスと、酸素ガスと、を含む処理ガスを反
応容器内に供給して前記シリコン層を酸化してシリコン
酸化膜を形成する方法において、 前記処理ガスを反応容器内に供給する前に当該処理ガス
にエネルギ−を与えて微量な水分を生成することを特徴
とする請求項1記載の酸化処理方法。1. A gas comprising a compound containing hydrogen and chlorine, wherein the object to be processed having a silicon layer formed at least on its surface is carried into a reaction vessel and the inside of the reaction vessel is heated to a predetermined processing temperature. A method of supplying a processing gas containing oxygen gas into a reaction vessel to oxidize the silicon layer to form a silicon oxide film, wherein the processing gas is supplied with energy before the processing gas is supplied into the reaction vessel. 2. An oxidation treatment method according to claim 1, wherein a small amount of water is generated by applying the water.
反応容器内の処理温度にて水分の生成がそれ以上促進し
ない程度まで水分を生成することを特徴とする請求項1
記載の酸化処理方法。2. The step of applying energy to the processing gas comprises:
2. The method according to claim 1, wherein the water is generated to such an extent that the generation of the water is not further promoted at the processing temperature in the reaction vessel.
The oxidation treatment method described in the above.
処理ガスを加熱する工程であることを特徴とする請求項
1記載の酸化処理方法。3. The step of applying energy to the processing gas comprises:
2. The oxidation treatment method according to claim 1, wherein the treatment gas is heated.
熱する温度は、反応容器内の処理温度よりも高いことを
特徴とする請求項3記載の酸化処理方法。4. The oxidation treatment method according to claim 3, wherein the temperature at which the processing gas is heated before being supplied into the reaction vessel is higher than the processing temperature within the reaction vessel.
熱する工程は、反応容器内にガスを供給するためのガス
供給管に設けられた加熱部内で行われることを特徴とす
る請求項3または4記載の酸化処理方法。5. The step of heating the processing gas before supplying the gas into the reaction vessel is performed in a heating section provided in a gas supply pipe for supplying the gas into the reaction vessel. 5. The oxidation treatment method according to 3 or 4.
は塩化水素ガスであることを特徴とする請求項1ないし
5のいずれかに記載の酸化処理方法。6. The oxidation treatment method according to claim 1, wherein the gas comprising a compound containing hydrogen and chlorine is hydrogen chloride gas.
の被処理体を棚状に保持具に保持して縦型の反応管内に
搬入して行われることを特徴とする請求項1ないし6の
いずれかに記載の酸化処理方法。7. The method according to claim 1, wherein the step of forming the silicon oxide film is performed by holding a large number of objects to be processed in shelves and carrying them into a vertical reaction tube. The oxidation treatment method according to any one of the above.
てシリコン酸化膜を形成する酸化処理装置において、 被処理体を反応容器内に搬入すると共に、反応容器内を
所定の処理温度に加熱し、水素及び塩素を含む化合物か
らなるガスと、酸素ガスと、を含む処理ガスを反応容器
内に供給して被処理体に対して酸化処理を行う熱処理装
置と、 前記反応容器内に処理ガスを供給するガス供給管と、 前記ガス供給管に設けられ、処理ガスを反応容器内に供
給する前に当該処理ガスを加熱して微量な水分を生成す
るための加熱部と、を備えたことを特徴とする酸化処理
装置。8. An oxidation treatment apparatus for oxidizing a silicon layer on a surface portion of an object to form a silicon oxide film, wherein the object is carried into a reaction vessel and the inside of the reaction vessel is heated to a predetermined processing temperature. A heat treatment apparatus for heating and supplying a processing gas containing a gas containing a compound containing hydrogen and chlorine and an oxygen gas to the inside of the reaction vessel to oxidize the object to be processed; A gas supply pipe for supplying a gas, and a heating unit provided on the gas supply pipe for heating the processing gas and generating a small amount of moisture before supplying the processing gas into the reaction vessel. An oxidation treatment apparatus characterized by the above-mentioned.
保持具に保持して縦型の反応容器内に搬入し、反応容器
を取り囲む加熱手段により反応容器内を所定の処理温度
に加熱する縦型熱処理装置であることを特徴とする請求
項8記載の酸化処理装置。9. A heat treatment apparatus holds a large number of objects to be processed in a holding device in a shelf shape and carries them into a vertical reaction vessel, and heats the inside of the reaction vessel to a predetermined processing temperature by heating means surrounding the reaction vessel. 9. The oxidation treatment apparatus according to claim 8, wherein the oxidation treatment apparatus is a vertical heat treatment apparatus for heating.
理ガスを加熱するための加熱室と、この加熱室を囲むよ
うに設けられると共に金属不純物の少ない抵抗発熱体を
セラミックスの中に封入してなるヒ−タ部と、を備えた
ことを特徴とする請求項8または9記載の酸化処理装
置。10. A heating section is provided with a ventilation resistor, a heating chamber for heating a processing gas, and a resistance heating element provided so as to surround the heating chamber and containing few metallic impurities in ceramics. The oxidation treatment apparatus according to claim 8 or 9, further comprising a heater portion formed as described above.
ることを特徴とする請求項10記載の酸化処理装置。11. The oxidation treatment apparatus according to claim 10, wherein the resistance heating element is made of a high-purity carbon material.
