JPS6187349A - Semiconductor wafer - Google Patents

Semiconductor wafer

Info

Publication number
JPS6187349A
JPS6187349A JP20944684A JP20944684A JPS6187349A JP S6187349 A JPS6187349 A JP S6187349A JP 20944684 A JP20944684 A JP 20944684A JP 20944684 A JP20944684 A JP 20944684A JP S6187349 A JPS6187349 A JP S6187349A
Authority
JP
Japan
Prior art keywords
power supply
potential
wiring
chip
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20944684A
Other languages
Japanese (ja)
Inventor
Koji Senbokuya
仙北屋 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP20944684A priority Critical patent/JPS6187349A/en
Publication of JPS6187349A publication Critical patent/JPS6187349A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a burn-in to a large number of semiconductor elements under a wafer state by fitting a switch element controlling the feed operation of a power-supply electrode section and a grounding electrode section into a feed path to at least one of the power-supply electrode section and the grounding electrode section formed onto the semiconductor element. CONSTITUTION:Power supply potential is fed from an external power supply by a probe pin to an electrode section 203 on a wafer and ground potential to an electrode section 202, and potential is distributed to all chips through wirings 107, 105 in a cutting-margin section 11. Supply potential is fed to power- supply electrodes 103 through the wirings 106 from the wiring 105 on a chip 10, and connected to switching circuits 110 through wirings 109 from the wiring 107, and potential corresponding to the ground potential of the wiring 107 is fed to grounding electrodes 104 through wirings 108 when the switching circuits 110 are turned ON. The switching circuits 110 are brought to a conductive state only when high potential and low potential are each fed to the electrode sections 202, 203 for a burn-in under a wafer state, and switches brought to a non-conductive state in cases other than that are manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子のスクリーニング試験を容易にする
ための半導体ウェハに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor wafer for facilitating screening tests of semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、半導体素子のバーンイン等のスクリーニング試験
(以後バーンイン)は同一ウェハ上に形成された多数の
半導体素子毎にプローブピンを立てて電力を供給して試
験をする方法か、各半導体素子毎にスクライビングした
後にパッケージングを施して、その後にリート′ピンか
ら電力を供給して試験する方法がとられている。
Conventionally, screening tests such as burn-in of semiconductor devices (hereinafter referred to as burn-in) have been performed by setting up probe pins and supplying power to each of a large number of semiconductor devices formed on the same wafer, or by scribing each semiconductor device. After that, packaging is performed, and then testing is performed by supplying power from the REET' pin.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前者の半導体素子毎にプローブピンを立
てて検査を行なう方法は手数が複雑であり、しかも試験
工数を多くとる。又、多数のプローブピンによって自動
的に同時に試験をしようとすれば自らその試験装置が複
雑となるという欠点がある。又、パッケージング後に個
々の素子についてスクリーニング試験を行なうとすれば
、不良品の除去が遅くなるという欠点があった。
However, the former method of testing by setting up probe pins for each semiconductor element is complicated and requires a large number of testing man-hours. Another disadvantage is that if a large number of probe pins are used to automatically test at the same time, the test equipment becomes complicated. Furthermore, if a screening test is performed on each individual element after packaging, there is a drawback that removal of defective products becomes slow.

本発明の目的は、上記点に鑑み、多数の半導体素子をウ
ェハ状態でバーンインできるようにするための半導体ウ
ェハを提供することにある。
In view of the above points, an object of the present invention is to provide a semiconductor wafer that enables burn-in of a large number of semiconductor devices in wafer state.

特に、本発明はバーンインするための給電路にその給電
動作を制限するスイッチ要素を設け、バーンイン以外の
ときに誤って給電されるのを確実に防止できるようにし
た半導体ウェハを提供することにある。
In particular, it is an object of the present invention to provide a semiconductor wafer in which a switch element is provided in a power supply path for burn-in to limit the power supply operation, thereby reliably preventing erroneous power supply at times other than burn-in. .

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、同一半導体基板に、多数の半導体素子が形成
された半導体ウェハにおいて、前記半導体素子上に形成
された電源電極部及び接地電極部を有し、両電極部の少
なくとも一方に対する給電経路中にその給電動作を制御
するスイッチ要素を設け、前記電極部に給電される電位
状態に応じて前記スイッチ要素の動作状態が切換えられ
るように構成されていることを特徴とする。
The present invention provides a semiconductor wafer in which a large number of semiconductor elements are formed on the same semiconductor substrate, which has a power supply electrode part and a ground electrode part formed on the semiconductor element, and a power supply path for at least one of the two electrode parts. A switch element for controlling the power supply operation is provided at the electrode section, and the operating state of the switch element is changed depending on the potential state of the power supplied to the electrode section.

さらに、本発明は、前記電源電極部及び接地電極部に給
電する電源線及び接地線とからなる配線パターンを前記
ウェハの切りしろ部に設けたことを特徴とする。
Furthermore, the present invention is characterized in that a wiring pattern consisting of a power supply line and a ground line for feeding power to the power supply electrode part and the ground electrode part is provided in the margin part of the wafer.

〔実施例〕〔Example〕

以下、本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

本発明を実現する為のLSIのチップの構成を第1図に
、このチップを形成するウェハ上の構成を第2図に示す
。101は半導体素子であるLSIチップ、102はチ
ップ上の電極(通称バットと呼ぶ)、103は電極10
2の一部でチップに電源電位を給電する為の電源電極、
105はチップの切りしろ部111 (通称スクライブ
領域)に形成され、バーンイン時に電源電極103に電
源電位を給電する為に用いる配線領域、106は電極1
03と配線領域105を接続する配線領域で、配線領域
105,106は共にチップ内部の配線を形成する手段
と同一の手段で形成される。107はチップの切りしろ
部111に形成され、バーンイン時チップに接地電位を
給電する為に用いる配線領域、104は電極102の一
部でチップに接地電位を給電する為の接地電極、110
は配線107の電位を接地電極104に対し給電するか
否かを制御するスイッチ回路、108は接地電極104
とスイッチ回路110を接続する配線領域、109は配
線107とスイッチ回路110を接続する配線領域で、
107,108.109は共にチップ内部の配線を形成
する手段と同一の手段で形成される。
The structure of an LSI chip for realizing the present invention is shown in FIG. 1, and the structure on a wafer on which this chip is formed is shown in FIG. 101 is an LSI chip which is a semiconductor element, 102 is an electrode on the chip (commonly called a bat), and 103 is an electrode 10.
A power supply electrode for supplying a power supply potential to the chip as a part of 2,
Reference numeral 105 indicates a wiring area formed in the cutting margin 111 (commonly called scribe area) of the chip and is used to supply power potential to the power supply electrode 103 during burn-in, and 106 indicates the electrode 1.
03 and the wiring area 105, both the wiring areas 105 and 106 are formed by the same means as the wiring inside the chip. Reference numeral 107 denotes a wiring area formed in the cutting margin 111 of the chip and used to supply ground potential to the chip during burn-in; 104 denotes a ground electrode which is a part of the electrode 102 and is used to supply ground potential to the chip; 110
108 is a switch circuit that controls whether or not to supply the potential of the wiring 107 to the ground electrode 104;
109 is a wiring area that connects the wiring 107 and the switch circuit 110,
107, 108, and 109 are all formed by the same means used to form wiring inside the chip.

以上述べた構成のチップをウェハ上に形成した場合の構
成が第2図であり、201は半導体ウェハ、101は前
記構成のLSIチップ、202はウェハに外部電源から
接地電位を給電する為の給電部、205は給電部202
とチップ上の配線107を接続する配線で、チップの切
りしろ部111に形成される。203はウェハに外部電
源から電源電位を給電する為の給電部、204は給電部
203とチップ上の配線105を接続する配線で、チッ
プの切りしろ部111に形成される。以上の給電部20
2,203、配線204,205は何れもチップ内部の
配線を形成する手段と同一の手段で形成される。
FIG. 2 shows the configuration when a chip having the above-described configuration is formed on a wafer, where 201 is a semiconductor wafer, 101 is an LSI chip with the above configuration, and 202 is a power supply for supplying ground potential to the wafer from an external power source. 205 is the power supply section 202
This wiring connects the wiring 107 on the chip to the wiring 107 on the chip, and is formed in the margin 111 of the chip. Reference numeral 203 denotes a power supply unit for supplying a power supply potential from an external power supply to the wafer, and 204 indicates a wiring that connects the power supply unit 203 and the wiring 105 on the chip, which is formed in the cutting margin 111 of the chip. The above power supply unit 20
2 and 203, and wirings 204 and 205 are all formed by the same means as that used to form wiring inside the chip.

次にウェハ状態でバーンインを行なう方法を各構成要素
の作動に基づき説明する。バーンインをウェハ状態で行
なう為にはウェハ上の各チップに対し電力を給電するこ
とが不可欠であり、これを実現する為、チップの電極部
(102,103゜104等)対しプローブビンを立て
ることでも可 。
Next, a method for performing burn-in in a wafer state will be explained based on the operation of each component. In order to perform burn-in on a wafer, it is essential to supply power to each chip on the wafer, and to achieve this, probe bins are set up against the electrodes of the chips (102, 103°, 104, etc.). But it's possible.

能だが、全てのチップに対しこれを行なうにはその操作
が煩わしいこと、又こあ為の装置が複雑であること等の
問題がある。
However, there are problems such as the operation is cumbersome and the equipment for this purpose is complicated to do this for all chips.

本発明の構成はチップの切りしろ部111に形成した配
線(105,107等)により全てのチップに対し容易
に電力を供給しようとするものであり、即ちウェハ上の
電極部203に電源電位を、電瓶部202に接地電位を
プローブビンにより外部電源から給電し、切りしろ部1
11の配線107.105を通して金子ノブにこれを分
配しようとするものである。つまり、チップ上では配線
105から配線106を介し電源電極103へ電源電位
が供給され、配線107から配線109を介してスイッ
チ回路110に接続され、このスイ。
The configuration of the present invention is intended to easily supply power to all chips by wiring (105, 107, etc.) formed in the cutout portion 111 of the chip, that is, the power supply potential is applied to the electrode portion 203 on the wafer. , a ground potential is supplied to the electric flask part 202 from an external power supply through a probe bottle, and the cutting margin part 1
This is intended to be distributed to the metal knobs through the wires 107 and 105 of No. 11. That is, on the chip, a power supply potential is supplied from a wiring 105 to a power supply electrode 103 via a wiring 106, and is connected to a switch circuit 110 from a wiring 107 to a wiring 109.

子回路110がONの場合に配線108を介して、配線
107の接地電位に相当する電位が接地電極104に供
給される。これによれば電力供給の為のプローブピンは
1ウェハ当り2本で行なうことが可能で、その容易さは
言うまでもない。
When the child circuit 110 is ON, a potential corresponding to the ground potential of the wiring 107 is supplied to the ground electrode 104 via the wiring 108 . According to this, it is possible to use two probe pins per wafer for power supply, and it goes without saying that this is easy.

次に、以上の作動のうちスイッチ・回路110の機能に
ついて補足説明する。スイッチ回路110は、ウェハで
のバーンインを可能にする為に構成した配線105,1
07等をバーンイン時にのみ)幾11しさせる為、即ち
、■チップ101の良否を−t’ll断する為のウェハ
試験時や、■組付後のパッケージ状態での製品試験や、
■製品出荷後の実詰動作状態では、千ノブに構成されて
いる本来の回路機能に対し何ら影響させない為に、付加
したものである。
Next, the functions of the switch/circuit 110 among the above operations will be supplementarily explained. The switch circuit 110 includes wiring lines 105 and 1 configured to enable burn-in on the wafer.
07 etc. only during burn-in), i.e., during wafer testing to determine whether the chip 101 is good or not, and during product testing in the packaged state after assembly.
■This was added to ensure that it does not affect the original circuit function of the 1000-knob in the fully loaded operating state after the product is shipped.

したがって、ウェハ状態でのバーンインを行なう為に、
電桟部202,203に対し、各々高電位・低電位を給
電した場合にのみスイッチ回路110が導通状態となり
、それ以外の場合、即ち前記■〜■の場合には非導通と
なる特徴を有したスイッチである。このようなスイッチ
は従来の技術で容易に製造でき、かつチップを構成する
他の回路構成要素と同一の手段で製造が可能である。
Therefore, in order to perform burn-in in the wafer state,
The switch circuit 110 has a feature that it becomes conductive only when high potential and low potential are supplied to the electric crosspieces 202 and 203, respectively, and becomes non-conductive in other cases, that is, in the cases ① to ① above. It is a switch that has been installed. Such a switch is easily manufactured using conventional techniques and can be manufactured by the same means as the other circuit components that make up the chip.

そこで、本発明の作動をさらに具体的に説明する。第2
図において、シリコンウェハ201に形成された各チッ
プ101に対し、給電用電極202及びこれに接続する
配線部205,107を通じ接地電位を供給し、給電用
電極203及びこれに接続する配線部204,105を
通じ電源電位を供給する。給電用電極202,203は
プローブビン等を通じ外部電源から電源及び接地の2つ
の基準電位を受け、前記配線部を通じウェハ上の全チッ
プに分配する。
Therefore, the operation of the present invention will be explained in more detail. Second
In the figure, a ground potential is supplied to each chip 101 formed on a silicon wafer 201 through a power supply electrode 202 and wiring sections 205 and 107 connected thereto, and a power supply electrode 203 and a wiring section 204 connected thereto, A power supply potential is supplied through 105. The power supply electrodes 202 and 203 receive two reference potentials, power and ground, from an external power source through a probe bottle or the like, and distribute them to all chips on the wafer through the wiring section.

又、チップは前記2つの基準電位間の電位差に相当する
電位差をその電源電極103、接地電極104に受は通
電状態となる。この構成で用いる給電用電極202.2
03及び105,107゜204.205の配線部は、
チップ内の配線及び電極を形成する手段と同一の手段で
形成する為、製造工程の追加、変更は不要である。又こ
れらは従来、ウェハの切りしろ部111として用いてい
る領域に形成できる程度の配線幅を有するものであり、
従ってチップサイズには何ら影響を及ぼさずウェハ上の
チップ数を制限するものではない。
Further, the chip receives a potential difference corresponding to the potential difference between the two reference potentials through its power supply electrode 103 and ground electrode 104, and becomes energized. Power supply electrode 202.2 used in this configuration
The wiring part of 03, 105, 107° 204.205 is
Since it is formed by the same means used to form wiring and electrodes within the chip, there is no need to add or change the manufacturing process. In addition, these wires conventionally have a wiring width that can be formed in the area used as the margin 111 of the wafer,
Therefore, it does not affect the chip size and does not limit the number of chips on the wafer.

以上によりウェハ上の全てのチップに対し電力を供給す
る方法を説明したが、次にこの方法により給電されるL
SIチップ上の作動に関して第1図、第3図により説明
する。第1図中の配線105.107は106及び10
9の配線を通じて各々電源電極103、スイッチ回路1
10に接続する。電源電極103は第2図給電電極20
3に供給される外部電源からの電源電位を直接給電され
る。一方、第2図中の給電電極202に供給される接地
電位はスイッチ回路110を経て接地電極104に給電
される。
The method for supplying power to all chips on a wafer has been explained above.
The operation on the SI chip will be explained with reference to FIGS. 1 and 3. Wires 105 and 107 in Figure 1 are 106 and 10
9 wirings respectively connect the power supply electrode 103 and the switch circuit 1.
Connect to 10. The power supply electrode 103 is the power supply electrode 20 in FIG.
The power supply potential from the external power supply supplied to 3 is directly supplied. On the other hand, the ground potential supplied to the power supply electrode 202 in FIG. 2 is supplied to the ground electrode 104 via the switch circuit 110.

以下に上記スイッチ回路110の構成及び作動を説明す
る。第3図はスイッチ回路110の構成例である。端子
301は第1図中の配線109と接続し、端子302は
第1図中の配線108と接続する。303はP型のモス
トランジスタで、ソースは端子302と、ドレインは電
流制限用ヒユーズ304と、ゲートは保護抵抗305を
介してドレインに接続する。前記ヒユーズ304は配線
109の導体材料と同一の、/l又はAn!S i等で
形成され、第5図(A ’)の如く配線109に比べ電
流路が狭くなるよう配線幅を狭くするか、または第5図
(B)の如く配線の厚みを薄くするように構成されてお
り、前記トランジスタ303に過大電流が流れたときに
ヒユーズ部304の電流密度が大きくなり、エレクトロ
マイグレーションによる切断、又は発熱により溶断が発
生し過大電流を遮断する。
The configuration and operation of the switch circuit 110 will be explained below. FIG. 3 shows an example of the configuration of the switch circuit 110. Terminal 301 is connected to wiring 109 in FIG. 1, and terminal 302 is connected to wiring 108 in FIG. A P-type MOS transistor 303 has a source connected to the terminal 302, a drain connected to a current limiting fuse 304, and a gate connected to the drain via a protective resistor 305. The fuse 304 is made of the same conductive material as the wiring 109, /l or An! The wiring width is made narrower so that the current path is narrower than the wiring 109 as shown in FIG. 5(A'), or the wiring thickness is made thinner as shown in FIG. 5(B). When an excessive current flows through the transistor 303, the current density of the fuse portion 304 increases, and cutting occurs due to electromigration or fusing occurs due to heat generation, thereby interrupting the excessive current.

第4図は前記スイッチ110と、LSIの電源電極10
3から接地電極104に至る電流経路を簡単の為に抵抗
に置き換えた場合の等価回路で、402は第1図の電源
電極103に相当する。抵抗401はチップ101の電
源電極103から接地電極104に至る電流経路を等測
的に置き換えた抵抗である。この時、端子402に高電
圧VHを給電し端子301に低電圧Vしを印加すると端
子302にはMM=VL+V丁P<VHなる電圧V M
が発生する。
FIG. 4 shows the switch 110 and the power supply electrode 10 of the LSI.
This is an equivalent circuit when the current path from 3 to the ground electrode 104 is replaced with a resistor for simplicity, and 402 corresponds to the power supply electrode 103 in FIG. The resistor 401 is a resistor that isometrically replaces the current path from the power supply electrode 103 to the ground electrode 104 of the chip 101. At this time, when the high voltage VH is supplied to the terminal 402 and the low voltage V is applied to the terminal 301, the voltage V M at the terminal 302 becomes MM=VL+V<VH.
occurs.

この第4図中のスイッチ部のインピーダンスは前記等価
抵抗40のインピーダンスに比べ十分小さいものとし、
又VTP ’は前記モストランジスタ303のしきい値
電圧VTPと基板効果による変動分ΔVTPを加えたV
TR’ =VTR+ΔVTPで表される電圧である。前
記VMが接地電極104に発生する電圧で、従ってLS
Iチップの電源電極103と接地電極104間にはVH
VFlなる電位差が印加されることになり、この電位差
がLSIの動作を可能にする。逆にこのvH−vMがL
SIをバーンインする時の電源電位差に等しくなるよう
VHと■しの電位を与えれば、LSIチップに対し所定
の電位差が給電可能となる。
It is assumed that the impedance of the switch section in FIG. 4 is sufficiently smaller than the impedance of the equivalent resistance 40,
Further, VTP' is the sum of the threshold voltage VTP of the MOS transistor 303 and the variation ΔVTP due to the substrate effect.
It is a voltage expressed as TR'=VTR+ΔVTP. The VM is the voltage generated at the ground electrode 104, and therefore LS
There is a VH between the power supply electrode 103 and the ground electrode 104 of the I chip.
A potential difference VFl is applied, and this potential difference enables the operation of the LSI. Conversely, this vH-vM is L
By applying the potentials of VH and 2 so as to be equal to the power supply potential difference when burning in the SI, a predetermined potential difference can be supplied to the LSI chip.

次にスイッチ回路110が導通しない場合を説明する。Next, a case where the switch circuit 110 is not conductive will be described.

LSIのチップの良否を判別する為の試験時や、LSI
チップを組付け、パッケージ封止した後の状態ではLS
Iを動作させる為に印加する電源、接地の2つの基準電
位は、各々第1図に示す電源電極103及び接地電極1
04に直接印加される。つまり、第4図で端子402に
電源電位、端子302に接地電位が供給された状態にあ
り、この時モストランジスタ303を導通させるには端
子301に対し接地電位よりもさらに低い負の電位(?
−V T P ’  (V) )を印加しなければなら
ない。
During testing to determine the quality of LSI chips,
After assembling the chip and sealing the package, it is LS.
The two reference potentials of the power supply and ground applied to operate I are the power supply electrode 103 and the ground electrode 1 shown in FIG. 1, respectively.
04 directly. That is, in FIG. 4, the power supply potential is supplied to the terminal 402 and the ground potential is supplied to the terminal 302. At this time, in order to make the MOS transistor 303 conductive, a negative potential (?) lower than the ground potential is applied to the terminal 301.
-V T P '(V)) must be applied.

しかるにLSI  (CMO3の場合)は接地電位に対
し正側の電位で動作する為、万一故障が発生し配線10
7がチップ内部の構成要素(例えば0MO5の基板ニ一
般にN型基板の場合VCC電位)とショートしても上記
−VTP’(Vlなる電位が供給されることはなく、よ
ってスイッチモストランジスタ303は導通状態にはな
り得ない。したがって、接地電位が供給されている接地
電極104に対し何ら影響を及ぼすことはなく、チップ
の内部回路の動作は保証される。
However, since the LSI (in the case of CMO3) operates at a positive potential with respect to the ground potential, in the unlikely event that a failure occurs, the wiring 10
Even if 7 is shorted to a component inside the chip (for example, the VCC potential in the case of a 0MO5 substrate or an N-type substrate), the above-mentioned potential -VTP' (Vl) is not supplied, and therefore the switch MOS transistor 303 is conductive. Therefore, there is no influence on the ground electrode 104 to which the ground potential is supplied, and the operation of the internal circuits of the chip is guaranteed.

以上の説明では配線107に対する容量カップリング等
によるAC的な電位変動は無視しているが、設計時上記
AC的な影響を少なくする為の構成は可能で実際上問題
はない。
In the above explanation, AC potential fluctuations due to capacitive coupling etc. to the wiring 107 are ignored, but a configuration for reducing the AC influence is possible at the time of design, and there is no problem in practice.

以上がスイッチ回路110の作動の説明であるが、スイ
ッチ回路110を付加する効果はこれを付加しない場合
に比べ、■チップの機能良否の判定の為に個々のチップ
毎に試験する場合や、■チップをパッケージ封止した後
の製品状態での試験、および実装状態での動作時に発揮
され、それぞれ具体的には■の場合チップ毎の消費電流
が測定できること、逆にスイッチ回路110がない場合
にはチップ町の消費電流が測定できず、したがって良否
の検出が後工程となる。■の場合、前記の通り配線10
7が何らかの原因で基板等のチップ内部の構成要素とシ
ョートしてもこれが不良原因あるいは誤動作原因となら
ない、という効果となる。
The above is an explanation of the operation of the switch circuit 110, but the effect of adding the switch circuit 110 compared to the case of not adding it is: This is demonstrated during tests in the product state after the chip is sealed in a package and during operation in the mounted state. Specifically, in the case of In this case, the current consumption of the chip cannot be measured, so detection of pass/fail is a post-process. In the case of ■, wiring 10 as described above.
This has the effect that even if 7 is short-circuited to a component inside the chip such as a substrate for some reason, this will not cause a defect or malfunction.

なお、前記実施例はウェハ上の各チップ101に対し7
電源型位、接地電位のみを供給し、スタディツクバーン
インを行なう構成だが、切りしろ部にさらに多層の配線
を施し例えばクロック信号等も印加できるように構成す
ることでクロックドバーンイン(C1ocked bu
rn in )も可能となる。
Incidentally, in the above embodiment, for each chip 101 on the wafer, 7
Although this configuration performs study burn-in by supplying only the power supply type and ground potential, it is possible to perform clocked burn-in by adding multiple layers of wiring to the cutting margin and configuring it so that clock signals can also be applied.
rn in ) is also possible.

また、前記実施例ではスイッチ回路101を接地電位の
給電側に構成したが、これを電源電位給電側に構成して
もよい。
Further, in the embodiment described above, the switch circuit 101 is configured on the ground potential power supply side, but it may be configured on the power supply potential power supply side.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、ウェハ状態で各半導体
素子のバーンインが可能となり、非常に効率良く試験を
行なうことができ、後工程における歩留り十分高めるこ
とができる。しかも、バーンインを行なうための給電路
にその給電動作を制限するスイッチ要素を設けζいるた
め、バーンイン以外のときに誤って給電されるのを確実
に防止できる。
As described above, according to the present invention, it is possible to burn-in each semiconductor element in the wafer state, and it is possible to perform testing very efficiently and to sufficiently increase the yield in subsequent processes. Moreover, since a switch element is provided in the power supply path for performing burn-in to limit the power supply operation, it is possible to reliably prevent power from being erroneously supplied at times other than burn-in.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例となる半導体チップ部分を拡
大した部分平面図、第2図は同実施例で使用する半導体
ウェハ、第3図及び第4図はスイッチ回路部分の等価回
路図、第5図(Δ)、(B)はヒユーズ部分の構成例を
示す平面図と断面図である。 101・・・LSIチップ、103・・・電源型)あ1
.104・・・接地電極、105,106,107,1
08.109・・・配線領域、110・・・スイッチ回
路、111・・・リリしろ部、201・・・半導体ウェ
ハ、202.203・・・給電部、303・・・モスト
ランジスタ、304・・・電流制限用ヒユーズ。
Fig. 1 is an enlarged partial plan view of a semiconductor chip portion according to an embodiment of the present invention, Fig. 2 is a semiconductor wafer used in the same embodiment, and Figs. 3 and 4 are equivalent circuit diagrams of a switch circuit portion. , FIG. 5(Δ), and FIG. 5(B) are a plan view and a sectional view showing an example of the structure of the fuse portion. 101...LSI chip, 103...power supply type) A1
.. 104... Ground electrode, 105, 106, 107, 1
08.109... Wiring area, 110... Switch circuit, 111... Relief portion, 201... Semiconductor wafer, 202.203... Power supply portion, 303... MOS transistor, 304...・Current limiting fuse.

Claims (2)

【特許請求の範囲】[Claims] (1)同一半導体基板に、多数の半導体素子が形成され
た半導体ウェハにおいて、 前記半導体素子上に形成された電源電極部及び接地電極
部を有し、両電極部の少なくとも一方に対する給電経路
中にその給電動作を制御するスイッチ要素を設け、前記
電極部に給電される電位状態に応じて前記スイッチ要素
の動作状態が切換えられるように構成されていることを
特徴とする半導体ウェハ。
(1) In a semiconductor wafer in which a large number of semiconductor elements are formed on the same semiconductor substrate, the semiconductor wafer has a power supply electrode part and a ground electrode part formed on the semiconductor element, and a power supply path for at least one of both electrode parts is provided. A semiconductor wafer, comprising: a switch element for controlling the power supply operation; and an operating state of the switch element is changed depending on a potential state of the electric power supplied to the electrode section.
(2)前記電源電極部及び接地電極部に給電する電源線
及び接地線とからなる配線パターンを前記ウェハの切り
しろ部に設けたことを特徴とする特許請求の範囲第1項
記載の半導体ウェハ。
(2) A semiconductor wafer according to claim 1, characterized in that a wiring pattern consisting of a power supply line and a ground line for supplying power to the power supply electrode section and the ground electrode section is provided in the margin section of the wafer. .
JP20944684A 1984-10-04 1984-10-04 Semiconductor wafer Pending JPS6187349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20944684A JPS6187349A (en) 1984-10-04 1984-10-04 Semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20944684A JPS6187349A (en) 1984-10-04 1984-10-04 Semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS6187349A true JPS6187349A (en) 1986-05-02

Family

ID=16572994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20944684A Pending JPS6187349A (en) 1984-10-04 1984-10-04 Semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS6187349A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296346A (en) * 1989-05-11 1990-12-06 Matsushita Electron Corp Inspection method for semiconductor integrated device
US5138419A (en) * 1988-06-01 1992-08-11 Fujitsu Limited Wafer scale integration device with dummy chips and relay pads
US6365443B1 (en) 1999-08-26 2002-04-02 Fujitsu Limited Method of manufacturing a semiconductor device having data pads formed in scribed area

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138419A (en) * 1988-06-01 1992-08-11 Fujitsu Limited Wafer scale integration device with dummy chips and relay pads
JPH02296346A (en) * 1989-05-11 1990-12-06 Matsushita Electron Corp Inspection method for semiconductor integrated device
US6365443B1 (en) 1999-08-26 2002-04-02 Fujitsu Limited Method of manufacturing a semiconductor device having data pads formed in scribed area

Similar Documents

Publication Publication Date Title
KR100466984B1 (en) Integrated circuit chip having test element group circuit and method of test the same
US5025344A (en) Built-in current testing of integrated circuits
US20190279948A1 (en) Integrated circuit comprising a chip formed by a high-voltage transistor and comprising a chip formed by a low-voltage transistor
JP2000011684A (en) Input protective circuit, antifuse address detection circuit and semiconductor integrated-circuit device
JPH0131696B2 (en)
CN100565840C (en) Semiconductor device
US6410936B1 (en) Semiconductor device
JP2003066107A (en) Semiconductor integrated circuit
JPS6187349A (en) Semiconductor wafer
US6211689B1 (en) Method for testing semiconductor device and semiconductor device with transistor circuit for marking
US11573261B2 (en) Semiconductor device and method of operating the same
US7724011B2 (en) Semiconductor integrated circuit device with power lines improved
US5412337A (en) Semiconductor device providing reliable conduction test of all terminals
JP3783865B2 (en) Semiconductor device, burn-in test method, manufacturing method thereof, and burn-in test control circuit
JP3227207B2 (en) Semiconductor device and measuring method thereof
KR19980086656A (en) Semiconductor device with test circuit
JPH0354841A (en) Bicmos semiconductor device
JPH10135286A (en) Method and system for sorting high temperature detect product
JP2012163466A (en) Semiconductor device
JPH09199672A (en) Semiconductor integrated circuit device and method of inspection
JP2977959B2 (en) Semiconductor device and measuring method thereof
JP2002033436A (en) Semiconductor device
JP2004170126A (en) Node logic fixing circuit and iddq testing method
JP3674052B2 (en) IC wafer and burn-in method using the same
JPH05243356A (en) Semiconductor integrated circuit device and testing therefor method