JP2003007693A - Optical processing apparatus - Google Patents

Optical processing apparatus

Info

Publication number
JP2003007693A
JP2003007693A JP2001195429A JP2001195429A JP2003007693A JP 2003007693 A JP2003007693 A JP 2003007693A JP 2001195429 A JP2001195429 A JP 2001195429A JP 2001195429 A JP2001195429 A JP 2001195429A JP 2003007693 A JP2003007693 A JP 2003007693A
Authority
JP
Japan
Prior art keywords
lamp
light
vacuum ultraviolet
excimer
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001195429A
Other languages
Japanese (ja)
Other versions
JP3716762B2 (en
Inventor
Kiyoyuki Kaburagi
清幸 蕪木
Kazuyuki Mori
和之 森
Kenichi Hirose
賢一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2001195429A priority Critical patent/JP3716762B2/en
Publication of JP2003007693A publication Critical patent/JP2003007693A/en
Application granted granted Critical
Publication of JP3716762B2 publication Critical patent/JP3716762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve a uniform thickness of an insulating thin film over the whole surface of a semiconductor substrate, by having the surface of the semiconductor substrate irradiated with vacuum ultraviolet rays simultaneously as with thermally oxidized film formation, where the uniformity of the thickness of the insulating thin film higher than 10 nm could not be achieved through only the thermally oxidized film formation. SOLUTION: A processing chamber for forming a process gas atmosphere and a lamp house for receiving a lamp which irradiates vacuum ultraviolet rays and forming a specific atmosphere are separated by a light-transmitting window. A stage for supporting a subject to be processed and a movable light-shielding mask having a slit formed therein disposed near the subject to be processed are provided in the processing chamber. The stage is equipped with a heating mechanism. In the lamp house, a window for transmitting vacuum ultraviolet rays whose wavelengths are not larger than 200 nm is provided at the end of a nearly cylindrical discharge container. A single or a plurality of excimer-generating gases are filled in the discharge container. The optical processing apparatus is characterized by comprising the lamp for radiating the excimer light through the vacuum ultraviolet ray transmitting window by discharging the excimer-generating gas via a dielectric constituting the discharge container and a mechanism for moving the lamp nearly, in parallel to the surface of the subject to be processed with variable speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造プロセ
スにおけるシリコン半導体基板の酸化絶縁膜形成に使用
する光処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical processing apparatus used for forming an oxide insulating film on a silicon semiconductor substrate in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】二酸化珪素(SiO)は、禁制帯幅が
約9eVと広く、容易に価電子帯の電子を伝導帯に励起
できない上に、Siとの界面のエネルギー障壁高さが電
子については、約3.1eV、正孔に対して3.8eV
と高く、容易にSi基板からの電荷を注入することがで
きない。このため、Si半導体基板上に形成されたSi
絶縁膜は優れた絶縁特性を示す。半導体プロセスに
おいて、シリコン半導体基板上に酸化絶縁薄膜を形成す
る方法としては、熱酸化膜形成法、CVD法、PVD
(スパッタリング)法などがある。
2. Description of the Related Art Silicon dioxide (SiO 2 ) has a wide forbidden band width of about 9 eV, cannot easily excite electrons in the valence band into the conduction band, and has a high energy barrier height at the interface with Si. Is about 3.1 eV and 3.8 eV for holes.
Therefore, the charge from the Si substrate cannot be easily injected. Therefore, the Si formed on the Si semiconductor substrate
The O 2 insulating film exhibits excellent insulating properties. In a semiconductor process, as a method of forming an oxide insulating thin film on a silicon semiconductor substrate, a thermal oxide film forming method, a CVD method, PVD
(Sputtering) method.

【0003】特に熱酸化膜形成法は、現在半導体製造プ
ロセスで最も広く利用されている。ここで熱酸化膜形成
は、一般的には、ヒーターにより加熱された石英ガラス
製の炉芯管内に半導体基板をセットし、その後(1)窒
素ガスをキャリアガスとして所定の濃度の酸素ガスを処
理室内に流して酸化処理を行うドライ酸素酸化、(2)
窒素ガスをキャリアガスとして加熱水を通して酸素ガス
とを供給するウェット酸素酸化、(3)加熱水蒸気(ス
チーム)による100%スチーム酸化、(4)スチーム
とともに窒素ガスを流すスチーム酸化、(5)水素ガス
と酸素ガスを燃焼し、生成した純度の高い水蒸気を供給
するパイロジェニック酸化、(6)窒素ガスをキャリア
ガスとして酸素ガスを液体酸素を通して流す酸素分圧酸
化、(7)窒素ガスと酸素ガスと一緒に塩素ガスを添加
して流す塩酸酸化などがある。
In particular, the thermal oxide film forming method is currently most widely used in the semiconductor manufacturing process. Here, the thermal oxide film is generally formed by setting a semiconductor substrate in a quartz glass furnace core tube heated by a heater, and then (1) treating a predetermined concentration of oxygen gas with nitrogen gas as a carrier gas. Dry oxygen oxidation, which is carried out by oxidizing it indoors (2)
Wet oxygen oxidation in which nitrogen gas is used as carrier gas to supply oxygen gas through heated water, (3) 100% steam oxidation by heated steam (steam), (4) steam oxidation in which nitrogen gas flows together with steam, (5) hydrogen gas Pyrogenic oxidation that burns oxygen gas with oxygen and supplies the generated high-purity steam, (6) Oxygen partial pressure oxidation in which oxygen gas is passed through liquid oxygen with nitrogen gas as carrier gas, (7) Nitrogen gas and oxygen gas For example, there is hydrochloric acid oxidation in which chlorine gas is added and flowed together.