とする請求項10または11記載の酸化処理装置。12. The oxidation treatment apparatus according to claim 10, wherein the ceramic is quartz.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000162950A JP3794243B2 (en) | 2000-05-31 | 2000-05-31 | Oxidation processing method and apparatus |
US09/864,374 US6884295B2 (en) | 2000-05-29 | 2001-05-25 | Method of forming oxynitride film or the like and system for carrying out the same |
TW090112693A TW578214B (en) | 2000-05-29 | 2001-05-25 | Method of forming oxynitride film or the like and system for carrying out the same |
KR1020010029396A KR100809759B1 (en) | 2000-05-29 | 2001-05-28 | Method of forming oxynitride film and system for carrying out the same |
EP01113001A EP1160847A3 (en) | 2000-05-29 | 2001-05-28 | Method of forming oxynitride film and system for carrying out the same |
US10/830,317 US7211295B2 (en) | 2000-05-29 | 2004-04-23 | Silicon dioxide film forming method |
US10/830,315 US20040209482A1 (en) | 2000-05-29 | 2004-04-23 | Oxynitride film forming system |
KR1020060104509A KR100687948B1 (en) | 2000-05-29 | 2006-10-26 | Method of forming silicon dioxide film and system for carrying out the same |
KR1020060104499A KR100720777B1 (en) | 2000-05-29 | 2006-10-26 | Method of forming silicon dioxide film and system for carrying out the same |
KR1020060104505A KR100720778B1 (en) | 2000-05-29 | 2006-10-26 | Method of forming silicon nitride film and system for carrying out the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000162950A JP3794243B2 (en) | 2000-05-31 | 2000-05-31 | Oxidation processing method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001345321A true JP2001345321A (en) | 2001-12-14 |
JP3794243B2 JP3794243B2 (en) | 2006-07-05 |
Family
ID=18666785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000162950A Expired - Fee Related JP3794243B2 (en) | 2000-05-29 | 2000-05-31 | Oxidation processing method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3794243B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005210038A (en) * | 2003-12-26 | 2005-08-04 | Renesas Technology Corp | Fabrication method of semiconductor integrated circuit device |
JP2007081147A (en) * | 2005-09-14 | 2007-03-29 | Hitachi Kokusai Electric Inc | Manufacturing method of semiconductor device |
JP2007194668A (en) * | 2007-04-12 | 2007-08-02 | Hitachi Kokusai Electric Inc | Substrate processing device |
JP2009188282A (en) * | 2008-02-08 | 2009-08-20 | National Institute Of Advanced Industrial & Technology | Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same |
US8261692B2 (en) | 2002-04-05 | 2012-09-11 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus and reaction container |
JP2013197421A (en) * | 2012-03-21 | 2013-09-30 | Hitachi Kokusai Electric Inc | Substrate processing apparatus |
US8822350B2 (en) | 2010-11-19 | 2014-09-02 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, substrate processing method and substrate processing apparatus |
US9006116B2 (en) | 2011-06-03 | 2015-04-14 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, substrate processing method and substrate processing apparatus |
-
2000
- 2000-05-31 JP JP2000162950A patent/JP3794243B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8261692B2 (en) | 2002-04-05 | 2012-09-11 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus and reaction container |
JP2005210038A (en) * | 2003-12-26 | 2005-08-04 | Renesas Technology Corp | Fabrication method of semiconductor integrated circuit device |
JP2007081147A (en) * | 2005-09-14 | 2007-03-29 | Hitachi Kokusai Electric Inc | Manufacturing method of semiconductor device |
JP2007194668A (en) * | 2007-04-12 | 2007-08-02 | Hitachi Kokusai Electric Inc | Substrate processing device |
JP4746581B2 (en) * | 2007-04-12 | 2011-08-10 | 株式会社日立国際電気 | Substrate processing equipment |
JP2009188282A (en) * | 2008-02-08 | 2009-08-20 | National Institute Of Advanced Industrial & Technology | Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same |
US8822350B2 (en) | 2010-11-19 | 2014-09-02 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, substrate processing method and substrate processing apparatus |
US9006116B2 (en) | 2011-06-03 | 2015-04-14 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, substrate processing method and substrate processing apparatus |
JP2013197421A (en) * | 2012-03-21 | 2013-09-30 | Hitachi Kokusai Electric Inc | Substrate processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3794243B2 (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100814594B1 (en) | System and method for heat treating semiconductor | |
US6540509B2 (en) | Heat treatment system and method | |
TW539842B (en) | System and method of fast ambient switching for rapid thermal processing | |
JP4456533B2 (en) | Silicon oxide film forming method, silicon oxide film forming apparatus, and program | |
TWI409879B (en) | Oxidation method and apparatus for semiconductor process | |
JP3965167B2 (en) | Heat treatment method and heat treatment apparatus | |
JP5692850B2 (en) | Thin film forming method, thin film forming apparatus, and program | |
JP2001345321A (en) | Oxidation treatment method and device | |
JP2014209558A (en) | Method and device for forming silicon oxide film | |
JP2008047588A (en) | Substrate processing apparatus and substrate processing method | |
JPS6224630A (en) | Formation of thermal oxidation film and device therefor | |
JP3625741B2 (en) | Heat treatment apparatus and method | |
JP2009016426A (en) | Manufacturing method for semiconductor device, and board processing apparatus | |
CN111902918A (en) | Method for manufacturing semiconductor device, substrate processing apparatus, and program | |
JP3516635B2 (en) | Heat treatment equipment | |
JP2013084966A (en) | Manufacturing method of semiconductor device, cleaning method, and substrate processing apparatus | |
JP2007234935A (en) | Manufacturing method of semiconductor device, and substrate-treating device | |
JP2693465B2 (en) | Semiconductor wafer processing equipment | |
JP3552037B2 (en) | Method and apparatus for forming silicon oxide film | |
JP2004363499A (en) | Substrate holding means | |
JPH11121443A (en) | Equipment for film deposition and film deposition thereby | |
JP2015080001A (en) | Thin film formation method, thin film formation device, and program | |
JP2007234937A (en) | Manufacturing method of semiconductor device, and substrate-treating device | |
JPH05152310A (en) | Semiconductor manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060404 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |