JPS6187242A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6187242A
JPS6187242A JP19120884A JP19120884A JPS6187242A JP S6187242 A JPS6187242 A JP S6187242A JP 19120884 A JP19120884 A JP 19120884A JP 19120884 A JP19120884 A JP 19120884A JP S6187242 A JPS6187242 A JP S6187242A
Authority
JP
Japan
Prior art keywords
magneto
coercive force
optical recording
layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19120884A
Other languages
Japanese (ja)
Inventor
Satoshi Nehashi
聡 根橋
Mamoru Sugimoto
守 杉本
Akira Aoyama
明 青山
Tatsuya Shimoda
達也 下田
Satoshi Shimokawato
下川渡 聡
Shin Funada
舩田 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19120884A priority Critical patent/JPS6187242A/en
Publication of JPS6187242A publication Critical patent/JPS6187242A/en
Priority to US07/193,020 priority patent/US5100741A/en
Priority to US08/231,866 priority patent/US5529854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To provide a photomagnetic recording medium which has a high S/N ratio and permits high-density recording and high-speed recording by forming said medium so as to have a photomagnetic recording layer consisting of an alloy added with specific elements and a low coercive force material layer consiseting of an alloy added with specific elements and forming a non- magnetic material layer having a specific thickness therebetween. CONSTITUTION:The photomagnetic recording medium has the photomagnetic recording layer consisting of the alloy composed of elements of at least >=1 kinds of Ce, Pr and Nd as well as Fe and impurities or said alloy added further with elements of >=1 kinds among Ti, Zr, Ta, Hf, Nb, W, Y, Mo, B and Si or the alloy added further with elements of >=1 kinds among Cr, Co, Cu, Ni and Mn and the low coercive force material layer of which the coercive force is <=1/5 the coercive force of the photomagnetic recording layer and <=100 coersted and which consists of the alloy composed of Fe, Ni and impurities or the alloy added further with elements of >=1 kinds among Cu, Cr, Mo, Mn, V and W. The non-magnetic layer having <=100 nanometer thickness if formed between the magnetic recording layer and the low coercive force material layer.

Description

【発明の詳細な説明】 〔技術分野〕 本発四は膜面と垂直な方向に磁化容易軸を有し、磁気光
学カー効果などの磁気光学効果を利用して情報を読み出
すことのできる磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording device having an axis of easy magnetization in a direction perpendicular to the film surface, and from which information can be read using magneto-optic effects such as the magneto-optic Kerr effect. It's about the medium.

〔従来技術〕[Prior art]

光磁気メモリの研究は、1957年にMnB1薄膜上に
熱ペンを用いて記録を行い、その書き込み磁区を磁気光
学効果によって観察したのが端緒であるといわれる。そ
の後MnB1系を中心に研究が行われたがレーザ光源、
ならびにその利用技術が未成熟であったため実用化には
至らなかった1970年代に入り光情報処理関連技術の
進展、および非晶質希土類遷移金属合金薄膜に代表され
る新しい磁気記録用材料の研究が進み、特許出願公告昭
56−37607に記載されるGcL。
Research on magneto-optical memory is said to have its beginnings in 1957, when recording was performed on an MnB1 thin film using a hot pen, and the written magnetic domain was observed using the magneto-optic effect. After that, research was conducted mainly on the MnB1 system, but laser light sources,
However, in the 1970s, advances in optical information processing related technology and research into new magnetic recording materials such as amorphous rare earth transition metal alloy thin films began. GcL, which is described in patent application publication No. 56-37607.

Tb、Dy、HO等の重希土類とPe 、 Co 。Heavy rare earths such as Tb, Dy, and HO, as well as Pe and Co.

N1等の遷移金属との非晶質合金薄膜が開発された。こ
れらの材料は一般に次のような特徴を有している。
Amorphous alloy thin films with transition metals such as N1 have been developed. These materials generally have the following characteristics.

Gd?θ、Gdooなどの磁気的補償点を利用して記録
再生を行う材料は、保磁力が小さく高密度記録になると
記録磁区が安定に保たれない、また磁気的補償点の組成
依存性が大きく大面積で均一な薄膜が得にくい等の欠点
がある。TI)アe。
Gd? Materials that perform recording and reproduction using magnetic compensation points such as θ and Gdoo have a small coercive force, and when high-density recording is performed, the recorded magnetic domain cannot be kept stable, and the composition dependence of the magnetic compensation point is large. There are drawbacks such as difficulty in obtaining a thin film that is uniform in area. TI) ae.

Dykeなどの午エリ一点を利用して記録を行う材料は
前記補償点記録を行う材料に比して磁気光学効果に伴う
偏光面の回転角が小さいため光再生特性があまり良くな
いなどの欠点がある。
Materials such as Dyke that perform recording using a single point of the polarization have disadvantages such as poor optical reproduction characteristics due to a smaller rotation angle of the plane of polarization due to the magneto-optic effect compared to materials that perform compensation point recording. be.