【0004】熱酸化膜形成法は、特に良質なSiO
絶縁膜が得られる事が知られており、MOSトランジス
タのゲート絶縁膜やキャパシタ絶縁膜には、熱酸化膜形
成法によるSiOの絶縁膜が用いられている。昨今の
MOSトランジスタあるいはキャパシタの微細化あるい
は、高密度化、高速化に伴い、このゲート絶縁膜の厚み
は、薄膜化かつ高信頼性の傾向にある。
It is known that the thermal oxide film forming method can obtain a particularly good quality SiO 2 insulating film. For the gate insulating film and the capacitor insulating film of a MOS transistor, the SiO 2 insulating film formed by the thermal oxide film forming method is used. An insulating film is used. With the recent miniaturization, high density, and high speed of MOS transistors or capacitors, the thickness of the gate insulating film tends to be thin and highly reliable.

【0005】ゲート絶縁膜あるいはキャパシタ絶縁膜に
要求される性能として、ピンホールなどの欠陥がなく、
絶縁膜としての完全性が高いことが挙げられる。より具
体的には、絶縁耐圧が高く、形成されたSiO膜とシ
リコンとの境界面における固定電荷やトラップ等が少な
いなどの電気的特性がよく、一定電圧を印加した時の絶
縁破壊に至るまでの時間が長く、形成されたSiO
に一定の電流を流し続ける場合に絶縁破壊に至るまでの
総電荷量が多いことなどが上げられる。
As the performance required for the gate insulating film or the capacitor insulating film, there are no defects such as pinholes,
It can be mentioned that the insulating film has high integrity. More specifically, it has good electrical characteristics such as high withstand voltage and few fixed charges and traps at the interface between the formed SiO 2 film and silicon, leading to dielectric breakdown when a constant voltage is applied. It takes a long time to reach the point where the total amount of electric charge until dielectric breakdown is large when a constant current continues to flow through the formed SiO 2 film.

【0006】[0006]

【発明が解決しようとする課題】先に述べた絶縁膜の薄
膜化の傾向にともない、上記以外の要求として、Si半
導体基板全面に均一な膜厚を形成することが不可欠であ
るが、現状のゲート絶縁膜あるいはキャパシタ絶縁膜の
厚みは10nmを切るところまできている。ここで、原
子レベルで観察した場合、例えば単結晶Siの(10
0)面の原子段差は、約0.18nmとなり、10nm
の絶縁膜の厚みに対して約2%、5nmのそれに対して
は約4%となる。昨今の半導体基板径が8〜12インチ
にも達する全面で、完全に原子段差をなくすことは技術
的に非常に困難である。
With the above-mentioned tendency of thinning the insulating film, it is indispensable to form a uniform film thickness on the entire surface of the Si semiconductor substrate as a requirement other than the above. The thickness of the gate insulating film or the capacitor insulating film is less than 10 nm. Here, when observed at the atomic level, for example, (10
The atomic step on the (0) plane is about 0.18 nm, which is 10 nm.
The thickness of the insulating film is about 2%, and that of 5 nm is about 4%. It is technically very difficult to completely eliminate atomic steps over the entire surface of a semiconductor substrate having a diameter of 8 to 12 inches these days.

【0007】たとえば文献(半導体プロセス技術 丹呉
浩侑編 P140〜143)にあるように、熱酸化膜形
成は、良質なSiO膜が得られる反面、薄膜形成速度
が早く、例えば10nm程度の厚さのSiO2膜は、9
00℃の乾燥酸素中で約10分、同温度の水蒸気中で1
分程度で得られる。しかし、900℃という低温では、
酸化にともない発生する応力の開放が進まず、シリコン
溝(トレンチ)で酸化が遅くなることが知られており、
また1分では、厚みの制御が困難である。したがって、
今後の微細化に伴い、半導体基板全体にサブナノメータ
から数ナノメータ程度の均一な薄膜を得ることは従来の
熱酸化膜形成では容易ではなかった。
[0007] For example, as described in the literature (Semiconductor Process Technology, Hiroyuki Tango, P140-143), the thermal oxide film formation yields a good quality SiO 2 film, but on the other hand, the thin film formation rate is fast, for example, a thickness of about 10 nm. The SiO2 film of is 9
Approximately 10 minutes in dry oxygen at 00 ° C, 1 in steam at the same temperature
Get in minutes. However, at a low temperature of 900 ° C,
It is known that the stress generated by oxidation does not release stress and the oxidation is slowed in the silicon trench.
Further, it is difficult to control the thickness in 1 minute. Therefore,
With the miniaturization in the future, it has been difficult to obtain a uniform thin film of sub-nanometer to several nanometers on the entire semiconductor substrate by the conventional thermal oxide film formation.

【0008】この理由には様々な要因が考えられるが、
薄膜であるが故に、短時間に半導体基板を昇温し、半導
体基板全体を均一な温度に維持しなければならないこ
と、また半導体基板表面近房の酸素分子や水分子といっ
た酸化剤の濃度を均一に維持すること、酸化プロセスを
所望の厚みで確実に停止させるために、短時間で降温し
なければならないこと、また上述したシリコンの酸化に
よる体積膨張にともなう応力発生などが考えられる。
There are various possible reasons for this,
Because it is a thin film, the temperature of the semiconductor substrate must be raised in a short time to maintain a uniform temperature throughout the semiconductor substrate, and the concentration of oxidants such as oxygen molecules and water molecules near the surface of the semiconductor substrate must be uniform. The temperature may be maintained for a short time in order to surely stop the oxidation process at a desired thickness, and the stress caused by the above-described volume expansion due to the oxidation of silicon may be considered.

【0009】本発明は、上記課題を鑑みてなされたもの
であり、その目的とするところは、熱酸化膜形成のみで
は、達成しえなかった半導体基板全面にわたって10n
m以下の絶縁薄膜の厚みの均一性並びに均質性を被照射
物の加熱と同時に半導体基板表面に真空紫外光を照射す
ることにより、達成することである。
The present invention has been made in view of the above problems, and an object thereof is 10n over the entire surface of a semiconductor substrate which cannot be achieved only by forming a thermal oxide film.
Uniformity and homogeneity of the thickness of the insulating thin film of m or less are achieved by irradiating the surface of the semiconductor substrate with vacuum ultraviolet light at the same time as heating the object to be irradiated.

【0010】[0010]

【課題を解決するための手段】これら課題を解決するた
めに、請求項1の発明においては、プロセスガス雰囲気
を形成する処理室と、真空紫外光を放射するランプが収
容され固有の雰囲気を形成するランプハウスとが光透過
窓により分離されており、該処理室内には被処理物が置
かれるステージと、被処理室に近接して移動可能なスリ
ットの形成された遮光マスクが配設され、該ステージは
加熱機構を具備し、該ランプハウス内には、略円筒状の
放電容器の端部に200nm以下の真空紫外光透過窓を
具備し、該放電容器内部に単一または複数からなるエキ
シマー生成ガスを封入し、該放電容器を構成する誘電体
を介してエキシマー生成ガスを放電せしめ、エキシマー
光を該真空紫外光を透過する窓部から放射するランプ
と、該ランプを前記被処理物の表面と略平行かつ速度可
変に移動させる機構とが配設されていることを特徴とす
る光処理装置とする。
In order to solve these problems, in the invention of claim 1, a processing chamber for forming a process gas atmosphere and a lamp for emitting vacuum ultraviolet light are housed to form a unique atmosphere. The lamp house is separated by a light transmitting window, a stage on which the object to be processed is placed in the processing chamber, and a light-shielding mask having a slit movable near the processing chamber is disposed. The stage is provided with a heating mechanism, the lamp house is provided with a vacuum ultraviolet light transmission window of 200 nm or less at the end of a substantially cylindrical discharge vessel, and a single or plural excimer is provided inside the discharge vessel. A lamp that encloses the generated gas, discharges the excimer generated gas through a dielectric that constitutes the discharge container, and emits excimer light from a window portion that transmits the vacuum ultraviolet light; and the lamp, It is an optical processing device according to claim in which the mechanism for moving the surface substantially parallel and variable speed of the workpiece is disposed.

【0011】請求項2に記載の発明は、前記ステージが
回転機構を備えて成ることを特徴とする請求項1に記載
の光処理装置とする。
According to a second aspect of the present invention, there is provided the optical processing device according to the first aspect, wherein the stage includes a rotating mechanism.

【0012】請求項3に記載の発明は、前記固有の雰囲
気は窒素またはアルゴンであることを特徴とする請求項
1または請求項2に記載の光処理装置とする。
According to a third aspect of the present invention, there is provided the optical processing apparatus according to the first or second aspect, wherein the unique atmosphere is nitrogen or argon.

【0013】[0013]

【作用】次に、本発明による作用について説明する。請
求項1に記載の本発明によれば、被処理物は、被処理物
を置くステージに設置された加熱機構(ヒーター)によ
り加熱がなされると同時に、ランプから放射された真空
紫外光によって、被処理物表面近傍のプロセスガス雰囲
気が活性化され、また被処理物が適切な温度に保持され
ていることから、活性化したプロセスガスの処理が精緻
にかつ均質に制御される。
Next, the operation of the present invention will be described. According to the present invention of claim 1, the object to be processed is heated by the heating mechanism (heater) installed on the stage on which the object to be processed is placed, and at the same time, by vacuum ultraviolet light emitted from the lamp, Since the process gas atmosphere near the surface of the object to be processed is activated and the object to be processed is maintained at an appropriate temperature, the processing of the activated process gas is precisely and uniformly controlled.

【0014】被処理物の処理の度合い(例えば、形成さ
れる絶縁薄膜の厚み)は、被処理物温度、プロセスガス
の分圧、照射された光の放射強度等に依存している。ま
た、前記被処理物の表面と略平行かつ速度可変にランプ
を移動させることによって、被処理物の特定個所の光の
照射量が可変できる。従って、予めランプを一定速度で
動かし、被処理物の処理の度合いを測定し、この処理度
合いと光の照度量から要求される被処理物の照射量分布
を既知とし、これを実現することで所望の処理が行え
る。
The degree of treatment of the object to be treated (for example, the thickness of the insulating thin film to be formed) depends on the temperature of the object to be treated, the partial pressure of the process gas, the radiation intensity of the irradiated light, and the like. Further, by moving the lamp substantially parallel to the surface of the object to be processed and at a variable speed, the irradiation amount of light at a specific portion of the object to be processed can be changed. Therefore, the lamp is moved at a constant speed in advance, the degree of processing of the object to be processed is measured, and the irradiation amount distribution of the object to be processed required from the degree of processing and the illuminance amount of light is known, and this is realized. The desired processing can be performed.

【0015】ランプは、略円筒形の放電容器の端部に2
00nm以下の真空紫外光を透過する窓部を具備し、該
放電容器内部で生成する200nm以下の発光波長を有
するエキシマー光を該窓面から被処理物に向け、放電容
器の長手軸を中心に同心円状の放射照度分布、例えば、
中心で最も放射照度が高く中心から離れるにしたがい照
度が減少するGaussian分布とすることができ
る。
A lamp is provided at the end of a substantially cylindrical discharge vessel.
A window portion that transmits vacuum ultraviolet light of 00 nm or less is provided, and excimer light having an emission wavelength of 200 nm or less generated inside the discharge container is directed from the window surface toward an object to be processed, with the longitudinal axis of the discharge container as a center. Concentric irradiance distribution, for example,
A Gaussian distribution in which the irradiance is highest at the center and the illuminance decreases as the distance from the center increases can be obtained.

【0016】請求項2に記載の発明としたことによっ
て、前記被処理物の表面と略平行かつ速度可変にランプ
を移動させる機構が、被処理物の回転中心から被処理物
の円周最端部を結ぶ直線のみに簡素化し、しかも回転中
心の径方向に対して、被処理物の特定個所の処理量を可
変、または、被処理物の全面の処理量を均一化できる。
According to the invention as set forth in claim 2, the mechanism for moving the lamp substantially parallel to the surface of the object to be processed and variably changing the speed is such that the peripheral end of the object to be processed is rotated from the rotation center of the object to be processed. It is possible to simplify only the straight line connecting the portions, and further, the processing amount of a specific portion of the processing object can be varied in the radial direction of the rotation center, or the processing amount of the entire surface of the processing object can be made uniform.

【0017】請求項3に記載の発明としたことによっ
て、ランプハウス内のランプの窓部から放射される真空
紫外光が、雰囲気により吸収されることを極力抑え、プ
ロセスガス雰囲気と被処理物の表面に効率的に吸収かつ
照射することとなる。
According to the third aspect of the present invention, the vacuum ultraviolet light emitted from the window portion of the lamp in the lamp house is suppressed from being absorbed by the atmosphere as much as possible, and the process gas atmosphere and the object to be processed are reduced. The surface will be efficiently absorbed and irradiated.

【0018】なお、真空紫外光の照射に際し、棒状の紫
外線ランプを被処理物に平行に配置して使用することが
考えられるが、棒状の紫外線ランプを使用すると発生し
た光の利用効率が極めて悪くなる不具合がある。
When irradiating with vacuum ultraviolet light, it is possible to use a rod-shaped ultraviolet lamp by arranging it in parallel with the object to be treated, but when the rod-shaped ultraviolet lamp is used, the utilization efficiency of the generated light is extremely poor. There is a problem that becomes.

【0019】そこで、中心照度の強い紫外線ランプとし
て、本請求項1に記載の「略円筒状の放電容器の端部に
200nm以下の真空紫外光を透過する窓部を具備し、
該放電容器内部に単一または複数からなるエキシマー生
成ガスを封入し、該放電容器を構成する誘電体を介して
エキシマー生成ガスを放電せしめ、エキシマー光を該真
空紫外光透過窓から放射するランプ」(以降ヘッドオン
型バリアランプと称す)を使用することになる。ヘッド
オン型バリアランプを使用すると中心部の強度が強く、
発生した光の利用効率が高くなるからである。
Therefore, as an ultraviolet lamp having a strong central illuminance, a "window portion for transmitting vacuum ultraviolet light of 200 nm or less is provided at an end portion of a substantially cylindrical discharge vessel according to claim 1.
A lamp that encloses a single or a plurality of excimer-producing gases inside the discharge vessel, discharges the excimer-producing gas through a dielectric material forming the discharge vessel, and emits excimer light from the vacuum ultraviolet light transmitting window. " (Hereinafter referred to as a head-on type barrier lamp) will be used. When using a head-on type barrier lamp, the strength of the central part is strong,
This is because the utilization efficiency of the generated light becomes high.

【0020】しかし、ヘッドオン型バリアランプの場
合、同心円状に概ねガウス分布の照度分布を有してお
り、遮光マスクを使用しての露光が積算光量プロファイ
ルを簡単に計算するために必要である。実際の膜形成に
おいては、一定速度移動の照射では、基板近傍のガス濃
度、基板温度分布の存在で、均一な膜形成ができず、所
定の積算光量(照射量)分布が半導体基板上で必要であ
る。遮光マスクとヘッドオン型バリアランプを組み合わ
せて照射する場合、速度可変をして照射することによ
り、所望の積算光量プロファイルを誤差なく得られると
いう理由で所定の照射量分布を半導体基板上で達成可能
となった。
However, in the case of a head-on type barrier lamp, the illuminance distribution is approximately concentric and Gaussian, and exposure using a light-shielding mask is necessary to easily calculate the integrated light amount profile. . In the actual film formation, the uniform film formation is not possible due to the existence of the gas concentration and the substrate temperature distribution in the vicinity of the substrate when the irradiation is performed at a constant speed, and a predetermined integrated light amount (irradiation amount) distribution is required on the semiconductor substrate. Is. When a combination of a light-shielding mask and a head-on type barrier lamp is used for irradiation, it is possible to achieve a desired irradiation amount distribution on the semiconductor substrate because the desired integrated light amount profile can be obtained without error by changing the irradiation speed. Became.

【0021】ここで、ヘッドオン型バリアランプについ
て説明をする。図8はヘッドオン型バリアランプ100
(図1のバリアランプ5に相当)の断面図である。放電
容器は石英ガラス製の外側管102と石英ガラス製の内
側管101とから構成されており外側管102の一端に
合成石英ガラス製の窓部103を具備している。放電空
間114内にはキセノン等が封入され、真空紫外光が該
窓部 103から放出される。
Now, the head-on type barrier lamp will be described. FIG. 8 shows a head-on type barrier lamp 100.
It is sectional drawing (equivalent to the barrier lamp 5 of FIG. 1). The discharge vessel is composed of an outer tube 102 made of quartz glass and an inner tube 101 made of quartz glass, and a window portion 103 made of synthetic quartz glass is provided at one end of the outer tube 102. Xenon or the like is enclosed in the discharge space 114, and vacuum ultraviolet light is emitted from the window 103.

【0022】内側管101は端部104、105におい
て密閉構造となっている。外側電極112はアルミニウ
ム板を半円板状に曲げた2本の電極部材からなる光反射
板を兼ねた円管状電極である。内側電極113は外側電
極同様にアルミウム板を半円板状に曲げた2本の電極部
材からなり、内側電極113への電気入力は内側電極の
一端に設けられた螺旋状バネ106に接続された高電圧
リード109を通して、電源111に接続することによ
り行われる。
The inner tube 101 has a hermetically sealed structure at the ends 104 and 105. The outer electrode 112 is a circular tubular electrode that also functions as a light reflecting plate made of two electrode members obtained by bending an aluminum plate into a semicircular plate shape. Like the outer electrode, the inner electrode 113 is composed of two electrode members formed by bending an aluminum plate into a semicircular plate shape, and the electric input to the inner electrode 113 is connected to the spiral spring 106 provided at one end of the inner electrode. This is done by connecting to the power supply 111 through the high voltage lead 109.

【0023】図9は、別形態のヘッドオン型バリアラン
プの断面図である。内側管を使用せず数本の支柱にコイ
ル状に巻き付けた内部電極113、Mo線107、Mo
箔108を有している。また、外側電極112は図8と
同構造である。電極である。これ以外でも、例えば、特
開平7-226190、特開平8-236084等に開示されているよう
なランプを適用することが可能である。
FIG. 9 is a cross-sectional view of another type of head-on type barrier lamp. Inner electrode 113, Mo wire 107, Mo wound around several columns in a coil shape without using an inner tube
It has a foil 108. The outer electrode 112 has the same structure as that shown in FIG. It is an electrode. Other than this, for example, the lamps disclosed in JP-A-7-226190 and JP-A-8-236084 can be applied.

【0024】[0024]

【発明の実施の形態】図1に本発明の第一の実施例を示
す。XY-2軸面で速度可変出来る駆動台4が設置され
たランプハウス1は、窒素またはアルゴンの不活性雰囲
気に保たれ、バリアランプ5は駆動台4に固定されてい
る。バリアランプ5は、円筒型で、放電容器の端部から
図3に示すガウス分布の照度分布を有するエキシマー光
を照射できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment of the present invention. The lamp house 1 provided with a drive table 4 whose speed can be varied on the XY-2 axis plane is kept in an inert atmosphere of nitrogen or argon, and the barrier lamp 5 is fixed to the drive table 4. The barrier lamp 5 has a cylindrical shape and can emit excimer light having the illuminance distribution of Gaussian distribution shown in FIG. 3 from the end of the discharge vessel.

【0025】また、ランプハウス1に隣接し、被処理物
を配置する処理室2は、所定の濃度の酸素分圧を保つた
めの処理ガスを流せ、且つ、減圧に排気出来るような構
造になっている。被処理物である半導体基板は、ヒータ
81を内蔵したステージ8に乗せられ450℃程度に加熱
され、透過窓3を通して、約120mm離れたバリアランプ
5からエキシマー光を照射することが出来る。尚、半導
体基板7と数mm離れて幅30mmの遮光マスク6が配置さ
れ、ランプ5のX方向の動きに合わせ移動させるが、こ
れはエキシマー光を部分的に照射するためのものであ
る。
Further, the processing chamber 2 adjacent to the lamp house 1 in which the object to be processed is arranged has a structure in which a processing gas for maintaining a partial oxygen partial pressure of a predetermined concentration can be flowed and exhausted to a reduced pressure. ing. The semiconductor substrate, which is the object to be processed, is placed on the stage 8 having the heater 81 built therein and heated to about 450 ° C., and excimer light can be emitted from the barrier lamp 5 at a distance of about 120 mm through the transmission window 3. A light-shielding mask 6 having a width of 30 mm is arranged at a distance of several mm from the semiconductor substrate 7 and is moved in accordance with the movement of the lamp 5 in the X direction, which is for partially irradiating the excimer light.

【0026】図2は遮光マスク6の隙間に半導体基板7
のB部を位置させ、バリアランプ5の中心を遮光マスク
6の隙間に位置させ、バリアランプ5を速度可変させな
がら移動させることを示している。A部は半導体基板7
の中心を通る領域、B部は半導体基板7の端部を通る領
域である。図中、半導体基板、ステージは便宜上実線で
示している。
FIG. 2 shows the semiconductor substrate 7 in the gap between the light-shielding masks 6.
It is shown that the portion B is positioned, the center of the barrier lamp 5 is positioned in the gap of the light shielding mask 6, and the barrier lamp 5 is moved while changing the speed. Part A is semiconductor substrate 7
A region passing through the center of B, and a portion B is a region passing through the edge of the semiconductor substrate 7. In the figure, the semiconductor substrate and the stage are shown by solid lines for convenience.

【0027】処理室内には、シリコン半導体基板上に酸
化膜を形成するためのプロセスガスとして酸化剤が使用
され、具体的にはバッファガスとして窒素を利用し、酸
化剤として乾燥酸素、水蒸気、またこれらにさらに塩素
ガス添加した雰囲気ガスが処理ガス供給口21から導入
され、処理ガス排気口22から排出され、所定の濃度の
酸素分圧雰囲気(例えば5乃至30%)を形成する。
In the processing chamber, an oxidant is used as a process gas for forming an oxide film on a silicon semiconductor substrate. Specifically, nitrogen is used as a buffer gas, dry oxygen and water vapor as the oxidant, and Atmospheric gas to which chlorine gas is further added is introduced from the processing gas supply port 21 and exhausted from the processing gas exhaust port 22 to form an oxygen partial pressure atmosphere of a predetermined concentration (for example, 5 to 30%).

【0028】図4(a)、(b)は、均一な酸化絶縁膜
を形成するために必要な基板上のA部、B部の照射量分
布で、図5(a)、(b)は、要求される照射量分布を
実現するためのランプの各位置での照射時間(1/ランプ
の移動速度)を示し、図6(a)、(b)は図5
(a)、(b)の照射時間で実際に照射することで得ら
れた照射量分布を示したものである。なお、ランプの移
動速度の可変は、基板表面近傍のプロセスガス雰囲気と
基板の温度とを関連付けて行われる。
FIGS. 4 (a) and 4 (b) are the dose distributions of the portions A and B on the substrate necessary for forming a uniform oxide insulating film, and FIGS. 5 (a) and 5 (b) are The irradiation time (1 / moving speed of the lamp) at each position of the lamp for realizing the required irradiation amount distribution is shown in FIGS. 6 (a) and 6 (b).
It shows the irradiation amount distribution obtained by actually irradiating with the irradiation time of (a) and (b). The moving speed of the lamp is changed by associating the temperature of the substrate with the process gas atmosphere near the surface of the substrate.

【0029】図7に本発明の第二の実施例を示す。ラン
プハウス1内の駆動台4は、1軸であり、処理室2のス
テージ8は等速で回転させることが出来る。82は回転
台である。要求される照射量分布は、基板中心を中心と
して径方向に対称な分布であり、図4(a)と同じであ
る。この場合、ランプのX方向の各位置での照射時間を
図5(a) に示された値に径の距離の2乗をかけた時
間とすると、実際に得られる照射量分布は、図6(a)
と同様になった。
FIG. 7 shows a second embodiment of the present invention. The drive table 4 in the lamp house 1 has one axis, and the stage 8 in the processing chamber 2 can be rotated at a constant speed. Reference numeral 82 is a turntable. The required dose distribution is a distribution symmetrical with respect to the center of the substrate in the radial direction, and is the same as in FIG. In this case, assuming that the irradiation time at each position in the X direction of the lamp is the time obtained by multiplying the value shown in FIG. 5 (a) by the square of the diameter distance, the actually obtained irradiation dose distribution is as shown in FIG. (A)
Became the same.

【0030】具体的な結果としては、実施例1において
は、ピンホールなどの欠陥がなく、シリコン半導体基板
上に10nm以下の絶縁薄膜を厚さのバラツキが±7%
以内の均一な膜(酸化膜)を実現でき、実施例2におい
ては、厚さのバラツキが±5%以内の均一な膜(酸化
膜)を実現できた。
As a concrete result, in Example 1, there is no defect such as a pinhole, and an insulating thin film of 10 nm or less on a silicon semiconductor substrate has a thickness variation of ± 7%.
The uniform film (oxide film) can be realized, and in Example 2, the uniform film (oxide film) with the variation in thickness being within ± 5% can be realized.

【0031】[0031]

【発明の効果】本発明によって、熱酸化膜形成のみで
は、達成しえなかった10nm以下の絶縁薄膜の厚みの
均一性、均質性をシリコン半導体基板を加熱するのと同
時に半導体基板表面に真空紫外光を照射することによ
り、半導体基板全面にわたって絶縁薄膜の厚みの均一化
することが可能となった。
According to the present invention, the uniformity and homogeneity of the thickness of the insulating thin film of 10 nm or less, which cannot be achieved only by forming the thermal oxide film, simultaneously heats the silicon semiconductor substrate, and at the same time, vacuum ultraviolet rays are applied to the surface of the semiconductor substrate. By irradiating with light, the thickness of the insulating thin film can be made uniform over the entire surface of the semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光処理装置の第一の実施例の構成を
示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of an optical processing device of the present invention.

【図2】 第一の実施例におけるシリコン半導体基板と
遮光マスクの移動を説明する図である。
FIG. 2 is a diagram for explaining movement of a silicon semiconductor substrate and a light shielding mask in the first embodiment.

【図3】 バリアランプの放射照度分布を示す図であ
る。
FIG. 3 is a diagram showing an irradiance distribution of a barrier lamp.

【図4】 均一な酸化絶縁膜を形成する照射量分布図で
ある。
FIG. 4 is a dose distribution diagram for forming a uniform oxide insulating film.

【図5】 要求される照射量分布を実現するためのラン
プの各位置での照射時間(1/移動スピード)を示す図で
ある。
FIG. 5 is a diagram showing irradiation time (1 / moving speed) at each position of the lamp for realizing a required irradiation amount distribution.

【図6】 図5の照射時間で実際に得られる照射量分布
を示した図である。
FIG. 6 is a diagram showing an irradiation amount distribution actually obtained with the irradiation time of FIG.

【図7】 本発明の光処理装置の第二の実施例の構成を
示す模式図である。
FIG. 7 is a schematic diagram showing the configuration of a second embodiment of the optical processing device of the present invention.

【図8】 ヘッドオン型バリアランプの断面図である。FIG. 8 is a cross-sectional view of a head-on type barrier lamp.

【図9】 別形態のヘッドオン型バリアランプの断面図
である。
FIG. 9 is a cross-sectional view of another type of head-on type barrier lamp.

【符号の説明】[Explanation of symbols]

1 ランプハウス 2 処理室 21処理ガス供給口 22処理ガス排気口 3 透過窓 4 駆動台 5 バリアランプ 6 遮光マスク 7 半導体基板 8 ステージ 81ヒータ 82回転台 100 ヘッドオン型バリアランプ 101内側管 102外側管 103窓部 104端部 105端部 106バネ 107Mo線 108Mo箔 109高電圧リード 110高電圧リード 111電源 112外側電極 113内側電極 114放電空間 1 lamp house 2 processing room 21 Processing gas supply port 22 Process gas exhaust port 3 transparent window 4 drive stand 5 barrier lamps 6 Shading mask 7 Semiconductor substrate 8 stages 81 heater 82 turntable 100 head-on type barrier lamp 101 inner tube 102 outer tube 103 window 104 edge 105 end 106 spring 107 Mo line 108 Mo foil 109 high voltage lead 110 high voltage lead 111 power supply 112 outer electrode 113 inner electrode 114 discharge space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣瀬 賢一 兵庫県姫路市別所町佐土1194番地 ウシオ 電機株式会社内 Fターム(参考) 5F045 AA20 AB32 AC11 AC15 AD08 BB02 EB02 EC03 EK12 EK19 EK23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Hirose             1194 Sado, Bessho Town, Himeji City, Hyogo Prefecture Usio             Electric Co., Ltd. F-term (reference) 5F045 AA20 AB32 AC11 AC15 AD08                       BB02 EB02 EC03 EK12 EK19                       EK23

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プロセスガス雰囲気を形成する処理室
と、真空紫外光を放射するランプが収容され固有の雰囲
気を形成するランプハウスとが光透過窓により分離され
ており、 該処理室内には被処理物が置かれるステージと、被処理
室に近接して移動可能なスリットの形成された遮光マス
クが配設され、該ステージは加熱機構を具備し、 該ランプハウス内には、略円筒状の放電容器の端部に2
00nm以下の真空紫外光を透過する窓部を具備し、該
放電容器内部に単一または複数からなるエキシマー生成
ガスを封入し、該放電容器を構成する誘電体を介してエ
キシマー生成ガスを放電せしめ、エキシマー光を該窓部
から放射するランプと、該ランプを前記被処理物の表面
と略平行かつ速度可変に移動させる機構とが配設されて
いることを特徴とする光処理装置。
1. A processing chamber for forming a process gas atmosphere and a lamp house for accommodating a lamp that emits vacuum ultraviolet light to form a unique atmosphere are separated by a light transmission window, and the inside of the processing chamber is covered. A stage on which the object to be treated is placed and a light-shielding mask having a slit that can be moved close to the chamber to be treated are arranged, the stage is equipped with a heating mechanism, and the lamp house has a substantially cylindrical shape. 2 at the end of the discharge vessel
The discharge vessel is provided with a window portion that transmits vacuum ultraviolet light of 00 nm or less, and a single or a plurality of excimer-producing gas is enclosed inside the discharge vessel to discharge the excimer-producing gas through the dielectric material forming the discharge vessel. A light processing apparatus comprising: a lamp that emits excimer light from the window portion; and a mechanism that moves the lamp substantially parallel to the surface of the object to be processed and at a variable speed.
【請求項2】 前記ステージが回転機構を備えて成るこ
とを特徴とする請求項1に記載の光処理装置。
2. The optical processing device according to claim 1, wherein the stage includes a rotation mechanism.
【請求項3】 前記固有の雰囲気は、窒素またはアル
ゴンであることを特徴とする請求項1または請求項2に
記載の光処理装置。
3. The optical processing apparatus according to claim 1, wherein the specific atmosphere is nitrogen or argon.
JP2001195429A 2001-06-27 2001-06-27 Light processing equipment Expired - Fee Related JP3716762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195429A JP3716762B2 (en) 2001-06-27 2001-06-27 Light processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195429A JP3716762B2 (en) 2001-06-27 2001-06-27 Light processing equipment

Publications (2)

Publication Number Publication Date
JP2003007693A true JP2003007693A (en) 2003-01-10
JP3716762B2 JP3716762B2 (en) 2005-11-16

Family

ID=19033399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195429A Expired - Fee Related JP3716762B2 (en) 2001-06-27 2001-06-27 Light processing equipment

Country Status (1)

Country Link
JP (1) JP3716762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188282A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same
CN105445312A (en) * 2015-01-04 2016-03-30 宁波英飞迈材料科技有限公司 Micro-region heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188282A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same
CN105445312A (en) * 2015-01-04 2016-03-30 宁波英飞迈材料科技有限公司 Micro-region heating device

Also Published As

Publication number Publication date
JP3716762B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP5560285B2 (en) Sample processing apparatus, sample processing system, and sample processing method
US4558660A (en) Semiconductor fabricating apparatus
US10790171B2 (en) Light-irradiation heat treatment method and heat treatment apparatus
JP6665032B2 (en) Heat treatment method and heat treatment apparatus
JP6217146B2 (en) Light source device, light irradiation device equipped with the light source device, and patterning method of self-assembled monolayer using the light irradiation device
US10998206B2 (en) Light irradiation type heat treatment apparatus
JP6563142B2 (en) Preheating process for millisecond annealing system
US20240128096A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
JPH05109674A (en) Method and device for ashing resist film
US20210051771A1 (en) Heat treatment apparatus of light irradiation type and method for cleaning heat treatment apparatus
KR100605450B1 (en) Light heating apparatus
US11764073B2 (en) Light irradiation type heat treatment method
KR20010014814A (en) Process and device for processing a material by electromagnetic radiation in a controlled atmosphere
US11282708B2 (en) Light irradiation type heat treatment method and heat treatment apparatus
JP2003007693A (en) Optical processing apparatus
JP2003133301A (en) Device and method for forming oxide film for manufacturing semiconductor, and apparatus for ultraviolet irradiation
US12051596B2 (en) Heat treatment method and heat treatment apparatus
US20220076970A1 (en) Light irradiation type heat treatment apparatus
JPH06231735A (en) Ashing device formed by using dielectric barrier discharge lamp
JP3324428B2 (en) Photoresist surface treatment equipment
JPH07288109A (en) Xenon radiation device and object surface quality improving device using it
US20070026690A1 (en) Selective frequency UV heating of films
JPH05198498A (en) Ashing device for resist film
JP3158911B2 (en) Dielectric barrier discharge lamp device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees