JP2009188282A - Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same - Google Patents

Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same Download PDF

Info

Publication number
JP2009188282A
JP2009188282A JP2008028337A JP2008028337A JP2009188282A JP 2009188282 A JP2009188282 A JP 2009188282A JP 2008028337 A JP2008028337 A JP 2008028337A JP 2008028337 A JP2008028337 A JP 2008028337A JP 2009188282 A JP2009188282 A JP 2009188282A
Authority
JP
Japan
Prior art keywords
oxide film
density
film
silicon substrate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028337A
Other languages
Japanese (ja)
Other versions
JP5246846B2 (en
Inventor
Atsushi Fukano
敦之 深野
Hiroyuki Oyanagi
宏之 大柳
Hideki Hashimoto
秀樹 橋本
Akio Sakai
昭夫 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008028337A priority Critical patent/JP5246846B2/en
Publication of JP2009188282A publication Critical patent/JP2009188282A/en
Application granted granted Critical
Publication of JP5246846B2 publication Critical patent/JP5246846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a high-density silicon oxide film, which suppresses the occurrence of a sub-oxide layer as much as possible without damaging a surface of a film formation substrate and improves insulating characteristics of an oxide film furthermore to make the oxide film thin, and a silicon substrate and a semiconductor device which include the high-density silicon oxide film manufactured by the manufacturing method. <P>SOLUTION: A silicon substrate 1 is heated to an arbitrary temperature in a range of 300 to 430°C under one atmosphere oxygen pressure, and an oxide film 3 is formed on a surface of the silicon substrate 1 while irradiating the silicon substrate with ultraviolet rays at ≤222 nm and making oxygen gas flow to the surface of the silicon substrate at ≥100 ml/min in terms of oxygen gas flow rate at 20°C in a flowmeter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シリコン基板上に光酸化法により形成された高密度シリコン酸化膜の製造方法およびその製造方法により製造する高密度シリコン酸化膜を有するシリコン基板、半導体デバイスに関するものである。   The present invention relates to a method for manufacturing a high-density silicon oxide film formed on a silicon substrate by a photo-oxidation method, a silicon substrate having a high-density silicon oxide film manufactured by the manufacturing method, and a semiconductor device.

半導体デバイスの分野では、早いスピードで全体の微細化が図られている。素子のゲート絶縁膜も一層の薄膜化が要求され、薄くてより絶縁耐圧の高いゲート絶縁膜を少ない処理時間で信頼性高く形成することが緊急の課題となっている。
酸化膜の膜厚を薄くしながら絶縁耐圧を大きくすることは、折り合いが難しい。
知られているように、熱酸化SiO膜は、Si−SiO界面に、酸素が不足した結合状態であるサブオキサイド〔Si、但しx=1,y=2以外〕層が形成される。
In the field of semiconductor devices, the entire miniaturization is attempted at a high speed. The gate insulating film of the element is also required to be thinner, and it is an urgent task to form a thin gate insulating film with a higher withstand voltage with high reliability in a short processing time.
Increasing the dielectric strength while reducing the thickness of the oxide film is difficult to compromise.
As is known, in the thermally oxidized SiO 2 film, a suboxide [Si x O y , except x = 1, y = 2 other than that] is formed in a bonded state in which oxygen is insufficient at the Si-SiO 2 interface. Is done.

熱酸化膜ではおおよそ1−1.5nmの膜厚のサブオキサイド層が形成されることが知られており、薄膜化に伴いシリコン酸化膜の絶縁特性を悪化させる原因になっていた。
酸化膜の絶縁特性はサブオキサイド層(Si層)を含む酸化膜の膜厚とその絶縁耐圧に依存している。
サブオキサイド層(Si層)の膜厚は、SiOゲート絶縁膜の実効的な膜厚を決定するキーファクタとなり、製造方法の選択によるシリコン基板の処理後の表面形状および酸化膜の形成方法に依存する。換言すれば、処理後のシリコン基板表面の粗さを抑え、酸化膜の膜密度を高めながら均質化を図ることにある。
It has been known that a suboxide layer having a thickness of about 1 to 1.5 nm is formed in the thermal oxide film, which has been a cause of deteriorating the insulating characteristics of the silicon oxide film as the film thickness is reduced.
The insulating characteristics of the oxide film depend on the thickness of the oxide film including the suboxide layer (Si x O y layer) and its withstand voltage.
The film thickness of the suboxide layer (Si x O y layer) is a key factor that determines the effective film thickness of the SiO 2 gate insulating film, and the surface shape after the treatment of the silicon substrate by the selection of the manufacturing method and the oxide film Depends on the formation method. In other words, the surface roughness of the silicon substrate after processing is suppressed, and homogenization is achieved while increasing the film density of the oxide film.

サブオキサイド層(Si層)の膜厚を減少させる試みは、高速熱酸化法、プラズマ、オゾンおよび光による方法でも行われている。特に、プラズマ法で、酸化膜密度を2.55g/cm〜2.60g/cm程度の大きな値にすることは、下記特許文献1に記載されている。
しかし、この特許文献1では、Dry酸化膜2.55g/cm、Wet酸化膜2.60g/cmとなっており、同文献1中に記載されている熱酸化膜の2.55−2.60g/cmの域を超えていない。すなわち、特許文献1に記載されているプラズマ法での、酸化膜密度を2.55g/cm〜2.60g/cm程度にする事項は、見かけ上は大きな値を示すが、文献1内に記載されている熱酸化法での酸化膜密度と同じ数値であることから、何ら熱酸化膜法での酸化膜密度から改善されていない。
Attempts to reduce the film thickness of the suboxide layer (Si x O y layer) have also been made by a rapid thermal oxidation method, a method using plasma, ozone and light. In particular, Patent Document 1 below describes that the oxide film density is set to a large value of about 2.55 g / cm 3 to 2.60 g / cm 3 by a plasma method.
However, in Patent Document 1, the Dry oxide film 2.55 g / cm 3, Wet oxide 2.60 g / cm 3 and has been, the thermal oxide film described in one same document 2.55-2 Not exceeding 60 g / cm 3 . That is, the matter that the oxide film density is about 2.55 g / cm 3 to 2.60 g / cm 3 in the plasma method described in Patent Document 1 apparently shows a large value. Therefore, it is not improved from the oxide film density by the thermal oxide film method.

後記する本発明におけるシリコン酸化膜の密度(126nm照射下の基板温度300−430℃で2.26−2.32g/cm, 172nm照射下の基板温度430℃で2.28g/cm, 222nm照射下の390℃で2.28g/cm)はいずれも熱酸化膜密度(2.24 − 2.20 g/cm)を超越している。つまり、特許文献1で提案されている密度は数字上本発明の酸化膜密度を陵駕しているが、本発明で基準にしている熱酸化膜の密度を元に、文献1の酸化膜密度は文献1に記載されている熱酸化膜密度と同一であることから類推すると、特許文献1で作成した酸化膜は本発明の酸化膜密度より低いことになる。本特許のシリコン酸化膜密度はX線の反射率をParratt法により膜密度に換算した。本特許におけるDryおよびWet熱酸化の密度はApplied Surface Sciencse 172(2001)P307を基にし、本発明に関して示した試料は同じ方法により測定している。 The density of a silicon oxide film in the present invention to be described later (2.26-2.32 g / cm 3 at a substrate temperature of 300-430 ° C. under irradiation of 126 nm, 2.28 g / cm 3 at a substrate temperature of 430 ° C. at 222 nm), 222 nm 2.28 g / cm 3) at 390 ° C. under irradiation thermal oxide film density none (2.24 - transcends 2.20 g / cm 3). That is, the density proposed in Patent Document 1 is numerically inferior to the oxide film density of the present invention, but the oxide film density of Document 1 is based on the density of the thermal oxide film used as a reference in the present invention. Is the same as the thermal oxide film density described in Document 1, the oxide film prepared in Patent Document 1 is lower than the oxide film density of the present invention. The silicon oxide film density in this patent was converted from the X-ray reflectivity to the film density by the Parratt method. The density of Dry and Wet thermal oxidation in this patent is based on Applied Surface Science 172 (2001) P307, and the samples shown for this invention are measured by the same method.

また、高速熱酸化法、プラズマ法およびオゾン法によるSiO膜の成長は、シリコン基板表面にダメージを与え、基板−シリコン酸化膜界面に欠陥を発生させる。この欠陥のため、膜の均質化が阻害され、絶縁耐圧が低下し、従って、サブオキサイド層(Si層)上に積む酸化膜の膜厚を薄くすることができなくなる。さらに、サブオキサイド層(Si層)とその上の酸化膜との界面も不均質になり、酸化膜の特性もこのサブオキサイド層(Si層)の欠陥を引きずることになり、酸化膜厚4nm以下の薄膜状態では絶縁耐圧を高い値に保持することができなくなる。 In addition, the growth of the SiO 2 film by the rapid thermal oxidation method, the plasma method, and the ozone method damages the silicon substrate surface and causes defects at the substrate-silicon oxide film interface. This flaw is inhibited homogenization of film, withstand voltage is lowered, therefore, it is impossible to reduce the thickness in the oxide film to gain on the suboxide layer (Si x O y layer). Furthermore, the interface between the suboxide layer (Si x O y layer) and the oxide film on the sub oxide layer (Si x O y layer) becomes inhomogeneous, and the characteristics of the oxide film also drag the defects of the sub oxide layer (Si x O y layer). In a thin film state with an oxide film thickness of 4 nm or less, it is impossible to maintain a high withstand voltage.

一方、酸素に紫外線を照射して酸素活性種を発生させてシリコンを酸化させる光酸化法は基板表面にダメージを与えることはないが、光酸化法は成膜速度が著しく遅い為、従来は光酸化法に係る研究・開発は成長速度の向上を目指して行われていた(例えば非特許文献1、特許文献2参照)。しかし、酸素ガス中に異種ガスを混合すると膜堆積速度および膜厚の向上が見られるが、絶縁性が低い(非特許文献2参照)。絶縁性と密度は関連があることから、1気圧下で純酸素ガスを使用して酸化することも酸化膜の高密度化に有利に作用している。   On the other hand, the photo-oxidation method, in which oxygen is irradiated with ultraviolet rays to generate oxygen active species to oxidize silicon, does not damage the substrate surface. Research and development related to the oxidation method has been performed with the aim of improving the growth rate (see, for example, Non-Patent Document 1 and Patent Document 2). However, when different gases are mixed in oxygen gas, the film deposition rate and film thickness are improved, but the insulation is low (see Non-Patent Document 2). Since insulation and density are related, oxidation using pure oxygen gas at 1 atm also has an advantageous effect on increasing the density of the oxide film.

