JPS6187247A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6187247A
JPS6187247A JP19121384A JP19121384A JPS6187247A JP S6187247 A JPS6187247 A JP S6187247A JP 19121384 A JP19121384 A JP 19121384A JP 19121384 A JP19121384 A JP 19121384A JP S6187247 A JPS6187247 A JP S6187247A
Authority
JP
Japan
Prior art keywords
magneto
coercive force
optical recording
recording layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19121384A
Other languages
Japanese (ja)
Other versions
JPH0546623B2 (en
Inventor
Akira Aoyama
明 青山
Mamoru Sugimoto
守 杉本
Satoshi Nehashi
聡 根橋
Tatsuya Shimoda
達也 下田
Satoshi Shimokawato
下川渡 聡
Shin Funada
舩田 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19121384A priority Critical patent/JPS6187247A/en
Publication of JPS6187247A publication Critical patent/JPS6187247A/en
Priority to US07/193,020 priority patent/US5100741A/en
Publication of JPH0546623B2 publication Critical patent/JPH0546623B2/ja
Priority to US08/231,866 priority patent/US5529854A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To provide a photomagnetic recording medium which has a high S/N ratio and permits high-density and high-speed recording by forming a photomagnetic recording layer which holds magnetization and a low coercive force material layer into laminar structure and specifying the materials for the photomagnetic recording layer and low coercive force material layer. CONSTITUTION:The photomagnetic recording layer which holds the magnetization and the low coercive force material layer of which the coercive force is <=1/5 the coercive force of the photomagnetic recording layer and is selected to <=100 oersted are made into the laminar structure. The photomagnetic recording layer consists of the alloy consisting of elements of >=1 kinds among Ce, Pr and Nd as well as Fe and impurities or said alloy contg. further elements of >=1 kinds among B, C, Si P and Al or the alloy contg. further elements of >=1 kinds among Cr, Co, Ni, Cu and Mn. The low coercive force material layer is the alloy which consists of elements of >=1 kinds among Ti, Zr, Ta, Nb, W, Hf, Y, Mo, B and Si as well as Co and impurities and is dominantly amorphous.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、膜面と垂直な方向に磁化容易軸を有し、磁気
カー効果などの磁気光学効果を利用して読み出すことの
できる磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium that has an axis of easy magnetization in a direction perpendicular to the film surface and can be read using magneto-optic effects such as the magnetic Kerr effect. It is.

〔従来技術〕[Prior art]

光磁気メモリの研究は、1957年にM n B 1薄
膜上に熱ペンを用いて記録を行ない、その書き込み磁区
を磁気光学効果によって観察したのがその端緒であると
いわれている。その後のレーザの発展に刺激されて、M
nB1系の材料を中心として精力的な研究が行なわれて
きたが、レーザ光源ならびにその利用技術が未成熟であ
ったために実用化には至らなかった。
Research on magneto-optical memory is said to have its origins in 1957, when recording was performed using a hot pen on a M n B 1 thin film, and the written magnetic domain was observed using the magneto-optic effect. Stimulated by the subsequent development of lasers, M.
Although intensive research has been carried out mainly on nB1-based materials, practical use has not been achieved because laser light sources and the technology for using them are still immature.

しかし、1970年代における光情報処理関連技術の進
展および非晶質希土類遷移金属合金薄膜に代表される新
しい磁性薄膜材料の研究が進み(特許出願告告昭56−
37607)、GdIFθ。
However, in the 1970s, advances in optical information processing related technology and research into new magnetic thin film materials such as amorphous rare earth transition metal alloy thin films progressed (patent application notice 1983-
37607), GdIFθ.

TbFe 、DyFe 、Gd0oなどの合金薄膜が開
発されてきた。これらの材料は、一般に次のような特徴
を有している。
Alloy thin films such as TbFe, DyFe, and Gd0o have been developed. These materials generally have the following characteristics.

Gage 、Ga0oなどの補償点記録用光磁気記録媒
体は、カー回転角がキーーリ一点記録用光磁気記録媒体
に比較して大きく光再生特性は優れているものの保磁力
が小さく(数百エルステッド)1μm径程度の微小ビッ
トが安定に得られない。
Compensation point recording magneto-optical recording media such as Gage and Ga0o have a larger Kerr rotation angle than Keely single-point recording magneto-optical recording media and have excellent optical reproduction characteristics, but have a small coercive force (several hundred oersteds) of 1 μm. It is not possible to stably obtain small bits with the same diameter.

また、TblFe 、DyFeなどのキューリ一点記録
用光磁気記録媒体は、上述と逆に保磁力が大きく(数キ
ロエルステッド)1μm径程度の微小ヒツトを安定に得
ることが出来るものの、カー回転角が小さく光再生特性
があまり良くないなどの欠点を有していた。またTb 
、 Gd 、 D7 、 Ho 、 etc。
In addition, magneto-optical recording media for Curie single point recording such as TblFe and DyFe have a large coercive force (several kilo Oersteds) and can stably obtain microscopic hits with a diameter of about 1 μm, contrary to the above, but have a small Kerr rotation angle. It had drawbacks such as poor optical reproduction characteristics. Also Tb
, Gd, D7, Ho, etc.

重希土類は価格が高く実用に不向きであるOこれらの二
元合金薄膜の欠点を補うため、従来3つの方法が試みら
れてきた。
Heavy rare earths are expensive and unsuitable for practical use. Three methods have been tried to compensate for these drawbacks of binary alloy thin films.

(1)三元あるいは四元化する。例えば、二元のGaF
eとTbFeの長所を生かし、欠点を補うGdTbIF
@三元合金あるいはGd’l’bFe(!o四元合金の
ように多元化していく方法。(特開昭56−12690
7、特開昭57−94948)(2)二元合金薄膜のま
まで、作製法の改善あるいは新しい作製法で特性を改善
する方法。(日本応用磁気学会第27回研究会資料27
−5)(3)多層構造化する方法。記録媒体に誘電体層
を重ねて多重反射によるカー効果の増大をはかる。
(1) To become ternary or quaternary. For example, binary GaF
GdTbIF takes advantage of the strengths of e and TbFe and compensates for their weaknesses
@ A method of diversification like ternary alloy or Gd'l'bFe(!o quaternary alloy. (JP-A-56-12690
7, JP-A-57-94948) (2) A method of improving the properties of a binary alloy thin film by improving the manufacturing method or by using a new manufacturing method. (Japan Society of Applied Magnetics 27th Research Meeting Material 27
-5) (3) Method of forming a multilayer structure. A dielectric layer is layered on the recording medium to increase the Kerr effect due to multiple reflections.

また記録層と再生層を分離して、それぞれに適した材料
を用いる0あるいは記録媒体の裏側に反射層を設けて、
表面からの反射光だけでなく、媒体を透過した光も反射
させて利用するなどの方法である。(特開昭58−20
0447) また、光磁気記録に重希土類−遷移金属を用い反射膜の
かわりにパーマロイ・IFe@ Co・N1を用いたも
の(特開s 8−222455 )も見られるが、ビッ
トが安定に存在する特徴しかなく、パーマロイ・’Fe
eOo・N1が多結晶膜であるため・ノイズの原因とな
りs / Hの劣化につながっていた。
In addition, the recording layer and the reproducing layer are separated, and a reflective layer is provided on the back side of the recording medium using materials suitable for each.
This method uses not only the light reflected from the surface but also the light that has passed through the medium. (Unexamined Japanese Patent Publication No. 58-20
0447) In addition, there is also a type that uses heavy rare earth-transition metals for magneto-optical recording and uses Permalloy/IFe@Co/N1 instead of the reflective film (Japanese Patent Application Laid-Open No. s8-222455), but the bits remain stably. There are only features, permalloy 'Fe
Since eOo・N1 is a polycrystalline film, it caused noise and led to deterioration of s/H.

しかしながら、これら上記の方法は、カー回転角は大き
くなるものの反射率が低下する、又カー回転角が多少向
上してもキューリ一温度が高くなりレーザー書き込みが
難しくなるなど一長一短があり根本的な改善には至って
いなかった。
However, these methods have advantages and disadvantages, such as increasing the Kerr rotation angle but decreasing the reflectance, and even if the Kerr rotation angle is slightly improved, the Curie temperature increases, making laser writing difficult. It had not reached that point.

〔目 的〕〔the purpose〕

本発明は、上記欠点であるカー回転角が小さい・1μm
ビットが安定に得られない等の欠点を根本的に改善し、
相反する特性を向上させ高S/N、高密度、高安定性、
高速読み書きのできる光磁気記録媒体を提供することを
目的とする@〔概 要〕 本発明の光磁気記録媒体は、磁化を保持する光磁気記録
層と、抗磁力が前記光磁気記録層の天分低抗磁力材層と
を層構造にし、前記光磁気記録層がセリウム・プラセオ
ジウム・ネオジウムのうち少なくとも一種以上の元素と
鉄及び不純物からなる合金、あるいは前記合金にさらに
、ホウ素・炭素・硅素・リン・アルミニウムのうち少な
くとも一種以上の元素を含み、またはさらにクロム・コ
バルト・ニッケル・銅・マンガンのうち少なくとも一種
以上の元素を含む合金からなることを特徴とし、且つ前
記低抗磁力材層がチタニウム・ジルコニウム・タンタル
・ニオブ・タンゲス・ニオブタングステン・ハフニウム
・イツトリウム・モリブデン・ホウ素・硅素のうち少な
くとも一種以上1 の元素とコバルト及び不純物よりな
り優位的に非晶質な合金であることを特徴とする。
The present invention has the disadvantage of having a small Kerr rotation angle of 1 μm.
We have fundamentally improved the drawbacks such as not being able to obtain stable bits,
Improving contradictory characteristics to achieve high S/N, high density, high stability,
The purpose of the magneto-optical recording medium of the present invention is to provide a magneto-optical recording medium that can be read and written at high speed. and a low coercive force material layer, and the magneto-optical recording layer is made of an alloy consisting of at least one element among cerium, praseodymium, and neodymium, iron, and impurities, or the alloy further includes boron, carbon, silicon, and impurities. The low coercive force material layer is made of an alloy containing at least one element of phosphorus and aluminum, or further contains at least one element of chromium, cobalt, nickel, copper, and manganese, and the low coercive force material layer is made of titanium.・It is characterized by being a predominantly amorphous alloy consisting of at least one element among zirconium, tantalum, niobium, tungsten, niobium, tungsten, hafnium, yttrium, molybdenum, boron, and silicon, cobalt, and impurities. .

〔実施例〕〔Example〕

以下図面を用いて本発明の詳細な説明する。 The present invention will be described in detail below using the drawings.

本発明の基本構造を第1図(α)、第1図(6)に示す
The basic structure of the present invention is shown in FIG. 1 (α) and FIG. 1 (6).

11は基板、12は光磁気記録層、13は低抗磁力材層
、14は非磁性層である。
11 is a substrate, 12 is a magneto-optical recording layer, 13 is a low coercive force material layer, and 14 is a nonmagnetic layer.

透明基板とし、読み書きする光学ヘッドは基板側に対向
し、基板を通して読み書きする場合を書いたが、これは
本質的なことではなく、基板に低抗磁力材層・光磁気記
録層、または低抗磁力材層・非磁性層・光磁気記録層と
形成し光学ヘッドを基板に対し光磁気記録媒体側に対向
配置して読み書きしても何ら問題ない。さらに本発明は
、前記構造のみに限定されるものではなく、保護膜・反
射防止膜・多重干渉エンハンス膜・透明導電膜等を設け
ることは何らさしつかえない0 実施例t (1)第2図(、X)に示す構造を有する媒体で基板2
3として、よく洗浄したガラスを用い、スパッタ法を用
いてガラス基板上に厚みsoo′j−の非晶質NdFe
E垂直磁化膜を22として形成し、その上にスパッタ法
を用い、21として0oTi非晶質膜を1oooX形成
した・上記0oTi非晶質膜の抗磁力は約7エルステッ
ドであり、試料部1とする。また比較として上記CoT
i非晶質膜のかわりにAf!、をスパッタ法で1’00
0X形成したものを試料部2とする。
I wrote about the case where the substrate is transparent and the optical head for reading and writing faces the substrate side, and reading and writing is done through the substrate, but this is not essential. There is no problem even if a magnetic material layer, a nonmagnetic layer, and a magneto-optical recording layer are formed, and an optical head is placed facing the magneto-optical recording medium side with respect to the substrate for reading and writing. Furthermore, the present invention is not limited to the above structure, and it is possible to provide a protective film, an antireflection film, a multiple interference enhancement film, a transparent conductive film, etc. Example t (1) FIG. ,
3, using well-cleaned glass, amorphous NdFe with a thickness of soo'j- is deposited on the glass substrate using the sputtering method.
An E perpendicular magnetization film was formed as 22, and an 0oTi amorphous film 1oooX was formed on it as 21 using a sputtering method. The coercive force of the above 0oTi amorphous film is about 7 Oe, and it is similar to sample part 1. do. Also, for comparison, the above CoT
i Instead of an amorphous film, Af! , by sputtering method to 1'00
The 0X formed part is designated as sample part 2.

(2)第2図(&)に示す構造を有する媒体で、(1)
と同様に23はガラス基板、22はNdFeB膜、21
は0oTi膜で・24は誘電体層で810.を800え
形成しである。これはNd?eB膜ガラス膜板ラス基板
間ることによりカー回転角をエンハンスするものである
。これを試料tJQ5とする。また比較として上記C!
oTi非晶質膜のかわりにA2をスパッタ法で1ooo
X形成したものを試料部4とする0 (3)第2図(6)に示す構造を有する媒体で、(2)
と同様に23はガラス基板、22はNdFeB膜、21
は0oTi膜、24は5102膜である。25はS i
 O。
(2) With a medium having the structure shown in FIG. 2 (&), (1)
Similarly, 23 is a glass substrate, 22 is a NdFeB film, 21
is the 0oTi film and 24 is the dielectric layer, 810. It is made up of 800 pieces. Is this Nd? The Kerr rotation angle is enhanced by interposing the eB film between the glass film and the lath substrate. This is designated as sample tJQ5. Also, for comparison, the above C!
1ooo using sputtering method of A2 instead of oTi amorphous film
0 (3) A medium having the structure shown in FIG. 2 (6), (2)
Similarly, 23 is a glass substrate, 22 is a NdFeB film, 21
is a 0oTi film, and 24 is a 5102 film. 25 is Si
O.

膜で、Nd1eB膜とC!o’[’i腹膜間形成したも
ので100X厚みである@これを試料部5とし、比較と
して0oTi膜をA2膜に置き替えたものを試料Nn6
とする。
In the film, Nd1eB film and C! o'['i The interperitoneal layer is 100X thick @This is sample part 5, and for comparison, the one in which the 0oTi film is replaced with the A2 film is sample Nn6.
shall be.

(4)第2図(d)に示す構造を有する媒体で、26は
PMMA基板であり16μ惰間隔、深さ700Xの案内
溝を設けたものである。また(1)と同様に22はNd
FeB膜、21は0oTi膜である0これを試料部7と
するOまた比較として0oTi非晶質膜のかわりにA″
2膜を形成したものを試料部8とする。
(4) In the medium having the structure shown in FIG. 2(d), reference numeral 26 is a PMMA substrate provided with guide grooves having a spacing of 16 μm and a depth of 700×. Also, as in (1), 22 is Nd
FeB film, 21 is a 0oTi film, 0 is used as the sample part 7, and for comparison, 0oTi amorphous film is replaced by A''
The sample portion 8 is formed by forming two films.

(5)第2図(1)に示す構造を有する媒体で、基板2
6として(4)と同じPMMAを用い(2)の試料部3
と同様のSin□/Nd1FeB/CoTi構造とした
ものを試料部9とし、比較として試料部9の0oTiを
A2としたものを試料部10とする。
(5) The substrate 2 is a medium having the structure shown in FIG. 2 (1).
Using the same PMMA as in (4) as 6, sample part 3 in (2)
The sample part 9 has the same Sin□/Nd1FeB/CoTi structure, and for comparison, the sample part 10 has the 0oTi of the sample part 9 changed to A2.

(6)第2図(f)に示す構造を有する媒体で、基板2
6として(4)と同じPMMAを用い(2)の試料部5
と同様の51o2/Naアe B / S i 02 
/ Oo T i構造としたものを試料部11とし、比
較として試料部11の0oT1をA2としたものを試料
部12とする。
(6) The substrate 2 is a medium having the structure shown in FIG. 2(f).
Using the same PMMA as in (4) as sample part 5 in (2) as 6.
Similar to 51o2/Naae B/S i 02
/ Oo Ti structure is designated as the sample portion 11, and for comparison, the sample portion 11 in which 0oT1 is A2 is designated as the sample portion 12.

(7)第2図(α)の構造を有する媒体で、(1)の試
料部1の0oTiを0oZrNbとしたものを試料部1
3とする。この0oZrNbの抗磁力は約5エルステッ
ドである。
(7) In the medium having the structure shown in FIG.
Set it to 3. The coercive force of this 0oZrNb is about 5 oersteds.

(8)第2図(α)の構造を有する媒体で、(1)の試
料部1のCoTiを0oTaとしたものを試料FkL1
4とする。この0oTaの抗磁力は約6エルステッドで
ある0 (9)第2図(α)の構造を持つ媒体で(1)の非晶質
N(LIP@IBを非晶質PrFeP厚さ500Xとし
たものを試料部15とし、比較として試料部15の0o
TiをAλとしたものを試料部16とする。
(8) Sample FkL1 is a medium having the structure shown in FIG.
Set it to 4. The coercive force of 0oTa is about 6 oersteds. is the sample part 15, and 0o of the sample part 15 is for comparison.
The sample portion 16 is made of Ti with Aλ.

αQ 第2図(α)の構造を持つ媒体で(1)の非晶質
NaFeBを厚み500Xの0elFeAλ0としたも
のを試料部17とし、比較のため試料m17の0oT1
をAλとしたものを試料部18とする。
αQ A medium having the structure shown in Fig. 2 (α), in which the amorphous NaFeB of (1) is made of 0elFeAλ0 with a thickness of 500X, is used as the sample part 17, and for comparison, the sample m17 is 0oT1.
Let Aλ be the sample portion 18.

αυ”第2図(α)の構造を有する媒体で(1)の試料
部1のNdFeB tr:NdPrFeとしたものを試
料部19とし、比較のため試料19の0oTiをAλと
したものを試料20とする。
αυ” A medium having the structure shown in FIG. 2 (α), in which NdFeB tr:NdPrFe of sample part 1 in (1) is used as sample part 19, and for comparison, sample 20 is made with 0oTi of sample 19 as Aλ. shall be.

(17J  第2図(α)の構造を有する媒体で(1)
の試料Nn1のNdFeBをNdlFe5iOoとした
ものを試料部21とし、比較のため試料m21の0oT
iをA℃としたものを試料部22とする。
(17J In a medium with the structure shown in Figure 2 (α) (1)
The sample part 21 is the NdFeB of the sample Nn1 in which NdlFe5iOo is used, and for comparison, the 0oT of the sample
The sample portion 22 is where i is A°C.

<13)  第2図(−)の構造を有する媒体で(5)
の試料NQ9のNdFeEiTblFθとしたも、のを
試料鳩23とし、比較のため試料Nh23の0oTiを
A2としたものを試料陽24とする。
<13) With a medium having the structure shown in Figure 2 (-) (5)
Even if NdFeEiTblFθ is set as sample NQ9, it is called sample pigeon 23, and for comparison, sample Nh23 with 0oTi set as A2 is called sample positive 24.

以上23種類のサンプルについてカー効果を測定した。The Kerr effect was measured for the above 23 types of samples.

カー効果の測定は試料に10キロエールステツドの磁場
をかけ、残留磁化状態としHe−Neガスレーザー(波
長632.8ナノメートル)で測定した。測定の結果を
表1に示す。
The Kerr effect was measured by applying a magnetic field of 10 kiloersted to the sample to bring it into a remanent magnetized state and using a He--Ne gas laser (wavelength: 632.8 nanometers). The measurement results are shown in Table 1.

(1)〜(6)の試料1〜試料12においてすべての構
造で非晶質0oTiを用いたものはAλに比してカー回
転角はほぼ2倍に増加している。また(7) l (8
>の試料16及び試料14において0oTi以外の00
系非晶質薄膜を用いた場合においても試料2のA℃に対
してやはり2倍程度の増加があった。
In Samples 1 to 12 of (1) to (6), the Kerr rotation angle of all structures using amorphous 0oTi is approximately twice as large as that of Aλ. Also (7) l (8
>00 other than 0oTi in sample 16 and sample 14
Even when a non-crystalline thin film was used, the temperature increased by about twice the temperature of Sample 2.

(9ン〜α2において記録層としてPrFeE 、Ce
FeAj!0、NcLPrFe 、NdFe5iOoと
したものにおいてもやはりカー回転角は大きくなった。
(PrFeE, Ce as the recording layer in 9th to α2
FeAj! 0, NcLPrFe, and NdFe5iOo, the Kerr rotation angle also became large.

0→は従来より光磁気記録媒体として用いられているT
bFeを記録層としカー回転角を測定したがこの場合で
も約t5倍に増加した。 
0→ is T, which has been conventionally used as a magneto-optical recording medium.
The Kerr rotation angle was measured using bFe as the recording layer, and even in this case it increased by about t5 times.

尚、光磁気記録媒体にOr 、 Ni 、 (1!u 
、 Mnを添加したものは・試料21のCo添加と同一
の効果で耐候性に優れ、膜面に垂直に磁化容易軸を有す
る光磁気記録媒体であった。
Note that the magneto-optical recording medium contains Or, Ni, (1!u
The one to which Mn was added had the same effect as the Co addition in sample 21, had excellent weather resistance, and was a magneto-optical recording medium having an axis of easy magnetization perpendicular to the film surface.

さらに、ここではco系アモルファス低抗磁力材層の具
体例として、coにTi 、 Zr 、 Ta 。
Furthermore, as a specific example of a co-based amorphous low coercive force material layer, Ti, Zr, and Ta are added to co.

Nbを少なくとも一種以上添加した材料で本発明の詳細
な説明したか、これに限定されず、CoにW、Hf、Y
、Mo、B、Siを添加した材料でも効果は全く同じで
ある。
Although the present invention has been described in detail using materials to which at least one type of Nb is added, W, Hf, Y, etc. are added to Co.
, Mo, B, and Si have the same effect.

実施例2゜ 低抗磁力材層の抗磁力とカー回転角の関係を調べた。結
果を第3図に示す。第3図において横軸は抗磁力、縦軸
はカー回転角である。用いた試料はすべて第2図6)の
構造、を有するもので、αはガラス/ N 6 F e
 B / Oo T i、bはガラス/N4F6B10
oZrNbScはガラス/ T b ? e / (!
 o T iである。α、b、cの3種類すべて低抗磁
力層の抗磁力が小さくなるに従ってカー回転角が増加す
る。しかし抗磁力が約100エールステツドになると、
八2の反射層を設けたものと同等となる(図中d、#)
。さらに抗磁力が大きくなった場合にはむしろA2に比
してカー回転角は小さくなる。
Example 2 The relationship between the coercive force of the low coercive force material layer and the Kerr rotation angle was investigated. The results are shown in Figure 3. In FIG. 3, the horizontal axis is the coercive force, and the vertical axis is the Kerr rotation angle. All the samples used had the structure shown in Fig. 2 6), where α is glass/N 6 Fe
B/Oo Ti, b is glass/N4F6B10
oZrNbSc is glass/T b? e / (!
o Ti. The Kerr rotation angle increases as the coercive force of the low coercive force layer for all three types α, b, and c decreases. However, when the coercive force becomes about 100 Oersted,
It is equivalent to having a reflective layer of 82 (d, # in the figure).
. Furthermore, when the coercive force becomes larger, the Kerr rotation angle becomes smaller than that of A2.

これは、反射率がA2に比してOo系合金が小さいため
である。
This is because the reflectance of the Oo alloy is smaller than that of A2.

第  1  表 実施例3゜ 光磁気記録再生可能な光学ヘッドを用い、第4図(α)
に示す媒体構造で周波数特性を調べた。レーザー波長は
780nmの半導体レーザーを用いた0ディスク回転数
は1800rpms半径5cmに固定とし、書き込み周
波数を可変させた0読み書きは基板側から行った。基板
はグループ付ポリカーボネイト41とし、第2表に記し
たような薄膜を形成し・ 3層構造とした〇 第1層はAλN42で80 OA、第2層は光磁気記録
層43で100DA、第3層は従来例としてA2反射膜
または本発明によるアモルファスC。
Table 1 Example 3゜Using an optical head capable of magneto-optical recording and reproduction, Fig. 4 (α)
The frequency characteristics were investigated using the media structure shown in the figure. A semiconductor laser with a laser wavelength of 780 nm was used, the 0 disk rotation speed was fixed at 1800 rpm, and the radius was 5 cm, and 0 reading and writing was performed from the substrate side by varying the writing frequency. The substrate was made of grouped polycarbonate 41, and a thin film was formed as shown in Table 2 to form a three-layer structure. The layer is an A2 reflective film as a conventional example or an amorphous C layer according to the present invention.

系低抗磁力膜44でここではCo、oTi□。とし、5
00Aの膜厚とした@形成手段はDoマグネトロンスパ
ッタ法とした。それぞれの光磁気記録媒体における書き
込み周波数に対するC/Nを示したものが第4図(6)
である。従来の様な反射膜として非磁性A2を用いた場
合と較べ本発明によるアモルファス00系低抗磁力層を
設けたことによりc / Nが上昇した。さらに、本発
明によるFe中にOe、Pr、M&を少なくとも一種以
上含んだ光磁気記録媒体においては、さらにその効果は
大きく、書き込み周波数特性が飛躍的に向上した。
The low coercive force film 44 is made of Co, oTi□ here. Toshi, 5
The film thickness of 00A was formed using the Do magnetron sputtering method. Figure 4 (6) shows the C/N with respect to the writing frequency for each magneto-optical recording medium.
It is. The c/N was increased by providing the amorphous 00-based low coercive force layer according to the present invention compared to the conventional case where non-magnetic A2 was used as a reflective film. Furthermore, in the magneto-optical recording medium according to the present invention containing at least one of Oe, Pr, and M& in Fe, the effect is even greater, and the writing frequency characteristics are dramatically improved.

第 2 表  (組成単位は原子%表示)〔効 果〕 以上の実施例に示された様に本発明による構造を有する
光磁気記録媒体は、カー回転角がほぼ2倍に増加し、O
/N比も改善される0 さらに、記録磁区が安定するために高記録密度において
もO/ N比の劣化が小さく、より高密度記録に適した
媒体である・ また、従来のTblFe 、Gdoo 、TbFe(1
!o 。
Table 2 (Composition units are expressed in atomic %) [Effects] As shown in the above examples, the magneto-optical recording medium having the structure according to the present invention has a Kerr rotation angle that is almost doubled and an O
Furthermore, since the recording magnetic domain is stable, there is little deterioration in the O/N ratio even at high recording densities, making it a medium suitable for high-density recording.In addition, conventional TblFe, Gdoo, TbFe(1
! o.

TbedFe等の重希土類を含む媒体に比してNd、P
r、Ceの軽希土類を含むものは材料費が安くなり、本
発明による光磁気記録媒体は、軽希土類を含む媒体に対
しての方がその効果が大きいという特徴をもっている。
Compared to media containing heavy rare earths such as TbedFe, Nd and P
Materials containing light rare earth elements such as r and Ce are cheaper in material cost, and the magneto-optical recording medium according to the present invention is characterized in that the effect is greater for media containing light rare earth elements.

記録層は、非晶質であるため記録層上にCo系非晶質を
成長させる、あるいは逆にCo系非晶質層上に非晶質の
光磁気記録層を成長させることは非常に容易であり、且
つ、Co系非晶質は非常に化学的に安定であるため信頼
性も向上し、耐候性の向上になる。
Since the recording layer is amorphous, it is very easy to grow a Co-based amorphous layer on the recording layer, or conversely, to grow an amorphous magneto-optical recording layer on a Co-based amorphous layer. Moreover, since the Co-based amorphous material is very chemically stable, reliability is improved, and weather resistance is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) s (6)は、本発明による光磁気記録
媒体の基本的層構造を示す図である。 第2図(α)〜(1)は、本発明による光磁気記録媒体
の具体的実施例の構造である。 第3図は、本発明の低抗磁力材層の効果を示す図で、低
抗磁力材層の抗磁力に対して光磁気記録層のカー回転角
をプロットしたものである0第4図(b)は、本発明の
光磁気記録媒体の書き込み周波数特性を示す図で、光磁
気記録媒体の構造を第4図(α)とし、光磁気記録層を
、各種変えた場合の本発明の効果を示す実施例である0
11・・・・・・基板 12・・・・・・光磁気記録層 16・・・・・・低抗磁力材層 14・・・・・・非磁性層 21・・・・・・低抗磁力材層もしくは反射膜22・・
・・・・光磁気記録層 23・・・・・・基板 24・・・・・・誘電体層 25・・・・・・誘電体層 26・・・・・・基板 41・・・・・・ポリカーボネート基板42・・・・・
・AAN層 46・・・・・・光磁気記録層 44・・・・・・低抗磁力材層もしくは反射膜/−(/
1l−NJ−\ 第1図 第2図
FIG. 1(a)s(6) is a diagram showing the basic layer structure of the magneto-optical recording medium according to the present invention. FIGS. 2(α) to (1) show the structure of a specific example of the magneto-optical recording medium according to the present invention. Figure 3 is a diagram showing the effect of the low coercive force material layer of the present invention, in which the Kerr rotation angle of the magneto-optical recording layer is plotted against the coercive force of the low coercive force material layer. b) is a diagram showing the writing frequency characteristics of the magneto-optical recording medium of the present invention. The structure of the magneto-optical recording medium is shown in FIG. 4 (α), and the effect of the present invention when the magneto-optical recording layer is variously changed. 0 which is an example showing
11...Substrate 12...Magneto-optical recording layer 16...Low coercive force material layer 14...Nonmagnetic layer 21...Low coercivity Magnetic material layer or reflective film 22...
... Magneto-optical recording layer 23 ... Substrate 24 ... Dielectric layer 25 ... Dielectric layer 26 ... Substrate 41 ...・Polycarbonate substrate 42...
・AAN layer 46...Magneto-optical recording layer 44...Low coercive force material layer or reflective film /-(/
1l-NJ-\ Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 磁化の向きが膜面に垂直で上向きか下向きかの2値をと
る光、磁気記録層に光を照射し記録再生を行う光磁気記
録媒体において、磁化を保持する前記光磁気記録層と、
抗磁力が前記光磁気記録層の5分の1以下で且つ100
エルステッド以下に選定された低抗磁力材層とを層構造
にし、前記光磁気記録層がセリウム・プラセオジウム・
ネオジウムのうち少なくとも一種以上の元素と鉄及び不
純物からなる合金、あるいは該合金にさらに、ホウ素・
炭素・硅素・リン・アルミニウムのうち少なくとも一種
以上の元素を含み、またはさらにクロム・コバルト・ニ
ッケル・銅・マンガンのうち少なくとも一種以上の元素
を含む合金からなることを特徴とし、且つ前記低抗磁力
材層がチタニウム・ジルコニウム・タンタル・ニオブ・
タングス・ニオブタングステン・ハフニウム・イットリ
ウム・モリブデン・ホウ素・硅素のうち少なくとも一種
以上の元素とコバルト及び不純物よりなり優位的に非晶
質な合金であることを特徴とする光磁気記録媒体。
In a magneto-optical recording medium in which recording and reproduction is performed by irradiating a magnetic recording layer with light whose direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward, the magneto-optical recording layer retains magnetization;
The coercive force is one-fifth or less of the magneto-optical recording layer and 100
The magneto-optical recording layer is made of cerium, praseodymium,
An alloy consisting of at least one element of neodymium, iron, and impurities, or the alloy further contains boron,
The low coercive force is characterized by being made of an alloy containing at least one element among carbon, silicon, phosphorus, and aluminum, or further containing at least one element among chromium, cobalt, nickel, copper, and manganese, and the above-mentioned low coercive force. Material layers include titanium, zirconium, tantalum, niobium,
1. A magneto-optical recording medium characterized by being a predominantly amorphous alloy consisting of at least one element selected from among tungs, niobium tungsten, hafnium, yttrium, molybdenum, boron, and silicon, cobalt, and impurities.
JP19121384A 1984-09-12 1984-09-12 Photomagnetic recording medium Granted JPS6187247A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19121384A JPS6187247A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium
US07/193,020 US5100741A (en) 1984-09-12 1988-05-12 Magneto-optic recording systems
US08/231,866 US5529854A (en) 1984-09-12 1994-04-25 Magneto-optic recording systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19121384A JPS6187247A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6187247A true JPS6187247A (en) 1986-05-02
JPH0546623B2 JPH0546623B2 (en) 1993-07-14

Family

ID=16270786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19121384A Granted JPS6187247A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6187247A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191216A (en) * 1983-04-13 1984-10-30 セイコーエプソン株式会社 Switch structure of electric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191216A (en) * 1983-04-13 1984-10-30 セイコーエプソン株式会社 Switch structure of electric device

Also Published As

Publication number Publication date
JPH0546623B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
GB2071696A (en) Magneto-optical Recording Medium
US5204193A (en) Recording magnetooptical recording medium
US4666789A (en) Magneto-optic recording medium
JPS59178641A (en) Photomagnetic recording medium
KR930009224B1 (en) Magneto-optical recording medium
JPS6187247A (en) Photomagnetic recording medium
JPS61246946A (en) Photomagnetic recording medium
US5100741A (en) Magneto-optic recording systems
US5529854A (en) Magneto-optic recording systems
JPS6187246A (en) Photomagnetic recording medium
JPS6187242A (en) Photomagnetic recording medium
JPS6187249A (en) Photomagnetic recording medium
JPH0546624B2 (en)
JPS6187245A (en) Photomagnetic recording medium
JPS6187243A (en) Photomagnetic recording medium
JPS6187244A (en) Photomagnetic recording medium
US7210155B2 (en) Magneto-optical recording medium having in-plane magnetizing layer
JPS6187240A (en) Photomagnetic recording medium
JPS6187241A (en) Photomagnetic recording medium
JPS6187238A (en) Photomagnetic recording medium
JPS6187248A (en) Photomagnetic recording medium
JP3381960B2 (en) Magneto-optical recording medium
JPS6187236A (en) Photomagnetic recording medium
Kryder Magnetic information storage
KR950004494Y1 (en) Optical recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term