特開昭56−126107.昭57−94948に記載
されるGdTbPe 、あるいはGdTt)?eOo等
のように多元化する。または日本応用磁気学会第27回
研究会資料27−5NHx基礎研の報告のように作製法
を改善して特性を向上させる方法も行われているが、重
希土類は存在量が少なく高価であり実用化に際して不向
きである。
Japanese Patent Publication No. 56-126107. GdTbPe or GdTt) described in 1983-94948? Diversify like eOo etc. Alternatively, there are methods to improve the properties by improving the production method as reported in the 27th Research Meeting of the Japan Society of Applied Magnetics, Material 27-5 NHx Basic Research, but heavy rare earths are present in small quantities and expensive, so they are not practical. It is unsuitable for conversion.

特開昭58−20047に記載されるようくい多層構造
化し、磁気光学効果の増巾を計る方法も行われている。
As described in Japanese Patent Application Laid-open No. 58-20047, a method of forming a multilayer structure to increase the magneto-optic effect has also been carried out.

しかしこれらは媒体の反射率を低下させるため、磁気光
学効果の増巾分がそのままS / N比の向上にならな
い等の欠点を有している前記重希土類遷移金属の記録媒
体の製造にはスパッタ法を用いることが多いが、スパッ
タリング用のターゲットを作製する場合重希土類遷移金
属は合金化が困難であるため大型のターゲットが得にく
いという欠点も持つている。
However, since these reduce the reflectance of the medium, sputtering is used to manufacture recording media made of the heavy rare earth transition metals, which has drawbacks such as the increase in the magneto-optic effect does not directly improve the S/N ratio. However, when producing targets for sputtering, heavy rare earth transition metals are difficult to alloy, so it is difficult to obtain large targets.

〔目的〕〔the purpose〕

本発明はこれらの欠点を改善するため罠なされたもので
、目的は高S / N比、高密度記録の安定、高速記録
、製造容易な光磁気記録媒体を提供することにある。
The present invention has been made to improve these drawbacks, and its purpose is to provide a magneto-optical recording medium that has a high S/N ratio, stable high-density recording, high-speed recording, and is easy to manufacture.

〔概要〕〔overview〕

本発明は磁化の向きが膜面に垂直で上向きか下向きかの
二値をとる光磁気記録層に光を照射し記録再生を行う光
磁気記録媒体において、該光磁気記録媒体が、セリウム
(Ce)+プラセオジウム(Pr)Iネオジウム(Nd
)のうち少なくとも一種以上の元素と鉄(Pe)及び不
純物からなる合金、あるいは該合金にさらにチタン(T
i)1ジルコニウム(”r)tタンタル(Ta)、ハフ
ニウム(If)lニオフ゛(Nb)、タングステン(W
)、イツトリウム(Y〕、モリブデン(Md)、硼素(
B)、硅素(Si)のうち少なくとも一種以上の元素を
添加した合金あるいはさらに該合金にクロム(Cr)、
コバルト(”)+銅(Cu)、二yケル(Ni)、マン
ガン(Mn)のうち少なくとも一種以上の元素を添加し
た合金からなる光磁気記録層と、該光磁気記録層に対し
抗磁力が5分の一以下で、且つ百エルステッド以下で鉄
(Pe ) 、ニッケル(Ni)及び不純物からなる合
金、あるいは該合金にさらに銅((!u)。
The present invention provides a magneto-optical recording medium in which recording and reproduction is performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of either upward or downward. ) + praseodymium (Pr) I neodymium (Nd
), iron (Pe), and impurities, or the alloy further contains titanium (T).
i) 1 zirconium ("r) t tantalum (Ta), hafnium (If) 1 niobium (Nb), tungsten (W)
), yttrium (Y), molybdenum (Md), boron (
B), an alloy to which at least one element among silicon (Si) is added, or chromium (Cr),
A magneto-optical recording layer made of an alloy containing cobalt ('') and at least one element selected from copper (Cu), dikel (Ni), and manganese (Mn), and a magneto-optical recording layer that has a coercive force. An alloy consisting of iron (Pe), nickel (Ni) and impurities, or copper ((!u)) in an amount of less than one-fifth and less than 100 oersteds.

クロム(’r ) +モリブデン(Mo) 、マンガン
(’ n) lバナジウム(V)、タングステン(W)
のうち少なくとも一種以上の元素を添加した合金からな
る低抗磁力材層とを有し、該磁気記録層と該低抗磁力材
層との間に厚さ百ナノメートル以下の非磁性体層を形成
したことを特徴とする。
Chromium ('r) + molybdenum (Mo), manganese ('n) l vanadium (V), tungsten (W)
a low coercive force material layer made of an alloy to which at least one or more elements are added, and a nonmagnetic layer with a thickness of 100 nanometers or less between the magnetic recording layer and the low coercive force material layer. It is characterized by the fact that it has been formed.

〔実施例〕〔Example〕

本発明の基本構造を第1図(α)、第1図(b)に示す
。11は基板、12は光磁気記録層、15は低抗磁力材
層、14は非磁性層である。
The basic structure of the present invention is shown in FIG. 1(α) and FIG. 1(b). 11 is a substrate, 12 is a magneto-optical recording layer, 15 is a low coercive force material layer, and 14 is a nonmagnetic layer.

尚、ここでは基板をガラス、プラスチック等の透明基板
とし、読み書きする光学ヘッドは基板側に対向し、基板
を通して読み書きする場合を書いたが、これは本質的な
ことではなく、基板に低抗磁力材層・光磁気記録層、ま
たは低抗磁力材層・非磁性層・光磁気記録層と形成し光
学ヘッドを基板に対し光磁気記録媒体側に対向配置して
読み書きしても何ら問題ない。さらに本発明は、前記、
構造のみに限定されるものではなく、保護膜・反射防止
膜・多重干渉エンハンス膜・透明導電膜等を設けること
は何らさしつかえない。
In this case, the substrate is a transparent substrate made of glass, plastic, etc., and the optical head for reading and writing faces the substrate and reads and writes through the substrate. However, this is not essential, and the substrate has a low coercive force. There is no problem in reading and writing by forming a material layer/magneto-optical recording layer, or a low coercive force material layer/nonmagnetic layer/magneto-optical recording layer, and placing an optical head facing the magneto-optical recording medium side with respect to the substrate. Furthermore, the present invention provides the above-mentioned
The present invention is not limited only to the structure, and there is no problem in providing a protective film, an antireflection film, a multiple interference enhancement film, a transparent conductive film, etc.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

実施例1 第2図(α)に示す構造を有する媒体で基板23として
、よく洗浄したガラスを用い、スパッタ法を用いてガラ
ス基板上に厚み500裏の非晶質NdFeTi垂直磁化
膜を22として形成し、その上にスパッタ法を用い、2
1としてOuMOFeNiパーマロイを10001形成
した。上記OuMOFeNi膜の抗磁力は約7エルステ
ツドであり、試料部1とする。また比較として上記パー
マロイ膜のかわりにAtをスパッタ法で10001形成
したものを試料部2とする。
Example 1 A well-cleaned glass was used as the substrate 23 of the medium having the structure shown in FIG. 2.
As No. 1, OuMOFeNi permalloy 10001 was formed. The coercive force of the OuMOFeNi film is approximately 7 oersted, and it is designated as sample portion 1. For comparison, sample portion 2 is prepared by forming At 10001 by sputtering instead of the permalloy film described above.

第2図(b)に示す構造を有する媒体で、(1)と同様
に23はガラス基板、22はNdFeT1膜、21はc
uMoIFeNiMで、24は誘電体層で810.をa
ooX形成しである。これはNaPeTi膜とガラス基
板間に310.膜を形成することによりカー回転角をエ
ンハンスするものである。これを試料部3とする。また
比較として上記OuMolFeNiパーマロイのかわり
にAtをスパッタ法で1oooX形成したものを試料部
4とする。
In the medium having the structure shown in FIG. 2(b), as in (1), 23 is a glass substrate, 22 is an NdFeT1 film, and 21 is a c
uMoIFeNiM, 24 is a dielectric layer 810. a
ooX is formed. This is 310mm between the NaPeTi film and the glass substrate. By forming a film, the Kerr rotation angle is enhanced. This will be referred to as sample section 3. For comparison, the sample portion 4 was prepared by forming 10ooX of At by sputtering instead of the OuMolFeNi permalloy.

(3,ン 第2図(C)に示す構造を有する媒体で、(2)と同様
に23はガラス基板、22はNaFeTi膜、21はO
uMoFeNiバーvoイ、24はSin、膜である。
(3.) In the medium having the structure shown in FIG. 2(C), 23 is a glass substrate, 22 is a NaFeTi film, and 21 is an O
uMoFeNi bar voi, 24 is a Sin film.

25はS10.膜で、NdFeB膜とパーマロイ膜間に
形成したもので100又厚みである。これを試料部5と
し、比較と℃てパーマロイをAt膜に置き替えたものを
試料部6とする。
25 is S10. The film is formed between the NdFeB film and the Permalloy film, and has a thickness of 100 mm. This is designated as sample section 5, and for comparison, the sample section 6 is designated as sample section 6 in which Permalloy is replaced with an At film.

第2図(d)に示す構造を有する媒体で、26はPMM
A基板であり1.6μ偽間隔、深さ700叉の案内溝を
設けたものである。また(1)と同様に22はNdFe
Ti膜、21はOuMoFeN1パーマロイである。こ
れを試料N117とする。
A medium having the structure shown in FIG. 2(d), 26 is a PMM.
This is the A-board with guide grooves having a false spacing of 1.6μ and a depth of 700 prongs. Also, as in (1), 22 is NdFe
The Ti film 21 is OuMoFeN1 permalloy. This is designated as sample N117.

また比較としてパーマロイ膜のかわりにAt膜を形成し
たものを試料N118とする。
For comparison, a sample N118 was prepared in which an At film was formed instead of the permalloy film.

第2図(=)に示す構造を有する媒体で、基板26とし
て(4)と同じPMMAを用い(2)の試料部5と同様
のS i O,/1114 F e T ilo uM
oFeNi  パーマロイとしたものを試料部9とし、
比較として試料Na9のパーマロイをAtとしたものを
試料は10とする。
In a medium having the structure shown in FIG. 2 (=), the same PMMA as in (4) was used as the substrate 26, and S i O, /1114 F e T ilou M as in the sample part 5 of (2) was used.
Sample part 9 is made of oFeNi permalloy,
For comparison, Sample 10 is a sample Na9 in which Permalloy is changed to At.

第2図(1)に示す構造を有する媒体で、基板26とし
て(4)と同じpMMAを用い(2)の試料部5と同様
のSin、/NdFeTi/SiO,10uMOパーマ
ロイとしたものを試料Na11とし、比較として試料N
l111のパーマロイをAtとしたものを試料部12と
する。
Sample Na11 was prepared using a medium having the structure shown in FIG. For comparison, sample N
The sample portion 12 is made of permalloy of l111 with At.

第2図(α)の構造を有する媒体で、(1)の試料N1
1L1の(!uMO?eNiをMoMnFeNiとした
ものを試料部13とする。このMOMnFeNiの抗磁
力は約5エルステツドである。
In the medium having the structure shown in Fig. 2 (α), sample N1 of (1)
1L1 (!uMO?eNi) is made into MoMnFeNi as the sample portion 13. The coercive force of this MOMnFeNi is about 5 oersteds.

第2図(eL)の構造を有する媒体で、(1)の試料部
1のOuMoFeNiを(!uor7eNi  とした
ものを試料部14とする。この0uOr’FeNiの抗
・磁力は約6エルステツドである。
In the medium having the structure shown in FIG. 2 (eL), the OuMoFeNi of the sample part 1 in (1) is (!uor7eNi) as the sample part 14. The coercive and magnetic force of this OuOr'FeNi is about 6 oersteds. .

第2図(α)の構造を持つ媒体で(1)の非晶質NdF
eTiを非晶質PrlFeTa厚さ500^としたもの
を試料部15とし、比較として試料部15のパーマロイ
をhLとしたものを試料部16とする。
Amorphous NdF (1) in a medium with the structure shown in Figure 2 (α)
Sample part 15 is made of eTi made of amorphous PrlFeTa with a thickness of 500^, and for comparison, sample part 16 is made of permalloy of sample part 15 with hL.

第2図(α)の構造を持つ媒体で(1)の非晶質NdF
eを厚み500AのOe?eZrOoとしたものを試料
N1117とし、比較のため試料N1117のパーマロ
イをALとしたものを試料部18とする。
Amorphous NdF (1) in a medium with the structure shown in Figure 2 (α)
Oe with thickness 500A? Sample N1117 is made of eZrOo, and sample part 18 is made of sample N1117 made of permalloy for comparison.

第2図(α)の構造を有する媒体で、(1)の試料Na
1のNdFeT1をNdPrFeMoとしたものを試料
部19とし、比較のため試料19のパーマロイをhLと
したものを試料20とする。
In the medium having the structure shown in Fig. 2 (α), the sample Na of (1)
A sample portion 19 is made of NdFeT1 of No. 1 as NdPrFeMo, and a sample portion 20 is made of permalloy of sample 19 as hL for comparison.

第2図(α)の構造を有する媒体で、(1)の試料部1
のNa?sTiをNd?aNbCrとしたものを試料部
21とし、比較のため試料m21のパーマロイをAtと
したものを試料N[L22とする。
In the medium having the structure shown in Fig. 2 (α), sample part 1 of (1)
Na? sTi to Nd? The sample part 21 is made of aNbCr, and for comparison, the permalloy of sample m21 is made of At and sample N[L22.

第2図(iの構造を有する媒体で、(5)の試料部9の
NdFeT1をTbyeとしたものを試料N1123と
し、比較のため試料Na23のパーマロイをAtとした
ものを試料部24とする。
Sample N1123 is a medium having the structure shown in FIG. 2(i) in which NdFeT1 of sample part 9 in (5) is changed to Tbye, and for comparison, sample part 24 is a medium having the structure of sample Na23 in which Permalloy is changed to At.

以上23種類のサンプルについてカー効果を測定した。The Kerr effect was measured for the above 23 types of samples.

カー効果の測定は試料に10キロエールステツドの磁場
をかけ、残留磁化状態としHe−Neガスレーザー(e
、長632.8ナノメートル)で測定した。測定の結果
を表1に示す。
To measure the Kerr effect, we apply a magnetic field of 10 kA to the sample to create a remanent magnetized state and use a He-Ne gas laser (e.g.
, length 632.8 nanometers). The measurement results are shown in Table 1.

(1)〜(6)の試料1〜試料12においてすべての構
造でOuMolFeNiパーマロイを用いたものはhL
に比してカー回転角はほぼ2倍に増加している。また(
7)l(8)の試料15及び試料14においてOuMo
’FeNi以外のパーマロイを用いた場合においても試
料2のhLに対してやはり2倍程度の増加がありた。
In samples 1 to 12 of (1) to (6), all structures using OuMolFeNi permalloy have hL
Compared to this, the Kerr rotation angle has increased by almost twice. Also(
7) OuMo in sample 15 and sample 14 of l(8)
'Even when permalloy other than FeNi was used, the hL of sample 2 increased by about twice as much.

(9)〜(12>において記録層としてPr1!eTa
、0eFeZrCo、NdPrFeMo、Nd?eNb
Crとしたものにおいてもやはリカー回転角は大きくな
りた。
In (9) to (12>, Pr1!eTa is used as the recording layer.
, 0eFeZrCo, NdPrFeMo, Nd? eNb
In the case of using Cr, the liquor rotation angle became larger.

(15)は従来より光磁気記録媒体として用いられてい
るTb″Iθを記録層としてカー回転角を測定したがこ
の場合でも約1.5倍に増加した。
(15) measured the Kerr rotation angle using Tb''Iθ, which has been conventionally used as a magneto-optical recording medium, as a recording layer, and even in this case, the Kerr rotation angle increased by about 1.5 times.

尚光磁気記録媒体に(!r、Ni、Ou、Muを添加し
たものは、試料21のCo添加と同一の効果で耐候性に
優れ、膜面に垂直に磁化容易軸を有する光磁気記録媒体
であった。
Note that magneto-optical recording media to which (!r, Ni, Ou, and Mu are added) have the same effect as the addition of Co in sample 21, have excellent weather resistance, and have an axis of easy magnetization perpendicular to the film surface. Met.

ここでは、peNi系低抗磁力材層の具体例として、O
uMol[FsNi 、0uOr?eNi 。
Here, as a specific example of the peNi-based low coercive force material layer, O
uMol[FsNi, 0uOr? eNi.

MnMolFeNiを用いて本発明の詳細な説明したが
、これに限定されず、’FeNiのみ、あるいはMo0
rFeNi +Mo0uOr’VIFeNi 。
Although the present invention has been described in detail using MnMolFeNi, the present invention is not limited thereto.
rFeNi +Mo0uOr'VIFeNi.

VFeNi、WFeNi、Or′I!eNi、0ura
Ni 、MoFeNi等特許請求の範囲第二項記載の低
抗磁力材層では効果は全く同じである。
VFeNi, WFeNi, Or'I! eNi,0ura
The low coercive force material layer described in the second claim, such as Ni or MoFeNi, has exactly the same effect.

実施例2 低抗磁力材層の抗磁力とカー回転角の関係を調べた。結
果を第3図に示す。第3図において横軸は抗磁力、縦軸
はカー回転角である。用いた試料はすべて第2図(α)
の構造を有するもので、αはガラス/NdFeTi/F
eNiパーマロイ、bはガラス/ N dF a T 
i / M o F e N i 、cはガラス/ T
 b ? @ / F e N iパーマロイである。
Example 2 The relationship between the coercive force of the low coercive force material layer and the Kerr rotation angle was investigated. The results are shown in Figure 3. In FIG. 3, the horizontal axis is the coercive force, and the vertical axis is the Kerr rotation angle. All samples used are shown in Figure 2 (α)
has the structure, α is glass/NdFeTi/F
eNi permalloy, b is glass/N dF a T
i/M o F e N i, c is glass/T
b? @ / F e N i Permalloy.

α、h、cの3種数すべて低抗磁力層の抗磁力が゛小さ
くなるに従ってカー回転角が増加する。しかし抗磁力が
約100エーステツド程度になると、AAの反射層を設
けたものと同等となる(図中、d、t)。さらに抗磁力
が大きくなった場合にはむしろAAに比してカー回転角
は小さくなる。これは、反射率がhLに比してパーマロ
イが小さいためである。
The Kerr rotation angle increases as the coercive force of the low coercive force layer decreases for all three species α, h, and c. However, when the coercive force reaches about 100 acetade, it becomes equivalent to that provided with an AA reflective layer (d, t in the figure). Furthermore, when the coercive force becomes larger, the Kerr rotation angle becomes smaller than that of AA. This is because Permalloy has a smaller reflectance than hL.

実施例3 光磁気記録再生可能な光学ヘッドを用い、第4図(−)
に示す媒体構造で周波数特性を調べた。
Example 3 Using an optical head capable of magneto-optical recording and reproduction, Fig. 4 (-)
The frequency characteristics were investigated using the media structure shown in the figure.

レーザー波長は780+mの半導体レーザーを用いた。A semiconductor laser with a laser wavelength of 780+m was used.

ディスク回転数は1800 r p m *半径5cI
nに固定とし、書き込み周波数を可変させた。読み書き
は基板側から行った。基板はグループ付ポリカーボネイ
ト41とし、第2表に記したような薄膜を形成し、3層
構造とした。第1層はhLki42で80 OA、第2
層は光磁気記録層43で1000 AS第3層は従来例
としてhL反射膜または本発門による?aNi系低抗磁
力材層44でここではMoMn?eNiとし、500A
の膜厚とした。形成手段はDoマグネトロンスパッタ法
とした。それぞれの光磁気記録媒体における書き込み周
波数に対する0/Nratioを示したものが第4図(
A>である。従来の様な反射膜として非磁性klを用い
た場合と較べ本発明によるFeNi系低抗磁力材層を設
けたことにより0/N ratloが上昇した。さらに
、本発明によるIre中にOe。
Disc rotation speed is 1800 rpm * radius 5 cI
n was fixed, and the writing frequency was varied. Reading and writing were performed from the board side. The substrate was polycarbonate 41 with groups, and a thin film as shown in Table 2 was formed to have a three-layer structure. The first layer is hLki42 with 80 OA, the second layer is
The layer is the magneto-optical recording layer 43 and the AS third layer is a conventional hL reflective film or is it made by this invention? The aNi-based low coercive force material layer 44 is MoMn? eNi, 500A
The film thickness was set to . The forming means was Do magnetron sputtering. Figure 4 shows the 0/Nratio for each write frequency in each magneto-optical recording medium
A>. 0/N ratlo was increased by providing the FeNi-based low coercive force material layer according to the present invention compared to the conventional case where non-magnetic Kl was used as a reflective film. Additionally, Oe during Ire according to the present invention.

?r、Ndを少なくとも一種以上含んだ光磁気記録媒体
においては、さらにその効果は大きく、書き込み周波数
特性が飛躍的に向上した。
? In a magneto-optical recording medium containing at least one of r and Nd, the effect was even greater, and the writing frequency characteristics were dramatically improved.

実施例4 第2図(1)に示す構造を持った媒体を作成し光磁気記
録層と低抗磁力材層の間の非磁性中間層の厚みをパラメ
ータとして、記録パワーを変えた時のC/N比を調べた
Example 4 A medium with the structure shown in Fig. 2 (1) was prepared, and the recording power was varied using the thickness of the nonmagnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer as a parameter. /N ratio was investigated.

媒体は第2図(1)の21の低抗磁力材層としてOuM
o?eNiパーマoイを1oooX。
The medium is OuM as 21 low coercive force material layers in Figure 2 (1).
o? eNi perm oi 1oooX.

22の光磁気記録層としてNd1FeTiを1001A
、24の多重反射層としてS10.を900裏形成し、
25の非磁性中間層としてSin、を100裏から1o
ooXまで変えたものを作成した。非磁性中間層のそれ
ぞれの厚みについて、書込みレーザーパワーに対するO
 / N比を第5図に示した。S10.の厚みを増して
いくと低いレーザーパワーでO/ N比が飽和する。す
なわち書込み感度が向上している。しかしS10.を2
000Xと厚くした場合はC/N比が飽和するレーザー
パワーは低いがO7N比の飽和値も低くなってしまう。
1001A of Nd1FeTi as the magneto-optical recording layer of 22
, 24 multi-reflection layers S10. Form 900 linings,
25 as a non-magnetic intermediate layer, from 100 to 1o
I created one that changed even ooX. For each thickness of the non-magnetic intermediate layer, O for the writing laser power
/N ratio is shown in Figure 5. S10. As the thickness increases, the O/N ratio becomes saturated at low laser power. In other words, writing sensitivity is improved. However, S10. 2
When the thickness is increased to 000X, the laser power at which the C/N ratio is saturated is low, but the saturation value of the O7N ratio is also low.

このことから非磁性中間層の厚みは光磁気記録層と同等
かそれ以下が望ましい。
For this reason, it is desirable that the thickness of the nonmagnetic intermediate layer be equal to or less than that of the magneto-optical recording layer.

なお、第5図中のαは非磁性層の厚みが100裏、bは
同200^、Cは5ooX、dは100oX、−は20
00Aである。
In addition, in Fig. 5, α is the thickness of the nonmagnetic layer of 100 mm, b is the same 200 mm, C is 5 mm, d is 100 mm, - is 20 mm
It is 00A.

〔効果〕〔effect〕

以上の実施例に示された様に本発明による構造を有する
光磁気記録媒体は、カー回転角がほぼ2倍に増加し、C
/N比も改善される。
As shown in the above embodiments, the magneto-optical recording medium having the structure according to the present invention has a Kerr rotation angle approximately doubled and a C
/N ratio is also improved.

さらに、記録磁区が安定するために高記録密度において
もC/N比の劣化が小さく、より高密度記録に適した媒
体である。
Furthermore, since the recording magnetic domain is stable, there is little deterioration in the C/N ratio even at high recording densities, making the medium more suitable for high-density recording.

また、従来のTbFa、Gd(!O,Tb?eCiO、
TbGdFe等の重希土類を含む媒体に比してNa、P
r、Ceの軽希土類を含むものは材料費が安くなり、本
発明による光磁気記録媒体は、軽希土類を含む媒体に対
しての方がその効果が大きいという特徴をもっている。
In addition, conventional TbFa, Gd(!O, Tb?eCiO,
Compared to media containing heavy rare earths such as TbGdFe, Na, P
Materials containing light rare earth elements such as r and Ce are cheaper in material cost, and the magneto-optical recording medium according to the present invention is characterized in that the effect is greater for media containing light rare earth elements.

光磁気記録媒体の製造にスパッタ法を用いる場合、重希
土類遷移金属はターゲットの製造が非常に困難であるの
に対し1.軽希土類遷移金属は溶融によって容易にター
ゲットの作成が行える。
When sputtering is used to manufacture magneto-optical recording media, it is extremely difficult to manufacture targets for heavy rare earth transition metals; Light rare earth transition metals can be easily made into targets by melting.

また、光磁気記録層と低抗磁力材層間に非磁性中間層を
設けることによって書込み感度を向上させることが可能
である。さらに光磁気記録層が多少光を透過するならば
、低抗磁力材層と光磁気記録層間において、カー回転角
をエンハンスメントすることも可能である。
Furthermore, writing sensitivity can be improved by providing a nonmagnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer. Furthermore, if the magneto-optical recording layer transmits some light, it is also possible to enhance the Kerr rotation angle between the low coercive force material layer and the magneto-optical recording layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)、 (b )は本発明による光磁気記録媒
体の基本的層構造を示す図である。(cL)、(b)に
おいて 11・・・・・・基板 12・・・・・・光磁気記録層 )13・・・・・・低抗磁力層 あるいは 12・・・・・・低抗磁力層 13・・・・・・光磁気記録層 また(b)において 14・・・・・・中間層 である。 第2図(α)〜(1)は本発明による光磁気記録媒体の
具体的実施例の構造を示す図である。各図において、 21・・・・・・低抗磁力層 22・・・・・・光磁気記録層 23・・・・・・基板 24・・・・・・透明誘電体層 25・・・・・・中間層 26・・・・・・案内溝付き基板 である。 第5図は本発明による光磁気記録媒体の効果を示す因で
ある。 α・・・・・・ガラス基板/ N d F e T i
 / F e N iの構造を有する媒体においてFe
Niの抗磁力に対するカー回転角を示したもの。 b ・・、、・ガラス基板/Nd1FeTi/MoFa
N1の構造を有する媒体においてMo7eNiの抗磁力
に対するカー回転角を示したもの。 c ”’ ”−ガラス基板/ T b IF e / 
F e N iの構造を有する媒体において]FeNi
の抗磁力に対するカー回転角を示したもの。 d・・・・・・ガラス基板/ N d7 e T 1/
 A tの構造を有する媒体のカー回転角。 e・・・・・・ガラス基板/ T b F e / A
Lの構造を有する媒体のカー回転角。 第4図は本発明による光磁気記録媒体の記録再生周波数
特性を示す図である。(α)は実験に用いた媒体の構造
を示し、 41・・・・・・基板 42・・・・・・A/、N(透明誘電体層)43・・・
・・・光磁気記録層 44・・・・・・低抗磁力材層あるいはhtである。 Cb)は書込み周波数に対するON比を示したもので図
中の1a〜5α及び1b〜5bは第2表に示した試料番
号である。 第5図は光磁気記録層と低抗磁力体層の間の非磁性中間
層の厚みをパラメータとして書込みレーザーパワーに対
するO/N比をとりたものであるi1\J〜、 (a)                (b)第1図 第2L 第2図 (α) 第4図 第5図
FIGS. 1(α) and 1(b) are diagrams showing the basic layer structure of the magneto-optical recording medium according to the present invention. In (cL) and (b), 11...Substrate 12...Magneto-optical recording layer) 13...Low coercive force layer or 12...Low coercive force Layer 13... Magneto-optical recording layer, and in (b) 14... Intermediate layer. FIGS. 2(α) to 2(1) are diagrams showing the structure of a specific embodiment of the magneto-optical recording medium according to the present invention. In each figure, 21...Low coercive force layer 22...Magneto-optical recording layer 23...Substrate 24...Transparent dielectric layer 25... . . . Intermediate layer 26 . . . A substrate with guide grooves. FIG. 5 shows the effects of the magneto-optical recording medium according to the present invention. α...Glass substrate/N d Fe Ti
/ Fe in a medium with the structure of
The graph shows the Kerr rotation angle with respect to the coercive force of Ni. b...Glass substrate/Nd1FeTi/MoFa
The graph shows the Kerr rotation angle with respect to the coercive force of Mo7eNi in a medium having a structure of N1. c ”' ”-Glass substrate / T b IF e /
In a medium having a structure of FeNi] FeNi
This shows the Kerr rotation angle with respect to the coercive force. d...Glass substrate/N d7 e T 1/
Kerr rotation angle of a medium having the structure of A t. e...Glass substrate/T b Fe/A
Kerr rotation angle of a medium with structure L. FIG. 4 is a diagram showing the recording and reproducing frequency characteristics of the magneto-optical recording medium according to the present invention. (α) shows the structure of the medium used in the experiment, 41... Substrate 42... A/, N (transparent dielectric layer) 43...
. . . Magneto-optical recording layer 44 . . . A low coercive force material layer or ht. Cb) shows the ON ratio with respect to the writing frequency, and 1a to 5α and 1b to 5b in the figure are the sample numbers shown in Table 2. Figure 5 shows the O/N ratio for the writing laser power using the thickness of the non-magnetic intermediate layer between the magneto-optical recording layer and the low coercive force layer as a parameter. i1\J~, (a) (b ) Figure 1 Figure 2L Figure 2 (α) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 磁化の向きが膜面に垂直で上向きか下向きかの二値をと
る光磁気記録層に光を照射し記録再生をおこなう光磁気
記録媒体において、該光磁気記録媒体が、セリウム(C
e)、プラセオジウム(Pr)、ネオジウム(Nd)の
うち少なくとも一種以上の元素と鉄(Fe)および不純
物からなる合金、あるいは該合金にさらにチタン(Ti
)、ジルコニウム(Zr)、タンタル(Ta)、ハフニ
ウム(Hf)、ニオブ(Nb)、タングステン(W)、
イットリウム(Y)、モリブデン(Mo)、硼素(B)
、硅素(Si)のうち少なくとも一種以上の元素を添加
した合金あるいはさらに該合金にクロム(Cr)、コバ
ルト(Co)、銅(Cu)、ニッケル(Ni)、マンガ
ン(Mn)のうち少なくとも一種以上の元素を添加した
合金からなる光磁気記録層と、該光磁気記録層に対し、
抗磁力が五分の一以下、且つ百エルステッド以下で鉄(
Fe)、ニッケル(Ni)及び不純物からなる合金、あ
るいは該合金にさらに銅(Cu)、クロム(Cr)、モ
リブデン(Mo)、マンガン(Mn)、バナジウム(V
)、タングステン(W)のうち少なくとも一種以上の元
素を添加した合金からなる低抗磁力材層とを有し、該光
磁気記録層と該低抗磁力材層との間に厚さ百ナノメート
ル以下の非磁性体層を形成したことを特徴とした光磁気
記録媒体。
In a magneto-optical recording medium in which recording and reproduction are performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward, the magneto-optical recording medium is made of cerium (C).
e), an alloy consisting of at least one element selected from praseodymium (Pr), neodymium (Nd), iron (Fe), and impurities, or an alloy containing titanium (Ti).
), zirconium (Zr), tantalum (Ta), hafnium (Hf), niobium (Nb), tungsten (W),
Yttrium (Y), molybdenum (Mo), boron (B)
, an alloy to which at least one element among silicon (Si) is added, or at least one element among chromium (Cr), cobalt (Co), copper (Cu), nickel (Ni), and manganese (Mn) to the alloy. A magneto-optical recording layer made of an alloy to which elements of are added, and the magneto-optical recording layer,
When the coercive force is less than one-fifth and less than 100 oersted
(Fe), nickel (Ni), and impurities, or the alloy further contains copper (Cu), chromium (Cr), molybdenum (Mo), manganese (Mn), vanadium (V
), and a low coercive force material layer made of an alloy to which at least one element of tungsten (W) is added, and a thickness of 100 nanometers is provided between the magneto-optical recording layer and the low coercive force material layer. A magneto-optical recording medium characterized by forming the following non-magnetic layer.
JP19120884A 1984-09-12 1984-09-12 Photomagnetic recording medium Pending JPS6187242A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19120884A JPS6187242A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium
US07/193,020 US5100741A (en) 1984-09-12 1988-05-12 Magneto-optic recording systems
US08/231,866 US5529854A (en) 1984-09-12 1994-04-25 Magneto-optic recording systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19120884A JPS6187242A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6187242A true JPS6187242A (en) 1986-05-02

Family

ID=16270699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19120884A Pending JPS6187242A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6187242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020056A (en) * 2006-06-13 2008-01-31 Kayaba Ind Co Ltd Valve structure for shock absorber
KR101254230B1 (en) 2011-05-18 2013-04-18 주식회사 만도 Piston valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020056A (en) * 2006-06-13 2008-01-31 Kayaba Ind Co Ltd Valve structure for shock absorber
KR101254230B1 (en) 2011-05-18 2013-04-18 주식회사 만도 Piston valve

Similar Documents

Publication Publication Date Title
GB2071696A (en) Magneto-optical Recording Medium
JPS61117747A (en) 2-layer-film optical magnetic recording medium
CA1218149A (en) Thermo-magnetic recording of binary digital information
JPH0330963B2 (en)
JPS6187242A (en) Photomagnetic recording medium
JPH01124108A (en) Thin-film magnetic head
JPS61246946A (en) Photomagnetic recording medium
US5529854A (en) Magneto-optic recording systems
JPH0343697B2 (en)
JPS6187241A (en) Photomagnetic recording medium
JPS6187246A (en) Photomagnetic recording medium
JP2680586B2 (en) Magneto-optical storage medium
JPS6187240A (en) Photomagnetic recording medium
JPS6187238A (en) Photomagnetic recording medium
JPS6187247A (en) Photomagnetic recording medium
JP2921794B2 (en) Magneto-optical disk
JPS5862827A (en) Magnetic recording medium
JPS6187236A (en) Photomagnetic recording medium
JPH0546624B2 (en)
JPS6187248A (en) Photomagnetic recording medium
JPS6187244A (en) Photomagnetic recording medium
JPS6187239A (en) Photomagnetic recording medium
JPS5833619B2 (en) magnetic recording medium
KR950004494Y1 (en) Optical recording medium
JPS6187249A (en) Photomagnetic recording medium