Applied Surface Science 168(2000)PP.288−291Applied Surface Science 168 (2000) PP. 288-291 Applied Surface Science 186(2002)64.Applied Surface Science 186 (2002) 64. 特開2000−235975号公報JP 2000-235975 A 特開2003−224117号公報JP 2003-224117 A

上で述べたように、そのアプローチが従来の成長速度を向上させようとする光酸化法では、成膜速度を短くすると共に、製法の特徴である、基板表面にダメージを与えずに、酸化膜の絶縁特性を向上させ、酸化膜を薄膜化させると共にサブオキサイド層の発生を抑制できるようにする要請に応え得る信頼性の高いシリコン酸化膜を形成することが困難であった。   As described above, in the photo-oxidation method in which the approach is to improve the conventional growth rate, the film formation rate is shortened, and the oxide film is formed without damaging the substrate surface, which is a feature of the manufacturing method. It has been difficult to form a highly reliable silicon oxide film that can meet the demands of improving the insulating characteristics of the film, reducing the thickness of the oxide film, and suppressing the generation of the suboxide layer.

本願発明は、この点に鑑みてなされたものであって、その目的は、成膜基板表面にダメージを与えず、高密度化することで絶縁特性を向上させるとともにサブオキサイド層の発生を極力抑制し、酸化膜の絶縁特性をより向上させて酸化膜を薄膜化させることができる高密度シリコン酸化膜の製造方法およびその製造方法により製造する高密度シリコン酸化膜を有するシリコン基板、半導体デバイスを提供することにある。   The present invention has been made in view of this point, and its purpose is not to damage the surface of the film formation substrate, but to improve the insulating properties by increasing the density and to suppress the generation of the suboxide layer as much as possible. A high-density silicon oxide film manufacturing method capable of reducing the thickness of the oxide film by further improving the insulating properties of the oxide film, and a silicon substrate having a high-density silicon oxide film manufactured by the manufacturing method and a semiconductor device There is to do.

上記目的を達成するため、種々の解決手段を組み合わせて採用する。
本発明の光酸化法は、基本的な処理として、酸素に紫外線を照射して酸素活性種を発生させてシリコンを酸化させる処理工程をとる。この光酸化法は、基板表面にダメージを与えることがないのはもっともだが、従来課題となっていた成膜速度を、主に、シリコン基板の加熱温度、紫外線の使用波長、および酸素ガスの吹き付け流量に係る条件を選定して向上させるようにした処理工程をとる。
In order to achieve the above object, various solutions are employed in combination.
In the photo-oxidation method of the present invention, as a basic treatment, oxygen is irradiated with ultraviolet rays to generate oxygen active species to oxidize silicon. Although this photo-oxidation method does not damage the substrate surface, the film formation speed, which has been a problem in the past, is mainly affected by the heating temperature of the silicon substrate, the wavelength used for ultraviolet rays, and the blowing of oxygen gas. A processing step in which conditions related to the flow rate are selected and improved is taken.

具体的には以下のようになる。
本発明は、1気圧酸素雰囲気中で、300℃から430℃の範囲内の任意の温度にシリコン基板を加熱し、酸素に222nm以下の紫外線を照射した状態で、所定流量の酸素ガスを基板表面に流しながら酸化膜(SiO)を形成する。
重要なのは、加熱したシリコン基板の表面に、酸化膜(SiO)を高密度化するために、有る程度の酸素ガスを流さなければならないことである。
Specifically:
In the present invention, a silicon substrate is heated to an arbitrary temperature within a range of 300 ° C. to 430 ° C. in an atmosphere of 1 atm oxygen, and oxygen gas at a predetermined flow rate is supplied to the substrate surface in a state where ultraviolet rays of 222 nm or less are irradiated to oxygen. An oxide film (SiO 2 ) is formed while flowing through the substrate.
What is important is that a certain amount of oxygen gas has to flow on the surface of the heated silicon substrate in order to increase the density of the oxide film (SiO 2 ).

基板表面に吹き付ける酸素ガスの流量は、シリコン基板の成長層に、フローメーターにおける20℃での酸素ガス流量換算で100ml/min(秒)以上流す。このとき、シリコン基板の表面温度が10℃低いと0.01g/cm以上密度が低くなるため、シリコン基板の表面温度が下がらないようにシリコン基板を加熱・保温する必要がある。今問題となっている酸化膜の膜密度は、後記するが、2.27g/cm〜2.32g/cmの範囲の値になり、0.05g/cmの間隔しかなく、10℃で0.01g/cm以上の密度低下は避けなければならない重要な問題を提起することになる。 The flow rate of oxygen gas sprayed on the substrate surface is 100 ml / min (seconds) or more in the growth layer of the silicon substrate in terms of oxygen gas flow rate at 20 ° C. in a flow meter. At this time, if the surface temperature of the silicon substrate is lower by 10 ° C., the density is lowered by 0.01 g / cm 3 or more. Therefore, it is necessary to heat and keep the silicon substrate so that the surface temperature of the silicon substrate does not decrease. Film density of the oxide film which has now become a problem, but will be described later, a value in the range of 2.27g / cm 3 ~2.32g / cm 3 , there is only distance 0.05g / cm 3, 10 ℃ Therefore, a decrease in density of 0.01 g / cm 3 or more presents an important problem that must be avoided.

酸化膜(SiO)を高密度化するには、基板温度および酸素流量が非常に重要な要素になる。
さらには、酸素ガスを吹き付けている間、酸素ガスを流すことにより基板の表面温度が下がらないように、酸素ガスを保温または過熱する。
もし、従来のように酸素ガスを1気圧で封じ込めた状態で酸化すると、本発明のように酸素を流して酸化した場合より0.1g/cm以上密度が低くなる。このことからも、シリコン基板の表面温度および酸素ガスの吹き付け流量のコントロールが酸化膜(SiO)の高密度化の重要なファクターになっている。
In order to increase the density of the oxide film (SiO 2 ), the substrate temperature and the oxygen flow rate are very important factors.
Further, while the oxygen gas is being blown, the oxygen gas is kept warm or heated so that the surface temperature of the substrate does not drop by flowing the oxygen gas.
If the oxidation is performed in a state in which oxygen gas is confined at 1 atm as in the prior art, the density is lower by 0.1 g / cm 3 or more than the case of oxidation by flowing oxygen as in the present invention. For this reason as well, the control of the surface temperature of the silicon substrate and the flow rate of the oxygen gas spray is an important factor for increasing the density of the oxide film (SiO 2 ).

以上の条件を考慮すると、この酸素ガスの流量は、吹き付ける酸素ガスの加熱・保温温度が、シリコン基板の加熱温度である300℃から430℃の範囲内の任意の温度Aと同じに設定できるときには、100ml/min以上の任意の流量値に設定できる。
さらには、吹き付ける酸素ガスの加熱・保温温度が、シリコン基板の加熱温度である430℃を越える場合には、両者の温度差が10℃以内で有れば、100ml/min以上の流量値ではあるが、前記温度差が0℃に近づくような流量に絞って製造することも可能である。
In consideration of the above conditions, the flow rate of the oxygen gas can be set to the same value as the arbitrary temperature A within the range of 300 ° C. to 430 ° C. that is the heating temperature of the silicon substrate when the oxygen gas is heated and kept warm. , And can be set to an arbitrary flow rate value of 100 ml / min or more.
Furthermore, when the heating / kneading temperature of the oxygen gas to be blown exceeds 430 ° C., which is the heating temperature of the silicon substrate, the flow rate value is 100 ml / min or more if the temperature difference between the two is within 10 ° C. However, it is also possible to manufacture by restricting the flow rate so that the temperature difference approaches 0 ° C.

上記方法を用いれば、本発明のシリコン基板は、ダメージを有しない基板表面を備えた基板上に、膜厚が0.1nm以下のサブオキサイド層(Si層、但しx=1,y=2以外)を介して膜密度が2.27g/cm以上の高密度の酸化膜を設けた構成となる。 When the above method is used, the silicon substrate of the present invention is formed on a substrate having a substrate surface having no damage on a suboxide layer having a film thickness of 0.1 nm or less (Si x O y layer, where x = 1, y In other words, a high-density oxide film having a film density of 2.27 g / cm 3 or more is provided.

上記製造方法を適用して製造するシリコン基板は、シリコン基板上に、上記高密度シリコン酸化膜の製造方法により製造した酸化膜を設けて構成する。
さらに、半導体デバイスは、上記製造方法を適用して製造するシリコン基板を備える。この半導体デバイスは、半導体素子単体およびそれらを多数組み込んだICやLSI等を意味する。
A silicon substrate manufactured by applying the above manufacturing method is configured by providing an oxide film manufactured by the above-described high-density silicon oxide film manufacturing method on a silicon substrate.
Furthermore, the semiconductor device includes a silicon substrate manufactured by applying the above manufacturing method. This semiconductor device means a single semiconductor element or an IC or LSI in which a large number of them are incorporated.

従来の熱酸化法や従来の光酸化法により形成されたシリコン酸化膜では、SiO、SiO、Siを含むサブオキサイド層が数nmの厚さに形成され、またSiOの組成と考えられるシリコン酸化膜も密度が低く(ウエット酸化で2.20g/cm、ドライ酸化で2.24g/cm程度)なっている。このようなシリコン酸化膜では、リーク(漏洩)電流が大きな値を採り、また、絶縁耐圧も低くなる。
シリコン酸化膜は、Si−Oボンドが環状に接続した複数種の環体によって形成されると考えられるが、低密度の環体、換言すると大きなスペースを占める環体が大量に含まれていることにより、従来のシリコン酸化膜では高密度化ができなかった。
In a silicon oxide film formed by a conventional thermal oxidation method or a conventional photo-oxidation method, a suboxide layer containing Si 2 O, SiO, Si 2 O 3 is formed to a thickness of several nm, and the composition of SiO 2 silicon oxide film is also conceivable density is lower (2.20 g / cm 3 by wet oxidation, 2.24 g / cm 3 order by dry oxidation) and. In such a silicon oxide film, the leakage (leakage) current takes a large value, and the withstand voltage is also lowered.
The silicon oxide film is thought to be formed by multiple types of rings with Si-O bonds connected in a ring, but it contains a large amount of low-density rings, in other words, rings that occupy a large space. Therefore, the conventional silicon oxide film cannot be densified.

一方、本願発明の高密度シリコン酸化膜の製造方法およびその製造方法により製造する高密度シリコン酸化膜を有するシリコン基板、半導体デバイスは、2.27g/cm以上、より好ましくは2.30g/cm以上に高密度化されており、より小さな環体の詰め込まれた(Si層、但しx=1,y=2以外)シリコン酸化膜となる。また、界面に形成されるサブオキサイド層の膜厚も数原子層以下に薄膜化されている。このシリコン酸化膜によれば、高絶縁耐圧、低リーク電流特性を実現することができ、このシリコン酸化膜を用いたシリコン基板は、主には、照射する紫外線の波長を適切な波長とし、基板の加熱温度と吹き付け酸素ガスの加熱・保温温度を同じに制御して製造するため、基板表面が粗くなるのを抑制してサブオキサイド層の生成を抑制し、その層の上の酸化膜の膜密度を高い値にすることができる。 On the other hand, the manufacturing method of the high-density silicon oxide film of the present invention and the silicon substrate and semiconductor device having the high-density silicon oxide film manufactured by the manufacturing method are 2.27 g / cm 3 or more, more preferably 2.30 g / cm. The silicon oxide film has a higher density than 3 and is packed with a smaller ring (Si x O y layer, except x = 1 and y = 2). Also, the thickness of the suboxide layer formed at the interface is reduced to several atomic layers or less. According to this silicon oxide film, high withstand voltage and low leakage current characteristics can be realized. A silicon substrate using this silicon oxide film mainly has an appropriate wavelength of ultraviolet light to be irradiated. Since the heating temperature and the heating / retaining temperature of the sprayed oxygen gas are controlled to be the same, the surface of the substrate is prevented from becoming rough and the formation of the suboxide layer is suppressed, and the oxide film on the layer is suppressed. The density can be increased.

これにより、本発明の高密度シリコン酸化膜の製造方法およびその製造方法により製造する高密度シリコン酸化膜を有するシリコン基板、半導体デバイスは、成膜基板表面にダメージを与えず、サブオキサイド層の発生を極力抑制し、酸化膜の絶縁特性をより向上させて酸化膜を薄膜化させることができる。   As a result, the method for producing a high-density silicon oxide film of the present invention and the silicon substrate and semiconductor device having the high-density silicon oxide film produced by the production method do not damage the surface of the film-forming substrate, and a suboxide layer is generated. As much as possible, the insulating properties of the oxide film can be further improved, and the oxide film can be made thinner.

本発明は以下のような特徴を有する。
本発明のシリコン基板の製造方法は、基本的に、
(a)シリコン基板を1気圧酸素雰囲気中に配置し、
(b)基板を300℃から430℃の範囲内の任意の温度に加熱しながら、
(c)基板に222nm以下の紫外線を照射し、
(d)基板表面の成長層に、酸素ガスをフローメーターによる20℃での酸素ガス流量換算で100ml/min以上流す工程
を有する。
The present invention has the following features.
The method for producing a silicon substrate of the present invention basically includes:
(A) A silicon substrate is placed in a 1 atmosphere oxygen atmosphere,
(B) heating the substrate to any temperature within the range of 300 ° C. to 430 ° C .;
(C) Irradiating the substrate with ultraviolet rays of 222 nm or less,
(D) A step of flowing oxygen gas through the growth layer on the substrate surface at a rate of 100 ml / min or more in terms of an oxygen gas flow rate at 20 ° C. using a flow meter.

上記製造方法により、基板表面にダメージを与えずに、酸化膜の膜密度を向上して絶縁特性を向上させ、酸化膜を薄膜化させると共にサブオキサイド層の発生を抑制できるシリコン酸化膜を形成することができる。
製造時、酸素をある程度流さないと、SiOは高密度化しない。その際、基板の表面温度が10℃低いと0.01g/cm以上密度が低くなるため、基板表面温度を一定にする。もし従来のように酸素ガスを1気圧で封じ込めた状態で酸化すると、本発明のように酸素を流して酸化した場合より0.1g/cm以上膜密度が低くなる。
By the above manufacturing method, without damaging the substrate surface, the film density of the oxide film is improved to improve the insulating characteristics, the oxide film is thinned, and the silicon oxide film that can suppress the generation of the suboxide layer is formed. be able to.
During production, unless oxygen is allowed to flow to some extent, SiO 2 is not densified. At that time, if the surface temperature of the substrate is lower by 10 ° C., the density becomes lower than 0.01 g / cm 3, so that the substrate surface temperature is kept constant. If the oxidation is performed in a state where oxygen gas is contained at 1 atm as in the prior art, the film density is lower by 0.1 g / cm 3 or more than the case where the oxidation is performed by flowing oxygen as in the present invention.

さらに、
(e)上記工程(d)において基板表面に吹き付ける酸素ガスを加熱・保温する工程を付加する。
この工程を付加することにより、酸素ガスを流すことがあっても基板の表面温度が下がらないようして、酸化膜の成長を良好に維持することができるようにする。
吹き付け用の酸素ガスは、ある程度流さないと、酸化膜(SiO)を高密度化しない。
further,
(E) A step of heating and keeping the oxygen gas sprayed on the substrate surface in the step (d) is added.
By adding this step, the growth of the oxide film can be satisfactorily maintained so that the surface temperature of the substrate does not decrease even when oxygen gas is allowed to flow.
Unless oxygen gas for spraying is flowed to some extent, the oxide film (SiO 2 ) is not densified.

酸素ガスの流量は、吹き付ける酸素ガスの加熱・保温温度が、シリコン基板の加熱温度である300℃から430℃の範囲内の任意の温度と同じに設定できるときには、100ml/min以上の任意の流量値に設定できる。
さらには、吹き付ける酸素ガスの加熱・保温温度が、シリコン基板の加熱温度である430℃を越える場合には、両者の温度差が10℃以内で有れば、100ml/min以上の任意の流量値に設定することも可能である。
The flow rate of oxygen gas can be set to any flow rate of 100 ml / min or more when the heating / retaining temperature of the oxygen gas to be sprayed can be set to be the same as any temperature within the range of 300 ° C. to 430 ° C. which is the heating temperature of the silicon substrate. Can be set to a value.
Furthermore, when the heating / keeping temperature of the oxygen gas to be blown exceeds 430 ° C. which is the heating temperature of the silicon substrate, an arbitrary flow rate value of 100 ml / min or more is possible if the temperature difference between the two is within 10 ° C. It is also possible to set to.

製造時、222nm以下の紫外線照射下で、1気圧酸素中に300℃から430℃にシリコン基板を加熱すると、熱酸化SiO膜の密度2.24〜2.26g/cmより高くなる知見は既に得ている。
現状での最大の酸化膜の膜密度は、126nmの紫外線を照射し、基板加熱温度385℃にすることで、2.31g/cmの密度が得られた。
At the time of manufacture, when a silicon substrate is heated from 300 ° C. to 430 ° C. in 1 atmosphere oxygen under ultraviolet irradiation of 222 nm or less, the knowledge that the density of the thermally oxidized SiO 2 film is higher than 2.24 to 2.26 g / cm 3 is Already got.
The current maximum oxide film density was 2.31 g / cm 3 when irradiated with ultraviolet rays of 126 nm and a substrate heating temperature of 385 ° C.

酸化膜(SiO)を高密度化するには、シリコン基板の加熱温度、紫外線の照射波長および吹き付ける酸素ガスの流量が非常に重要な要素となる。
酸素ガスは、シリコン基板の表面の成長層に、フローメーターにおける20℃での酸素ガス流量換算で100ml/min以上流すことが必要であるが、酸素ガスを流すことにより基板の表面温度が下がらないように、酸素ガスを加熱・保温する。
吹き付け時、シリコン基板の表面温度が予定の温度より10℃低いと、0.01g/cm以上膜密度が低くなるため、基板表面温度を一定にする必要がある。
従来のように酸素ガスを1気圧で封じ込めた状態で酸化すると、本願発明のように酸素を流して酸化した場合より0.1g/cm以上密度が低くなる。
In order to increase the density of the oxide film (SiO 2 ), the heating temperature of the silicon substrate, the irradiation wavelength of the ultraviolet rays, and the flow rate of the oxygen gas to be blown are very important factors.
The oxygen gas needs to flow through the growth layer on the surface of the silicon substrate at a rate of 100 ml / min or more in terms of the oxygen gas flow rate at 20 ° C. in a flow meter. However, the oxygen substrate does not lower the surface temperature of the substrate. As such, oxygen gas is heated and kept warm.
At the time of spraying, if the surface temperature of the silicon substrate is 10 ° C. lower than the predetermined temperature, the film density becomes 0.01 g / cm 3 or more, so the substrate surface temperature needs to be constant.
When oxidation is performed in a state where oxygen gas is contained at 1 atm as in the prior art, the density is lower by 0.1 g / cm 3 or more than when oxidation is performed by flowing oxygen as in the present invention.

以上のことからも、基板表面温度、紫外線の波長および酸素ガス流量のコントロールが酸化膜(SiO)の高密度化およびサブオキサイド層の減少に重要なファクターになっていることがわかる。
吹き付け酸素ガスの流量を、フローメーターにおける20℃での酸素ガス流量換算で100ml/minとしたとき、126nm紫外線照射における酸化膜(SiO)密度は、基板温度350℃で、2.30g/cm、390℃で2.29g/cm、430℃で、2.27g/cm、450℃で、2.24g/cmであった。
比較のために従来例を説明すると、通常の熱酸化SiOの密度は、ドライ酸化で2.24g/cm、ウェット酸化で2.20g/cmである。
From the above, it can be seen that the control of the substrate surface temperature, the wavelength of ultraviolet rays, and the flow rate of oxygen gas are important factors for increasing the density of the oxide film (SiO 2 ) and reducing the suboxide layer.
When the flow rate of the blowing oxygen gas is 100 ml / min in terms of the oxygen gas flow rate at 20 ° C. in a flow meter, the oxide film (SiO 2 ) density at 126 nm ultraviolet irradiation is 2.30 g / cm at a substrate temperature of 350 ° C. 3, 390 2.29 g / cm 3, 430 ° C. at ° C., at 2.27 g / cm 3, 450 ° C., was 2.24 g / cm 3.
To explain a conventional example for comparison, the density of conventional thermal oxidation SiO 2, 2.24g / cm 3 in dry oxidation, a 2.20 g / cm 3 by wet oxidation.

次に、酸化膜(SiO)の高密度化が絶縁特性を向上させるデータを示す。
2000年にJ.W.McPhersonと、R.B.Khamankarが測定した熱酸化SiO薄膜の電流−電圧特性と、本発明に係る高密度化した酸化膜(SiO)(密度2.27g/cm、2.31g/cm)膜を比較すると下記表1のような結果が得られる。

Figure 2009188282
Next, data for increasing the density of the oxide film (SiO 2 ) will improve the insulating characteristics.
In 2000, J.M. W. McPherson and R.M. B. Comparing the current-voltage characteristics of the thermally oxidized SiO 2 thin film measured by Khamankar and the oxide film (SiO 2 ) (density 2.27 g / cm 3 , 2.31 g / cm 3 ) according to the present invention The results shown in Table 1 below are obtained.
Figure 2009188282

表1の特性を示すグラフを図3に示す。
表1のデータを得るための測定手段を図10に示す。
図3中の符号Aは表1の電流密度(A/cm)膜密度2.27g/cm(膜厚3.0nm)の特性を示し、図3中の符号Bは表1の電流密度(A/cm)膜密度2.31g/cm(膜厚3.5nm)の特性を示す。図3の横軸は電場(MV/cm)、縦軸は電流密度(A/cm)である。図3中のその他の特性は参考までに示す。
測定手段は図10のように構成され、
ウエハーは、例えば、P型Si(面方位001)で、ウエハー厚が5.23×10nm、抵抗率が14〜22Ωcmのウエハーを用い、
ウエハーの一側に光酸化法により光酸化SiO膜を形成し、
両側にAl(アルミ)電極を設け、
両電極間に可変電圧を印加し、
そのときの電流値を電流計で測定する。
適宜、条件を変えた酸化膜を設けたウエハーを測定する。
A graph showing the characteristics of Table 1 is shown in FIG.
The measuring means for obtaining the data of Table 1 is shown in FIG.
3 indicates the characteristics of the current density (A / cm 2 ) film density of 2.27 g / cm 3 (film thickness of 3.0 nm) in Table 1, and the code B in FIG. 3 indicates the current density of Table 1. The characteristics of (A / cm 2 ) film density 2.31 g / cm 3 (film thickness 3.5 nm) are shown. The horizontal axis in FIG. 3 is the electric field (MV / cm), and the vertical axis is the current density (A / cm 2 ). The other characteristics in FIG. 3 are shown for reference.
The measuring means is configured as shown in FIG.
The wafer is, for example, P-type Si (plane orientation 001), a wafer thickness of 5.23 × 10 5 nm, and a resistivity of 14 to 22 Ωcm.
A photo-oxidized SiO 2 film is formed on one side of the wafer by a photo-oxidation method,
Al (aluminum) electrodes are provided on both sides,
Apply a variable voltage between both electrodes,
The current value at that time is measured with an ammeter.
A wafer provided with an oxide film with different conditions is measured as appropriate.

表1において、
電界強度が低い範囲(膜厚が3〜4nmでは〜1MV/cm)では従来例(従来の膜密度2.24g/cm)と本願発明の例(膜密度2.27g/cm、膜密度2.31g/cm)で電界強度の値に差が顕著に現れていないが、2MV/cm以上の領域では差が歴然としている(電流・電圧の単位を規格化しているが、電流密度はリーク電流と置き換えられる)。
In Table 1,
In the range where the electric field strength is low (about 1 MV / cm when the film thickness is 3 to 4 nm), the conventional example (conventional film density 2.24 g / cm 3 ) and the example of the present invention (film density 2.27 g / cm 3 , film density) 2.31 g / cm 3 ), the difference in the electric field strength does not appear remarkably, but in the region of 2 MV / cm or more, the difference is clear (the unit of current / voltage is normalized, but the current density is Replaced by leakage current).

熱酸化の酸化膜(SiO)の絶縁破壊は酸化膜(SiO)の膜厚2.6〜4.8nmでは11〜13MV/cmで、そのときのリーク電流は1A/cmであるのに対し、膜密度2.27g/cmの酸化膜(SiO)では、膜厚3.0nmで電界強度15MV/cmであるとき、リーク電流は10−5A/cmとなり、
膜密度2.31g/cmの酸化膜(SiO)では、膜厚3.5nmで電界強度〜40MV/cm、リーク電流は10−5A/cmとなり、リーク電流が小さくなる結果が得られた。
The dielectric breakdown of the thermally oxidized oxide film (SiO 2 ) is 11 to 13 MV / cm when the oxide film (SiO 2 ) thickness is 2.6 to 4.8 nm, and the leakage current at that time is 1 A / cm 2 . On the other hand, in the oxide film (SiO 2 ) having a film density of 2.27 g / cm 3 , when the electric field intensity is 15 MV / cm at a film thickness of 3.0 nm, the leakage current is 10 −5 A / cm 2 .
With an oxide film (SiO 2 ) having a film density of 2.31 g / cm 3 , the electric field intensity is 40 MV / cm at a film thickness of 3.5 nm, the leakage current is 10 −5 A / cm, and the leakage current is reduced. It was.

熱酸化の酸化膜(SiO)および紫外線照射により作成した酸化膜(SiO)はアモルファスであるが、自然界にはアモルファスでも2.5〜2.65g/cm(ルシャトリエライト)のものがあり、結晶化すると4.34g/cm(スチショフ石)のような高密度化した酸化膜(SiO)が存在することから、半導体シリコンウェハー上に更に高密度化した酸化膜(SiO)を積層させることで更なる絶縁特性の向上が期待できる。 Although oxide film of the thermal oxide (SiO 2) and the oxide film produced by UV irradiation (SiO 2) is amorphous, in nature you include the 2.5~2.65g / cm 3 even amorphous (Rusha triethanolamine Light) When crystallized, a highly densified oxide film (SiO 2 ) such as 4.34 g / cm 3 (stishovite) exists, so that a further densified oxide film (SiO 2 ) is formed on the semiconductor silicon wafer. By further laminating, further improvement of the insulation characteristics can be expected.

図3に膜密度2.27g/cmと、2.31g/cmの電流−電圧特性を示した。
低電界範囲では2.27g/cmの方がリーク電流が低いが、絶縁破壊は酸化膜(SiO)密度が高いほど高電圧であることがわかる。これにより、低電界にあたる低電圧動作デバイスに用いる場合は必ずしも密度が高い必要はないと考えられるが、熱酸化の酸化膜(SiO)は膜厚3nm以下になると低電圧時でも急激にリーク電流が増大する。これは、熱酸化SiO膜と基板の間にはSiO、Si、SiO(サブオキサイド)と呼ばれる絶縁性の低い酸化状態が膜厚1nm前後存在するためである。紫外線照射により作成した酸化膜にはこのサブオキサイド層が殆ど存在しないことから、超薄膜状態でも絶縁性が保てる。
FIG. 3 shows current-voltage characteristics at a film density of 2.27 g / cm 3 and 2.31 g / cm 3 .
In the low electric field range, 2.27 g / cm 3 has a lower leakage current, but it can be seen that the higher the oxide film (SiO 2 ) density, the higher the dielectric breakdown. As a result, it is considered that the density does not necessarily have to be high when used for a low-voltage operation device in a low electric field. However, when the thermal oxidation oxide film (SiO 2 ) is 3 nm or less in thickness, the leakage current suddenly increases even at a low voltage. Will increase. This is because a low-insulating oxidation state called SiO, Si 2 O 3 , or Si 2 O (suboxide) exists between the thermally oxidized SiO 2 film and the substrate at a thickness of about 1 nm. Since the oxide film formed by ultraviolet irradiation has almost no suboxide layer, the insulating property can be maintained even in an ultra-thin state.

サブオキサイドの厚さはX線光電子分光により見積もることができ、密度2.27g/cmの試料において酸化膜(SiO)膜厚3nmに対し、サブオキサイドは0.15nmであった。つまり、上記方法ではサブオキサイドを作らないため、SiOを薄膜化しても絶縁性が保て、しかも密度が高いことで高絶縁性状態を維持することができる。 The thickness of the suboxide can be estimated by X-ray photoelectron spectroscopy. In the sample with a density of 2.27 g / cm 3 , the suboxide was 0.15 nm with respect to the oxide film (SiO 2 ) film thickness of 3 nm. That is, since the above method does not produce suboxide, the insulation can be maintained even when the SiO 2 film is thinned, and the high insulation state can be maintained by the high density.

図4は、縦軸がSiO密度(g/cm)、横軸が基板温度(℃)で、本発明に係る基板温度(℃)に対する紫外線照射酸化膜SiOの密度変化(SiO2 Density (g/cm3))(密度は斜入射X線反射率の測定から換算)特性のグラフである。
図4には以下の記号の特性が示されている。図4中の記号、黒●形は波長126nm、黒4角形は波長126nmVUV SR at BL20A、白菱形は波長222nm Excimer Lamp、白六角形は波長172nm、Excimer Lampの特性を示す。
図4の特性は下記の表2の値をとる

Figure 2009188282
In FIG. 4, the vertical axis represents the SiO 2 density (g / cm 3 ), the horizontal axis represents the substrate temperature (° C.), and the density change (SiO 2 Density) of the ultraviolet irradiation oxide film SiO 2 with respect to the substrate temperature (° C.) according to the present invention. (g / cm 3 )) (density is converted from measurement of oblique incidence X-ray reflectivity).
FIG. 4 shows the characteristics of the following symbols. In FIG. 4, the black ● shape indicates a wavelength of 126 nm, the black square indicates a wavelength of 126 nm VUV SR at BL20A, the white rhombus indicates a wavelength of 222 nm Excimer Lamp, the white hexagon indicates a wavelength of 172 nm, and an Excimer Lamp.
The characteristics in FIG. 4 take the values in Table 2 below.
Figure 2009188282

使用した紫外線の波長は126nm、172nm、222nmの3種類で、光源はエキシマランプおよび放射光を用いた。波長172nmおよび222nmの紫外線を照射した場合のデータは1点ずつであるが、各波長での最適条件は基板温度が異なることが考えられるが(各波長で最大密度および最適基板温度は異なっていることが考えられる。)、本発明の場合、172nmおよび222nmの波長の紫外線を照射しながらSiOを形成しても従来の熱酸化したSiOより高密度状態が作れることがわかる。 The wavelengths of ultraviolet rays used were 126 nm, 172 nm, and 222 nm, and the light source was an excimer lamp and radiation light. The data when irradiating ultraviolet rays with wavelengths of 172 nm and 222 nm is one point at a time, but the optimum conditions at each wavelength may be different in substrate temperature (the maximum density and optimum substrate temperature are different at each wavelength). In the case of the present invention, it can be seen that even if SiO 2 is formed while irradiating ultraviolet rays having wavelengths of 172 nm and 222 nm, a higher density state can be produced than conventional thermally oxidized SiO 2 .

図7はX線光電子分光により得られたスペクトルを示す。図7のスペクトルの各元素比率を下記表3に示す。

Figure 2009188282
FIG. 7 shows the spectrum obtained by X-ray photoelectron spectroscopy. The ratio of each element in the spectrum of FIG.
Figure 2009188282

次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の実施の形態を示す断面図である。
図1に示すように、シリコン基板1上には、Si(但し、x=1, y=2以外)の組成を有する極薄のサブオキサイド層2を介して高密度シリコン酸化膜3が形成されている。シリコン基板の導電型はn型、p型のいずれであってもよく、また真性であってもよい。また面方位も特に限定されない。本発明に係る高密度シリコン酸化膜3は、2.27g/cm以上の密度を有する。一層好ましくは2.30g/cm以上の密度を有し、さらに好ましくは2.32g/cm以上の密度を有する。
高密度シリコン酸化膜3は、緻密なSiOの組成を有する膜であり、熱酸化膜のような密度の低いシリコン酸化膜には期待し得ない高い耐圧と低いリーク特性とを有する。また、緻密なシリコン酸化膜には高い酸素原子拡散阻止能力を有することが期待できる。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
As shown in FIG. 1, a high-density silicon oxide film 3 is formed on a silicon substrate 1 via an ultrathin suboxide layer 2 having a composition of Si x O y (except for x = 1 and y = 2). Is formed. The conductivity type of the silicon substrate may be either n-type or p-type, or may be intrinsic. Also, the plane orientation is not particularly limited. The high-density silicon oxide film 3 according to the present invention has a density of 2.27 g / cm 3 or more. More preferably has a 2.30 g / cm 3 or more density, more preferably it has a 2.32 g / cm 3 or more density.
The high-density silicon oxide film 3 is a film having a dense SiO 2 composition, and has high breakdown voltage and low leakage characteristics that cannot be expected from a low-density silicon oxide film such as a thermal oxide film. Further, it can be expected that a dense silicon oxide film has a high oxygen atom diffusion blocking ability.

高密度シリコン酸化膜3の下層に形成されるサブオキサイド層2は、シリコン酸化膜3を光酸化により形成する際に不可避的に形成される膜であるが、本発明による高密度シリコン酸化膜の製造方法によれば、極めて薄く形成することができ、理想的には1原子層以下、高々数分子原子層以下、すなわち膜厚0.1nm以下の膜である。   The suboxide layer 2 formed below the high-density silicon oxide film 3 is a film that is inevitably formed when the silicon oxide film 3 is formed by photo-oxidation. According to the manufacturing method, the film can be formed extremely thin, and ideally, it is a film having a thickness of not more than 1 atomic layer, not more than several molecular atomic layers, that is, a film thickness of 0.1 nm or less.

本発明に係る高密度シリコン酸化膜は、酸素を含む気体中において、紫外線を照射しつつ300〜430℃に加熱してシリコン基板上に平均5nm/h以下の成長速度で形成される。より好ましくは平均2nm/h以下の成長速度であり、一層好ましくは平均1.2nm/h以下の成長速度である。緩慢な速度の酸化により高い密度のシリコン酸化膜の形成が可能になりまたサブオキサイド層の成長が抑制される。   The high-density silicon oxide film according to the present invention is formed on a silicon substrate at an average growth rate of 5 nm / h or less by heating to 300 to 430 ° C. while irradiating ultraviolet rays in a gas containing oxygen. More preferred is an average growth rate of 2 nm / h or less, and even more preferred is an average growth rate of 1.2 nm / h or less. Oxidation at a slow rate enables formation of a high-density silicon oxide film and suppresses the growth of the suboxide layer.

また、好ましくは、本発明に係る高密度シリコン酸化膜は、酸素を含む気体中において、波長が222nm未満(例えば126nm)の紫外線を照射しつつシリコン基板を300〜430℃に加熱して光酸化を行うことによって形成される。短波長の紫外線を用いて光酸化を行うことにより、2.30g/cm以上のより高密度のシリコン酸化膜の形成が可能となる。 Preferably, the high-density silicon oxide film according to the present invention is photooxidized by heating the silicon substrate to 300 to 430 ° C. while irradiating ultraviolet rays having a wavelength of less than 222 nm (for example, 126 nm) in a gas containing oxygen. It is formed by doing. By performing photo-oxidation using ultraviolet rays having a short wavelength, it becomes possible to form a silicon oxide film having a higher density of 2.30 g / cm 3 or more.

本発明の光酸化は例えば1気圧(1atm)の酸素雰囲気中において行われる。しかし、1気圧でなくても1Pa〜1.5MPaの酸素雰囲気下で酸化を行うことにより同様の効果を得ることができる。また、純酸素雰囲気中で光酸化を行う方法に代えてアルゴン等の不活性ガスが添加されたガス雰囲気中において酸化を行うことができる。この場合にも酸素の分圧は1Pa〜1.5MPaであることが望ましい。   The photo-oxidation of the present invention is performed in an oxygen atmosphere of 1 atm (1 atm), for example. However, the same effect can be obtained by performing oxidation in an oxygen atmosphere of 1 Pa to 1.5 MPa even if the pressure is not 1 atm. Moreover, it can replace with the method of performing photo-oxidation in a pure oxygen atmosphere, and can oxidize in the gas atmosphere to which inert gas, such as argon, was added. Also in this case, the partial pressure of oxygen is desirably 1 Pa to 1.5 MPa.

図2は、本発明に係る高密度シリコン酸化膜を採用したデバイスの一例であるMOSトランジスタの断面図である。シリコン基板上には高密度シリコン酸化膜3を介してゲート電極4が形成されており、シリコン基板1の表面領域のゲート電極4の両サイドにはソース・ドレイン領域5が形成されている。ゲート絶縁膜に高密度シリコン酸化膜を用いたMOSトランジスタによれば、ゲート絶縁耐圧の高い、リーク電流の低い高品質のトランジスタを製造することができる。   FIG. 2 is a cross-sectional view of a MOS transistor which is an example of a device employing a high-density silicon oxide film according to the present invention. A gate electrode 4 is formed on the silicon substrate via a high-density silicon oxide film 3, and source / drain regions 5 are formed on both sides of the gate electrode 4 in the surface region of the silicon substrate 1. According to the MOS transistor using the high-density silicon oxide film as the gate insulating film, it is possible to manufacture a high quality transistor having a high gate withstand voltage and a low leakage current.

本発明の実施例においては、デスクリートなエネルギーの光子を放射することのできるArエキシマランプ(波長:λ=126nm)、Xeエキシマランプ(λ=172nm)、KrClエキシマランプ(λ=222nm)を光源として使用した。4インチ(10.16cm)、ボロンドープ、比抵抗14−22Ωcmのp型Si(001)ウエハを準備し、化学的処理を行って表面を清浄化した。成長チャンバへの搬入に先立って、自然酸化膜を希釈フッ酸により除去した。成長チャンバへ搬入し、成長チャンバを0.1Paまで排気した後、純酸素ガスを供給し吹き付けガス流量制御を行って成長チャンバ内を1気圧に保持した。シリコン基板は、300〜430℃の成長温度を維持するように制御された。吹き付け酸素ガスにより基板温度が低下しないように、酸素ガスを基板温度に合わせて加熱・保温した。 In an embodiment of the present invention, an Ar 2 excimer lamp (wavelength: λ = 126 nm), an Xe 2 excimer lamp (λ = 172 nm), and a KrCl excimer lamp (λ = 222 nm) capable of emitting discrete energy photons. Was used as the light source. A 4 inch (10.16 cm), boron-doped, p-type Si (001) wafer having a specific resistance of 14-22 Ωcm was prepared and subjected to chemical treatment to clean the surface. Prior to loading into the growth chamber, the natural oxide film was removed with diluted hydrofluoric acid. After carrying into the growth chamber and evacuating the growth chamber to 0.1 Pa, pure oxygen gas was supplied and the flow rate of the gas was controlled to maintain the inside of the growth chamber at 1 atm. The silicon substrate was controlled to maintain a growth temperature of 300-430 ° C. Oxygen gas was heated and kept in accordance with the substrate temperature so that the substrate temperature was not lowered by the blown oxygen gas.

光酸化工程は次のような条件で行った。
1.照射紫外線:λ=126nm、基板温度:390℃、成長時間:7.5時間。
2.照射紫外線:λ=172nm、基板温度:430℃、成長時間:5時間。
3.照射紫外線:λ=222nm、基板温度:390℃、成長時間:5時間。
製造された超薄SiO膜は、X線光電子分光法(XPS)、透過型電子顕微鏡(TEM)、X線反射および偏光解析法(エリプソメトリ)により解析された。成長速度は、成長条件から校正したX線反射率から換算した。TEM技術は界面のシャープネスの評価のために、XPSは平均シリコン価を用いての遷移層(密度が変化する領域)厚の算定のために用いた。
The photo-oxidation process was performed under the following conditions.
1. Irradiation ultraviolet ray: λ = 126 nm, substrate temperature: 390 ° C., growth time: 7.5 hours.
2. Irradiation ultraviolet ray: λ = 172 nm, substrate temperature: 430 ° C., growth time: 5 hours.
3. Irradiation ultraviolet ray: λ = 222 nm, substrate temperature: 390 ° C., growth time: 5 hours.
The manufactured ultra-thin SiO 2 film was analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), X-ray reflection and ellipsometry (ellipsometry). The growth rate was converted from the X-ray reflectivity calibrated from the growth conditions. The TEM technique was used for evaluating the sharpness of the interface, and XPS was used for calculating the thickness of the transition layer (region where the density changes) using the average silicon value.

図5は、各波長を使用して成長させた試料についてのX線反射測定から得られた酸化膜(SiO)密度の深さプロファイルを示す。図5は縦軸が密度(g/cm)、横軸が表面からの深さ(nm)を示す。
図5の特性は、シリコンSiを面方位(001)に揃えて積んだSiO膜を形成する際に、照射するX線波長λを126nm(図中の符号Cの特性)、172nm(図中の符号Dの特性)、222nm(図中の符号Eの特性)とした特性である。
広いレンジの角度および強度において行われたすれすれ入射X線反射光測定(grazing incidence x−ray reflectometry:GIXR)は、密度と粗さに関する情報を含む。SiO層が表面の垂直方向に沿って傾斜密度を持つと仮定すると、Parratt法に基づくX線反射に適合して平方でパラメータ化された密度分布が得られる。したがって、ここでは、光酸化SiO密度に関する彼らによって開発された技術と決定された深さプロファイルとを用いた。
FIG. 5 shows the depth profile of the oxide film (SiO 2 ) density obtained from X-ray reflection measurements for samples grown using each wavelength. In FIG. 5, the vertical axis represents density (g / cm 3 ), and the horizontal axis represents depth (nm) from the surface.
The characteristics of FIG. 5 are as follows. When forming a SiO 2 film in which silicon Si is aligned in the plane orientation (001), the X-ray wavelength λ to be irradiated is 126 nm (characteristic of reference C in the figure) and 172 nm (in the figure). The characteristic of the symbol D) and 222 nm (characteristic of the symbol E in the figure).
Grazing incidence x-ray reflectometry (GIXR) performed over a wide range of angles and intensities contains information about density and roughness. Assuming that the SiO 2 layer has a gradient density along the vertical direction of the surface, a square parameterized density distribution is obtained that is compatible with X-ray reflection based on the Parratt method. Therefore, the technology developed by them for the photo-oxidized SiO 2 density and the determined depth profile were used here.

λ=172nmと222nmの光酸化SiO膜の平均密度は2.27g/cmで、λ=126nmでは平均密度は2.32g/cmである。図5は、全ての光酸化SiO膜が従来の熱酸化膜のそれ(2.20−2.24g/cm)よりも高い平均密度を呈することを示す。λ=126nmの光酸化膜は特に高い値を持つ。各曲線の右側の平坦な部分はシリコン基板(密度=2.33g/cm)であることを示す。
密度変化は、λ=172nmと222nmの光酸化SiO膜の界面において傾斜変化として観測される。しかし、λ=126nmによる光酸化膜では、Si(2.33g/cm)と比較して密度差が少ないため傾斜変化は殆ど観測されない。
The average density of the photo-oxidized SiO 2 films at λ = 172 nm and 222 nm is 2.27 g / cm 3 , and at λ = 126 nm, the average density is 2.32 g / cm 3 . FIG. 5 shows that all the photo-oxidized SiO 2 films exhibit a higher average density than that of the conventional thermal oxide film (2.20-2.24 g / cm 3 ). A photo-oxide film with λ = 126 nm has a particularly high value. The flat part on the right side of each curve indicates a silicon substrate (density = 2.33 g / cm 3 ).
The density change is observed as an inclination change at the interface between the photooxidized SiO 2 films of λ = 172 nm and 222 nm. However, in the photo-oxide film with λ = 126 nm, since the density difference is small compared to Si (2.33 g / cm 3 ), almost no change in inclination is observed.

密度プロファイルは、λ=126nmと172nmの間に顕著な波長依存性を示す。紫外線の波長λ=172nmと222nmとの光酸化膜(SiO)間では平均密度の差異は僅かである。λ=172nmと222nmとの光酸化SiO膜間では遷移層における密度変化はかなり異なる。λ=222nmで光酸化されたSiOにおける遷移層の密度変化はλ=172nmのそれに比較して小さい。 The density profile shows a significant wavelength dependence between λ = 126 nm and 172 nm. The difference in average density is slight between the photo-oxidized films (SiO 2 ) of the ultraviolet wavelengths λ = 172 nm and 222 nm. The density change in the transition layer is considerably different between the photo-oxidized SiO 2 films of λ = 172 nm and 222 nm. The change in density of the transition layer in SiO 2 photooxidized at λ = 222 nm is small compared to that at λ = 172 nm.

以上のとおりであるから、GIXR測定は、より高いエネルギーのVUV(真空紫外線)フォトンの形成した酸化膜はより高い密度とよりシャープな界面を持つことを示す。それ故、高密度化と界面形成のメカニズムは共にVUVフォトン照射により形成される酸素原子の励起状態と関係していると考えられる。本発明による光酸化SiOは、シリコンと同じ密度を有するクリストバライト(crystobalite)のような、高密度の多形態結晶構造をもつものと推定される。アモルファスSiOにおいては、Si−O結合構造は複数種の原子数の異なる環状構造を持つ。すなわち、原子の数の異なる環体により構成される。高密度SiO膜ではより小さな環体が集合したものと推定される。 As described above, GIXR measurement shows that an oxide film formed by higher energy VUV (vacuum ultraviolet) photons has a higher density and a sharper interface. Therefore, it is considered that both the densification mechanism and the interface formation mechanism are related to the excited state of oxygen atoms formed by VUV photon irradiation. The photo-oxidized SiO 2 according to the present invention is presumed to have a high-density polymorphic crystal structure such as cristobalite having the same density as silicon. In amorphous SiO 2 , the Si—O bond structure has a plurality of types of cyclic structures having different numbers of atoms. That is, it is composed of rings having different numbers of atoms. In the high-density SiO 2 film, it is presumed that smaller rings are assembled.

図6は、それぞれλ=126nmと172nmにおいて光酸化されたSiO膜の膜厚と光照射時間、特に1、3、5時間との関係を示す。
図6の縦軸は膜厚(nm)、横軸は酸化時間(時)を示す。図6中の白丸○は波長λが172nmの光酸化特性を示し、黒丸●は波長λが126nmの光酸化特性を示す。
基板温度は460℃(λ=126nm)と470℃(λ=172nm)である。SiO膜の膜厚は、照射時間が長期化すると飽和を示す。また、基板温度にも依存するが、フォトンエネルギーが低いほど成長レートが高くなる。光酸化の場合、拡散速度が遅くなることで、サブオキサイドを作りにくくしていると考えられる。172nmの光酸化より126nmの光酸化の方が成膜速度が遅く、界面での密度変化が少ないのは拡散が遅いためであると推定される。
FIG. 6 shows the relationship between the film thickness of the SiO 2 film photooxidized at λ = 126 nm and 172 nm and the light irradiation time, particularly 1, 3, and 5 hours, respectively.
In FIG. 6, the vertical axis represents the film thickness (nm) and the horizontal axis represents the oxidation time (hours). In FIG. 6, white circles ◯ indicate photooxidation characteristics with a wavelength λ of 172 nm, and black circles ● indicate photooxidation characteristics with a wavelength λ of 126 nm.
The substrate temperatures are 460 ° C. (λ = 126 nm) and 470 ° C. (λ = 172 nm). The film thickness of the SiO 2 film shows saturation when the irradiation time is prolonged. Also, depending on the substrate temperature, the lower the photon energy, the higher the growth rate. In the case of photooxidation, it is considered that the diffusion rate is slow, making it difficult to produce suboxides. It is presumed that 126 nm photo-oxidation has a slower film formation rate than 172 nm photo-oxidation, and that the density change at the interface is small because diffusion is slow.

図7は、XPSのSi2p1/2,3/2信号プロファイルを示す。図7の縦軸は強度(任意単位)、横軸は結合エネルギー(ev)を示す。
バルクSi(Si)と二酸化シリコン(Si4+)信号との間に、少量のサブオキサイドの寄与(Si1+とSi2+)が観測される。信号はガウス関数に適合されており、最大誤差5%以下と見積もられた。
図7より、SiO膜内のサブオキサイドが極めて少ないこと乃至界面のサブオキサイド層の膜厚が極めて薄いことが分かる。
FIG. 7 shows the XPS Si2p 1/2 , 3/2 signal profile. In FIG. 7, the vertical axis represents intensity (arbitrary unit), and the horizontal axis represents binding energy (ev).
A small amount of suboxide contributions (Si 1+ and Si 2+ ) is observed between the bulk Si (Si 0 ) and silicon dioxide (Si 4+ ) signals. The signal was fitted to a Gaussian function and was estimated to have a maximum error of 5% or less.
From FIG. 7, it can be seen that the suboxide in the SiO 2 film is very small or the suboxide layer at the interface is very thin.

表3には、図7の特性のサンプリング値を示す。表2には、各化学状態のSi 2p信号の化学シフト、FWHM(full width half maximum value:半値全幅)および信号強度が示される。結果は、XPS結果から得られる光酸化SiO膜内のサブオキサイド厚の示唆が顕著に小さいことを示す。
SiO膜厚(dSiO2)は、XPSデータのSi2p信号強度から数1のように計算される。
Table 3 shows sampling values of the characteristics shown in FIG. Table 2 shows the chemical shift, FWHM (full width half maximum value) and signal intensity of the Si 2p signal in each chemical state. The results show that the suggestion of suboxide thickness in the photo-oxidized SiO 2 film obtained from the XPS results is significantly smaller.
The SiO 2 film thickness (d SiO2 ) is calculated as shown in Equation 1 from the Si2p signal intensity of the XPS data.

Figure 2009188282
ここで、lSiO2は、SiO膜中における光電子の平均自由工程、αは光電子の放出角度である。従来のSiO膜のlSiO2は、AlΚαに対し2.6×10−7と決定される。ISi 4+とISi は、SiOとバルクシリコンの光電子強度の積分値である。実験的な強度比I/Iは、AlΚαに対し0.82と決定される。サブ酸化状態におけるシリコン原子の数は下記の数2で与えられる。
Figure 2009188282
Here, l SiO2 is the mean free path of photoelectrons in the SiO 2 film, and α is the photoelectron emission angle. L SiO2 of the conventional SiO 2 film is determined to be 2.6 × 10 −7 with respect to AlΚα. I Si 4+ and I Si 0 are integral values of the photoelectron intensities of SiO 2 and bulk silicon. The experimental intensity ratio I / I 0 is determined to be 0.82 with respect to AlΚα. The number of silicon atoms in the sub-oxidation state is given by the following formula 2.

Figure 2009188282

ここで、nSi は、シリコンの原子密度で、5.0×1022cm−3、lSi は、Siにおける光電子の平均フリーパスで、AlΚαに対し1.6×10−7cmと決定される。σSi x+とσSi は光電離断面(photoionization cross section)であり、XPSにおける高フォトンエネルギー状態であるSiとSiと推定される。データからの計算結果は、dSiO2=3.0nm、ΣNSi x+=4.0×1014atoms/cmである。
Figure 2009188282

Here, n Si 0 is the atomic density of silicon, 5.0 × 10 22 cm −3 , and l Si 0 is the average free path of photoelectrons in Si, which is 1.6 × 10 −7 cm with respect to AlΚα. It is determined. σ Si x + and σ Si 0 are photoionization sections, and are estimated to be Si x O y and Si, which are high photon energy states in XPS. The calculation results from the data are d SiO2 = 3.0 nm and ΣN Si x + = 4.0 × 10 14 atoms / cm 2 .

図8は、光酸化法と熱酸化法による酸化膜の電圧−電流密度特性を示す図である。
図8の縦軸は電流密度(A/cm)、横軸は電圧(v)を示す。
図8中の符号Fの特性は、本発明に係る膜密度2.32g/cmで膜厚3.5nmの高密度SiO膜の特性を示す。
図8中の符号Gの特性は、本発明に係る膜密度2.27g/cmで膜厚3.0nmの高密度SiO膜の特性を示す。
本発明の光酸化法は、紫外線の波長λ=126nmと172nmの光酸化膜の電圧−電流密度特性曲線を示す。この特性は漏洩電流特性になる。
FIG. 8 is a diagram showing the voltage-current density characteristics of the oxide film by the photo-oxidation method and the thermal oxidation method.
In FIG. 8, the vertical axis represents current density (A / cm 2 ), and the horizontal axis represents voltage (v).
The characteristic indicated by F in FIG. 8 indicates the characteristics of a high-density SiO 2 film having a film density of 2.32 g / cm 3 and a film thickness of 3.5 nm according to the present invention.
The characteristics indicated by reference sign G in FIG. 8 indicate the characteristics of a high-density SiO 2 film having a film density of 2.27 g / cm 3 and a film thickness of 3.0 nm according to the present invention.
The photo-oxidation method of the present invention shows voltage-current density characteristic curves of photo-oxidized films having ultraviolet wavelengths λ = 126 nm and 172 nm. This characteristic is a leakage current characteristic.

図8には、参考のために熱酸化SiO膜の特性を示す。
図8中の符号Hの特性は、膜密度2.20−2.24g/cmのうちの任意の値で膜厚4.0nmの熱酸化SiO膜の特性を示す。
図8中の符号Iの特性は、膜密度2.20−2.24g/cmのうちの任意の値で膜厚3.0nmの熱酸化SiO膜の特性を示す。
図8中の符号Jの特性は、膜密度2.20−2.24g/cmのうちの任意の値で膜厚2.0nmの熱酸化SiO膜の特性を示す。
FIG. 8 shows the characteristics of the thermally oxidized SiO 2 film for reference.
The characteristic indicated by the symbol H in FIG. 8 indicates the characteristic of a thermally oxidized SiO 2 film having a film thickness of 4.0 nm at an arbitrary value within the film density of 2.20-2.24 g / cm 3 .
The characteristic indicated by symbol I in FIG. 8 indicates the characteristic of a thermally oxidized SiO 2 film having a film thickness of 3.0 nm at an arbitrary value within the film density of 2.20-2.24 g / cm 3 .
The characteristic of the symbol J in FIG. 8 shows the characteristic of a thermally oxidized SiO 2 film having a film thickness of 2.0 nm at an arbitrary value within the film density of 2.20-2.24 g / cm 3 .

これら熱酸化膜に係るデータはMicroelectronics Journal vol.34, p.363 (2003)に基づく。
試料は、光酸化SiO膜上とシリコン基板下面にAl膜を有するMIS構造に形成され、2端子法により測定された。λ=126nmと172nmの光酸化により形成されたSiO膜は、dSiO2=3.5と3.0nmの膜厚と、15.5Vと5.5Vの降伏電圧を持つ。この降伏電圧はλ=126nmの光酸化膜に対してより高い。
The data relating to these thermal oxide films can be found in Microelectronics Journal vol. 34, p. 363 (2003).
The sample was formed in a MIS structure having an Al film on the photo-oxidized SiO 2 film and the lower surface of the silicon substrate, and measured by the two-terminal method. The SiO 2 film formed by photo-oxidation of λ = 126 nm and 172 nm has a film thickness of d SiO2 = 3.5 and 3.0 nm, and breakdown voltages of 15.5 V and 5.5 V. This breakdown voltage is higher for a photo-oxide film of λ = 126 nm.

図9は、酸化膜(SiO)の密度と絶縁破壊電界強度との関係を示すグラフである。図9の縦軸は電界強度(MV/cm)、横軸はSiO膜密度(g/cm)を示す。
波長λ=126nmと172nmの光酸化SiO膜の見積もられた電界強度は45MV/cmと18MV/cmである。λ=126nmと172nmとの電界強度には大きな差がある。したがって、絶縁破壊電界の高い光酸化SiO膜を形成するには、λ=172nm未満のVUVを用いることが望ましい。λ=126nmと172nmの光酸化膜のリーク電流は、0からブレークダウン電圧までで10−4−10−10A/cmである。この結果は、報告された従前の酸化物の超薄SiO膜と比較して光酸化・高密度超薄SiO膜の優れた絶縁特性を明らかにしている。
FIG. 9 is a graph showing the relationship between the density of the oxide film (SiO 2 ) and the breakdown field strength. In FIG. 9, the vertical axis represents the electric field strength (MV / cm), and the horizontal axis represents the SiO 2 film density (g / cm 3 ).
The estimated electric field strengths of the photo-oxidized SiO 2 films with wavelengths λ = 126 nm and 172 nm are 45 MV / cm and 18 MV / cm. There is a large difference in electric field strength between λ = 126 nm and 172 nm. Therefore, in order to form a photo-oxidized SiO 2 film having a high dielectric breakdown electric field, it is desirable to use VUV less than λ = 172 nm. The leakage current of the photooxide film of λ = 126 nm and 172 nm is 10 −4 −10 −10 A / cm 2 from 0 to the breakdown voltage. This result reveals the superior insulating properties of the photo-oxidized and high-density ultra-thin SiO 2 film compared to the reported ultra-thin SiO 2 film of the previous oxide.

本発明の実施例であるシリコン基板の断面図である。It is sectional drawing of the silicon substrate which is an Example of this invention. 本発明の他の実施例であるMOSトランジスタの断面図である。It is sectional drawing of the MOS transistor which is the other Example of this invention. 表1の特性を示すグラフである。It is a graph which shows the characteristic of Table 1. 本発明に係る基板温度(Substrate Temperature (℃))に対する紫外線照射酸化膜SiOの密度変化(SiO2 Density (g/cm3))(密度は斜入射X線反射率の測定から換算)特性のグラフである。Change in density (SiO 2 Density (g / cm 3 )) of the ultraviolet-irradiated oxide film SiO 2 with respect to the substrate temperature (Substrate Temperature (° C.)) according to the present invention (density is converted from measurement of oblique incidence X-ray reflectivity) It is a graph. 本発明の酸化膜の膜厚−膜密度特性のグラフである。It is a graph of the film thickness-film density characteristic of the oxide film of this invention. 本発明の酸化膜の膜厚−酸化時間特性のグラフである。It is a graph of the film thickness-oxidation time characteristic of the oxide film of this invention. 本発明の酸化膜のX線光電子分光(XPS)により得られた結合エネルギー−強度特性図である。It is a bond energy-strength characteristic view obtained by X-ray photoelectron spectroscopy (XPS) of the oxide film of the present invention. 本発明の酸化膜の電圧−電流密度特性を示すグラフである。It is a graph which shows the voltage-current density characteristic of the oxide film of this invention. 本発明の酸化膜の密度−電界強度特性を示すグラフである。It is a graph which shows the density-electric field strength characteristic of the oxide film of this invention. 表1のデータを得るための測定手段を示す。The measurement means for obtaining the data of Table 1 is shown.

符号の説明Explanation of symbols

1 シリコン基板
2 サブオキサイド層
3 高密度シリコン酸化膜
4 ゲート電極
5 ソース・ドレイン領域
6 高誘電率膜
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Suboxide layer 3 High-density silicon oxide film 4 Gate electrode 5 Source / drain region 6 High dielectric constant film

Claims (6)

1気圧酸素雰囲気中で、
300℃から430℃の範囲内の任意の温度にシリコン基板を加熱し、
前記シリコン基板に222nm以下の紫外線を照射した状態で、
基板表面に、酸素ガスをフローメーターにおける20℃での酸素ガス流量換算で100ml/min以上流しながらシリコン基板表面に酸化膜を形成する工程からなることを特徴とする高密度シリコン酸化膜の製造方法。
In a 1 atmosphere oxygen atmosphere,
Heating the silicon substrate to any temperature within the range of 300 ° C. to 430 ° C .;
In a state where the silicon substrate is irradiated with ultraviolet rays of 222 nm or less,
A method for producing a high-density silicon oxide film comprising the step of forming an oxide film on the surface of a silicon substrate while flowing oxygen gas at a rate of 100 ml / min or more in terms of oxygen gas flow rate at 20 ° C. in a flow meter on the substrate surface .
前記シリコン基板の温度と前記酸素ガスの温度が同じになるように、前記酸素ガスを加熱することを特徴とする請求項1記載の高密度シリコン酸化膜の製造方法。 2. The method for producing a high-density silicon oxide film according to claim 1, wherein the oxygen gas is heated so that the temperature of the silicon substrate is equal to the temperature of the oxygen gas. 前記酸素ガスの前記シリコン基板吹き付け温度が、前記シリコン基板の300℃から430℃の範囲内の任意の加熱温度になるように前記酸素ガス流量を設定することを特徴とする請求項1又は2記載の高密度シリコン酸化膜の製造方法。 The oxygen gas flow rate is set so that the silicon substrate spraying temperature of the oxygen gas becomes an arbitrary heating temperature within a range of 300 ° C. to 430 ° C. of the silicon substrate. Manufacturing method of high-density silicon oxide film. 前記酸素ガスの流量は、吹き付ける酸素ガスの加熱・保温温度が、シリコン基板の加熱温度である300℃から430℃の範囲内の任意の温度と同じに設定できるときには、100ml/min以上の任意の流量値に設定することを特徴とする請求項1乃至3のいずれか1項記載の高密度シリコン酸化膜の製造方法。 The flow rate of the oxygen gas can be set to any value of 100 ml / min or more when the heating / retaining temperature of the oxygen gas to be sprayed can be set to be the same as any temperature within the range of 300 ° C. to 430 ° C. which is the heating temperature of the silicon substrate. 4. The method for producing a high-density silicon oxide film according to claim 1, wherein the flow rate value is set. シリコン基板上に、前記請求項1乃至4のいずれか1項記載の高密度シリコン酸化膜の製造方法により製造した酸化膜を設けたことを特徴とする高密度シリコン酸化膜を有するシリコン基板。 A silicon substrate having a high-density silicon oxide film, wherein an oxide film manufactured by the method for manufacturing a high-density silicon oxide film according to any one of claims 1 to 4 is provided on a silicon substrate. 請求項5記載のシリコン基板を備えた半導体デバイス。 A semiconductor device comprising the silicon substrate according to claim 5.
JP2008028337A 2008-02-08 2008-02-08 Manufacturing method of high-density silicon oxide film, silicon substrate having high-density silicon oxide film manufactured by the manufacturing method, and semiconductor device Expired - Fee Related JP5246846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028337A JP5246846B2 (en) 2008-02-08 2008-02-08 Manufacturing method of high-density silicon oxide film, silicon substrate having high-density silicon oxide film manufactured by the manufacturing method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028337A JP5246846B2 (en) 2008-02-08 2008-02-08 Manufacturing method of high-density silicon oxide film, silicon substrate having high-density silicon oxide film manufactured by the manufacturing method, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2009188282A true JP2009188282A (en) 2009-08-20
JP5246846B2 JP5246846B2 (en) 2013-07-24

Family

ID=41071211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028337A Expired - Fee Related JP5246846B2 (en) 2008-02-08 2008-02-08 Manufacturing method of high-density silicon oxide film, silicon substrate having high-density silicon oxide film manufactured by the manufacturing method, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5246846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966911A (en) * 2022-06-28 2022-08-30 无锡泓瑞航天科技有限公司 Antireflective film group for silicon substrate and application thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126641A (en) * 1983-01-11 1984-07-21 Seiko Epson Corp Photo-oxidation
JPS61199640A (en) * 1985-02-28 1986-09-04 Sony Corp Atom introducing device
JPH06151414A (en) * 1992-11-02 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> Gas-heating system
JPH06349812A (en) * 1993-06-14 1994-12-22 Kimmon Mfg Co Ltd Device for heating clean gas
JPH09129632A (en) * 1995-11-06 1997-05-16 Fujitsu Ltd Manufacture of semiconductor device
JPH09260299A (en) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd Semiconductor device
JP2000235975A (en) * 1999-02-15 2000-08-29 Nec Corp Method of forming gate oxide film
JP2001345321A (en) * 2000-05-31 2001-12-14 Tokyo Electron Ltd Oxidation treatment method and device
JP2003007693A (en) * 2001-06-27 2003-01-10 Ushio Inc Optical processing apparatus
JP2003124469A (en) * 2001-10-09 2003-04-25 Hitachi Ltd Thin film transistor and manufacturing method thereof
JP2003209108A (en) * 2001-11-08 2003-07-25 Meidensha Corp Method and apparatus for forming oxide film
JP2003224117A (en) * 2002-01-31 2003-08-08 Advanced Lcd Technologies Development Center Co Ltd Device for forming insulation film
JP2005175023A (en) * 2003-12-08 2005-06-30 National Institute Of Advanced Industrial & Technology High-density silicon oxide film and its forming method, and semiconductor device using the same
JP2005217232A (en) * 2004-01-30 2005-08-11 Meidensha Corp Ozone treatment apparatus
JP2007087872A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Plasma surface treatment method and device
JP2009123849A (en) * 2007-11-13 2009-06-04 Meidensha Corp Oxide film forming method, and device therefor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126641A (en) * 1983-01-11 1984-07-21 Seiko Epson Corp Photo-oxidation
JPS61199640A (en) * 1985-02-28 1986-09-04 Sony Corp Atom introducing device
JPH06151414A (en) * 1992-11-02 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> Gas-heating system
JPH06349812A (en) * 1993-06-14 1994-12-22 Kimmon Mfg Co Ltd Device for heating clean gas
JPH09129632A (en) * 1995-11-06 1997-05-16 Fujitsu Ltd Manufacture of semiconductor device
JPH09260299A (en) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd Semiconductor device
JP2000235975A (en) * 1999-02-15 2000-08-29 Nec Corp Method of forming gate oxide film
JP2001345321A (en) * 2000-05-31 2001-12-14 Tokyo Electron Ltd Oxidation treatment method and device
JP2003007693A (en) * 2001-06-27 2003-01-10 Ushio Inc Optical processing apparatus
JP2003124469A (en) * 2001-10-09 2003-04-25 Hitachi Ltd Thin film transistor and manufacturing method thereof
JP2003209108A (en) * 2001-11-08 2003-07-25 Meidensha Corp Method and apparatus for forming oxide film
JP2003224117A (en) * 2002-01-31 2003-08-08 Advanced Lcd Technologies Development Center Co Ltd Device for forming insulation film
JP2005175023A (en) * 2003-12-08 2005-06-30 National Institute Of Advanced Industrial & Technology High-density silicon oxide film and its forming method, and semiconductor device using the same
JP2005217232A (en) * 2004-01-30 2005-08-11 Meidensha Corp Ozone treatment apparatus
JP2007087872A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Plasma surface treatment method and device
JP2009123849A (en) * 2007-11-13 2009-06-04 Meidensha Corp Oxide film forming method, and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966911A (en) * 2022-06-28 2022-08-30 无锡泓瑞航天科技有限公司 Antireflective film group for silicon substrate and application thereof
CN114966911B (en) * 2022-06-28 2024-04-02 无锡泓瑞航天科技有限公司 Anti-reflection film group for silicon substrate and application thereof

Also Published As

Publication number Publication date
JP5246846B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Afanas’ ev et al. Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al 2 O 3 and ZrO 2
Alers et al. Intermixing at the tantalum oxide/silicon interface in gate dielectric structures
Ramanathan et al. Electrical properties of thin film zirconia grown by ultraviolet ozone oxidation
Afanas’ ev et al. Determination of interface energy band diagram between (100) Si and mixed Al–Hf oxides using internal electron photoemission
Craciun et al. Characteristics of dielectric layers grown on Ge by low temperature vacuum ultraviolet-assisted oxidation
Bastos et al. Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO 2 films annealed in O 2
Kim Visible light emissions and single-electron tunneling from silicon quantum dots embedded in Si-rich SiO 2 deposited in plasma phase
Watanabe et al. La–silicate gate dielectrics fabricated by solid phase reaction between La metal and SiO 2 underlayers
Sutherland et al. Stoichiometry reversal in the growth of thin oxynitride films on Si (100) surfaces
Itapu et al. Modification of reactively sputtered NiOx thin films by pulsed UV laser irradiation
Fulton et al. Interface instabilities and electronic properties of ZrO 2 on silicon (100)
Ramanathan et al. Ultrathin zirconia/SiO2 dielectric stacks grown by ultraviolet–ozone oxidation
US7867918B1 (en) Semiconductor topography including a thin oxide-nitride stack and method for making the same
JP5246846B2 (en) Manufacturing method of high-density silicon oxide film, silicon substrate having high-density silicon oxide film manufactured by the manufacturing method, and semiconductor device
Goncharova et al. Si quantum dots in silicon nitride: Quantum confinement and defects
JP2005539367A (en) Semiconductor-based UV-enhanced oxynitridation
CN115485817A (en) Thermal oxide film forming method for semiconductor substrate
JP2005175023A (en) High-density silicon oxide film and its forming method, and semiconductor device using the same
Fukano et al. Highly insulating ultrathin SiO 2 film grown by photooxidation
Kanashima et al. Optical characterizations of photo‐induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet, and visible region
Ikeda et al. Effect of nitrogen plasma conditions on electrical properties of silicon oxynitrided thin films for flash memory applications
Albertin et al. Study of PECVD SiOxNy films dielectric properties with different nitrogen concentration utilizing MOS capacitors
Igamov et al. Investigation of Coatings Formed by Thermal Oxidation on Monocrystalline Silicon
Hourdakis et al. Electrical and structural properties of ultrathin SiON films on Si prepared by plasma nitridation
Sohgawa et al. Preparation and characterization of ZrO 2/Si structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees