JPS6187246A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6187246A
JPS6187246A JP19121284A JP19121284A JPS6187246A JP S6187246 A JPS6187246 A JP S6187246A JP 19121284 A JP19121284 A JP 19121284A JP 19121284 A JP19121284 A JP 19121284A JP S6187246 A JPS6187246 A JP S6187246A
Authority
JP
Japan
Prior art keywords
magneto
alloy
layer
coercive force
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19121284A
Other languages
Japanese (ja)
Inventor
Mamoru Sugimoto
守 杉本
Akira Aoyama
明 青山
Satoshi Nehashi
聡 根橋
Tatsuya Shimoda
達也 下田
Satoshi Shimokawato
下川渡 聡
Shin Funada
舩田 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19121284A priority Critical patent/JPS6187246A/en
Publication of JPS6187246A publication Critical patent/JPS6187246A/en
Priority to US07/193,020 priority patent/US5100741A/en
Priority to US08/231,866 priority patent/US5529854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To provide a photomagnetic recording medium which has a high S/N ratio and permits high-density recording and high-speed recording by forming said medium so as to have a photomagnetic recording layer consisting of an alloy added with specific elements and a low coercive force material layer consisting of a specific alloy and dominantly amorphous and forming a non-magnetic layer between these layers. CONSTITUTION:The photomagnetic recording medium has the photomagnetic recording layer consisting of the alloy composed of elements of at least >=1 kinds of Ce, Pr and Nd as well as Fe and impurities or said alloy added further with elements of >=1 kinds among B, C, Si, P and Al or the alloy added further with elements of >=1 kinds among Cr, Co, Cu, Ni, and Mn to said alloy and the low coercive force material layer of which the coercive force Si <=1/5 the coercive force of the photomagnetic recording layer and <=100 oersted and which consists of the alloy composed of elements of >=1 kinds among Si, B and P as well as Fe and impurities or the alloy added with >=1 kinds among Co, Ni, Cr, Mo and W to said element and the dominantly amorphous alloy. The non-magnetic layer having <=100 namoneter thickness is formed between the magnetic recording layer and the low coercive force material layer.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、膜面と垂直な方向に磁化容易軸を有し、磁気
カー効果などの磁気光学効果を利用して読み出すことの
できる磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium that has an axis of easy magnetization in a direction perpendicular to the film surface and can be read using magneto-optic effects such as the magnetic Kerr effect. It is.

〔従来技術〕[Prior art]

光磁気メモリの研究は、1957年にMnBi薄膜上に
熱ペンを用いて記録を行ない、その書き込み磁区を磁気
光学効果によって観察したのがその端緒であるといわれ
ている。その後のレーザの発展に刺激されて、MnBi
Jの材料を中心として精力的な研究が行なわれてきたが
、レーザ光源ならびにその利用技術が未成熟であったた
めに実用化には至らなかった。
Research on magneto-optical memory is said to have its origins in 1957, when recording was performed using a hot pen on a MnBi thin film, and the written magnetic domain was observed using the magneto-optic effect. Spurred by subsequent developments in lasers, MnBi
Although intensive research has been carried out mainly on the material J, it has not been put to practical use because laser light sources and the technology for using them are still immature.

しかし、1970年代における光情報処理関連技術の進
展および非晶質希土類遷移金属合金薄膜に代表される新
しい磁性NPA材料の研究が進み(特許出願公告昭56
−57607 )、Gd’Fe 。
However, in the 1970s, advances in optical information processing related technology and research into new magnetic NPA materials represented by amorphous rare earth transition metal alloy thin films progressed (Patent Application Publication 1983).
-57607), Gd'Fe.

TbFe、DyFe、Gd0oなどの合金薄膜が開発さ
れてきた。これらの材料は、一般に次のような特徴を有
している。
Alloy thin films such as TbFe, DyFe, and Gd0o have been developed. These materials generally have the following characteristics.

GdFe、Gd0oなどの補償点記録用光磁気記録媒体
は、カー回転角がキエーリ一点記録用光磁気記録媒体に
比較して大きく光再生特性は優れているものの保磁力が
小さく(数百エルステッド)1μm径程鹿の微小ビット
が安定に得られない。また、TbFe、DyFeなどの
キューリ一点記録用光磁気記録媒体は、上述と逆に保磁
力が大きく(数キロエルステッド)1μm径程鹿の微小
ビットを安定に得ることが出来るものの、カー回転角が
小さく光再生特性があまり良くないなどの欠点を有して
いた。またTb、Gd、Dy、Ha、etc 、重希土
類は価格が高く実用に不向きである。
Compensation point recording magneto-optical recording media such as GdFe and Gd0o have larger Kerr rotation angles than Chieri single-point recording magneto-optical recording media and have excellent optical reproduction characteristics, but have a small coercive force (several hundred oersteds) of 1 μm. It is not possible to stably obtain minute bits from deer. In addition, magneto-optical recording media for Curie single-point recording, such as TbFe and DyFe, have a large coercive force (several kilo Oersteds) and can stably obtain minute bits of about 1 μm in diameter, contrary to the above, but the Kerr rotation angle is It had drawbacks such as being small and having poor optical reproduction characteristics. Furthermore, Tb, Gd, Dy, Ha, etc. and heavy rare earths are expensive and unsuitable for practical use.

これらの二元合金薄膜の欠点を補うため、従来3つの方
法が試みられてきた。
In order to compensate for the drawbacks of these binary alloy thin films, three methods have been attempted in the past.

(1)  三元あるいは四元化する。例えば、二元のG
ateとTbFeの長所を生かし、欠点を補うGdTb
Fs三元合金あるいはGdTb?eC。
(1) To become ternary or quaternary. For example, the binary G
GdTb takes advantage of the strengths of ate and TbFe and compensates for their weaknesses.
Fs ternary alloy or GdTb? eC.

四元合金のように多元化していく方法。(%開昭56−
126907.%開昭57−94948)(2)  二
元合金薄膜のままで、作製法の改善あるいは新しい作製
法で特性を改善する方法。(日本応用磁気学会、第27
回研究会資料27−s)(3)多層構造化する方法。記
録媒体に誘電体層を重ねて多重反射によるカー効果の増
大をはかる。また記録層と再生層を分離して、それぞれ
に適した材料を用いる。あるいは記録媒体の裏側に反射
層を設けて、表面からの反射光だけでなく、媒体を透過
した光も反射させて利用するなどの方法である。(特開
昭s 8−200447 )また、光磁気記録に重希土
類−遷移金属を用い反射膜のかわりにパーマロイ、Fe
、Co、Niを用いたもの(特開s 8−22245 
s )も見られるが、ビットが安定に存在する特徴しか
なく、パーマロイ、?e、C!o、Niが多結晶である
ため、ノイズの原因となりS/Hの劣化につながってい
た。
A method of diversification like quaternary alloys. (%Kaisei 56-
126907. (2) A method of improving the properties of a binary alloy thin film by improving the manufacturing method or using a new manufacturing method. (Japan Society of Applied Magnetics, 27th
Research meeting material 27-s) (3) Method of creating a multilayer structure. A dielectric layer is layered on the recording medium to increase the Kerr effect due to multiple reflections. Furthermore, the recording layer and the reproducing layer are separated, and materials suitable for each are used. Alternatively, a reflective layer may be provided on the back side of the recording medium to reflect and utilize not only the light reflected from the surface but also the light that has passed through the medium. (Unexamined Japanese Patent Publication No. S8-200447) Also, heavy rare earth-transition metals are used for magneto-optical recording, and permalloy, Fe, etc. are used instead of reflective films.
, Co, and Ni (Japanese Patent Application Laid-Open No. s8-22245
s) is also seen, but it only has the characteristic that bits exist stably, and permalloy,? e,C! Since Ni is polycrystalline, it causes noise and leads to deterioration of S/H.

しかしながら、これら上記の方法は、カー回転角は大き
くなるものの反射率が低下する。又カー回転角が多少向
上してもキューリ一温度が高くなりレーザー書き込みが
難しくなるなど一長一短があり根本的な改善には至って
いなかった。
However, in these methods, although the Kerr rotation angle increases, the reflectance decreases. Furthermore, even if the Kerr rotation angle was improved to some extent, the Curie temperature would increase, making laser writing difficult, and so on, with both advantages and disadvantages, and no fundamental improvement had been achieved.

〔目的〕〔the purpose〕

本発明は、上記欠点であるカー回転角が小さい、1μm
ビットが安定に得られない等の欠点を根本的に改善し、
相反する特性を向上させ高S/N、高密度、高安定性、
高速読み書きのできる光磁気記録媒体を提供することを
目的とする。
The present invention has the disadvantage of having a small Kerr rotation angle of 1 μm.
We have fundamentally improved the drawbacks such as not being able to obtain stable bits,
Improving contradictory characteristics to achieve high S/N, high density, high stability,
The purpose is to provide a magneto-optical recording medium that can be read and written at high speed.

〔vA要〕[vA required]

本発明は磁化の向きが膜面に垂直で上向きか下向きかの
二値をとる光磁気記録層に光を照射し記録再生を行う光
磁気記録媒体において、該光磁気。
The present invention relates to a magneto-optical recording medium in which recording and reproduction is performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of either upward or downward.

記録媒体が、セリウム(Ce)lプラセオジウム(Pr
)、ネオジウム(N(1)のうち少なくとも−m以上の
元素と鉄(Fe)及び不純物からなる合金、あるいは該
合金にさらにホウ素(B)、炭素(C)、ケイ素(”i
)*リン(P〕、アルミニウム(Al)のうち少なくと
も一種以上の元素を添加した合金あるいはさらに該合金
にクロム(Cr)、コバルト(”)+銅(cu)、ニッ
ケル(nt)、マンガン(Mn)のうち少なくとも−g
以上の元素を添加した合金からなる光磁気記録層と、該
光磁気記録層に対し抗磁力が五分の一以下で、且つ百エ
ルステッド以下でケイ素(sl)、ホウ素(B)、リン
(P)のうち少なくとも一種以上の元素と鉄(Fe )
および不純物からなる合金、あるいは該合金にさらにコ
バルト(C。
The recording medium is made of cerium (Ce) and praseodymium (Pr).
), neodymium (N(1)), an alloy consisting of at least -m or more elements, iron (Fe), and impurities, or the alloy further contains boron (B), carbon (C), silicon ("i
) * An alloy to which at least one element selected from phosphorus (P) and aluminum (Al) is added, or the alloy is further added with chromium (Cr), cobalt ('') + copper (cu), nickel (nt), manganese (Mn). ) at least -g
A magneto-optical recording layer made of an alloy to which the above elements are added, and a coercive force of silicon (sl), boron (B), and phosphorus (P) with a coercive force of one-fifth or less and one hundred oersted or less. ) and iron (Fe )
and an impurity, or the alloy further contains cobalt (C).

)、ニッケル(NL)、クロム(cr)+モリブデン(
MO)lタングステン(W)が少なくとも一種以上添加
された合金からなり優位的に非晶質な合金からなる低抗
磁力材層とを有し、該磁気記録層と該低抗磁力材層との
間に厚さ百ナノメートル以下の非磁性体層を形成したこ
とを特徴とする〔実施例〕 以下、図面を用いて本発明を詳述する。
), nickel (NL), chromium (cr) + molybdenum (
A low coercive force material layer made of an alloy to which at least one type of tungsten (W) is added and which is predominantly amorphous, the magnetic recording layer and the low coercive force material layer [Example] The present invention will be described in detail below with reference to the drawings.

本発明の基本構造を第1図(α)、第1図(b)に示す
。11は基板、12は光磁気記録層、13は低抗磁力材
層、14は非磁性層である。
The basic structure of the present invention is shown in FIG. 1(α) and FIG. 1(b). 11 is a substrate, 12 is a magneto-optical recording layer, 13 is a low coercive force material layer, and 14 is a nonmagnetic layer.

尚、ここでは基板をガラス、プラスチック等の透明基板
とし、読み書きする光学ヘッドは基板側に対向し、基板
を通して読み書きする場合を書いたが、これは本質的な
ことではなく、基板に低抗磁力材層、光磁気記録J伽、
または低抗磁力材層。
In this case, the substrate is a transparent substrate made of glass, plastic, etc., and the optical head for reading and writing faces the substrate and reads and writes through the substrate. However, this is not essential, and the substrate has a low coercive force. Material layer, magneto-optical recording J.
or a low coercivity material layer.

非磁性層、光磁気記録層と形成し光学ヘッドを基板に対
し光磁気記録媒体側に対向配置して読み書きしても何ら
問題ない。さらに本発明は、前記、構造のみに限定され
るものではなく、保護膜1反射防止@、多重干渉エンノ
・ンス膜、透明導電a等を設けることは何らさしつかえ
ない。
There is no problem even if a nonmagnetic layer and a magneto-optical recording layer are formed and an optical head is placed facing the magneto-optical recording medium side with respect to the substrate for reading and writing. Furthermore, the present invention is not limited only to the above-mentioned structure, and there is no problem in providing an anti-reflection protective film 1, a multiple interference interference film, a transparent conductive film, etc.

実施例1 第2図(α)に示す構造を有する媒体で基板23として
、よく洗浄したガラスを用い、スパッタ法を用いてガラ
ス基板上に厚み500λの非晶質Na1FeB垂直磁化
膜を22として形成し、その上にスパッタ法を用い、2
1としてFociB非晶質膜を10001形成した。上
記7θSIB非晶質膜の抗磁力は約7エルステツドであ
り、試料随1とする。また比較として上記Fe5iB非
晶質膜のかわりにhLをスパッタ法で1000^形成し
たものを試料随2とする。
Example 1 A well-cleaned glass substrate 23 was used as the medium having the structure shown in FIG. Then, using sputtering method, 2
As Example 1, 10001 FociB amorphous films were formed. The coercive force of the 7θSIB amorphous film is approximately 7 oersteds, and is considered as sample No. 1. For comparison, Sample No. 2 is prepared by forming 1000^ of hL by sputtering instead of the Fe5iB amorphous film.

第2図Cb)に示す構造を有する媒体で、実施例1と同
様に23はガラス基板、22はNd1FeB膜、21は
?eSiB膜で、24は負電体層でS10.を800λ
形成しである。これはNaFeB膜とガラス基板間にS
in、膜を形成することによりカー回転角をエンハンス
するものである。これを試料随3とするうまた比較とし
て上記Fe5iB非晶質膜のかわりにklをスパッタ法
で1oooX形成したものを試料N[L4とする。
In the medium having the structure shown in FIG. 2Cb), as in Example 1, 23 is a glass substrate, 22 is an Nd1FeB film, and 21 is ? In the eSiB film, 24 is a negative electric layer and S10. 800λ
It is formed. This is due to the S between the NaFeB film and the glass substrate.
In, the Kerr rotation angle is enhanced by forming a film. This is Sample No. 3. For comparison, a sample in which 100X of kl was formed by sputtering instead of the Fe5iB amorphous film was Sample N[L4.

第2図(ご)に示す構造を有する媒体で、実施例2と同
様に25はガラス基板、22はN1psB膜、21はF
e5iB膜i、24は5102@である。25は5iO
21Jで、NdFeB膜とFe5iB膜間に形成したも
ので10OA厚みである。これを試料Nα5とし、比較
としてFe5iB膜をhL9に置き替えたものを試料随
6とする。
In the medium having the structure shown in FIG.
The e5iB film i,24 is 5102@. 25 is 5iO
21J, formed between the NdFeB film and the Fe5iB film, and has a thickness of 10OA. This is designated as sample Nα5, and for comparison, the sample in which the Fe5iB film is replaced with hL9 is designated as sample No. 6.

第2図(d)に示す構造を有する媒体で、26はPMM
A基板であり1.6μm間隔・深さ700久の案内溝を
設けたものである。また実施例1と同様に22はNaF
eB1.21はFe5iB膜である。これを試料Nα7
とする。また比較とじて1Fe81B非晶質膜のかわり
にAt膜を形成したものを試料m8とする。
A medium having the structure shown in FIG. 2(d), 26 is a PMM.
This is the A substrate, with guide grooves spaced 1.6 μm apart and 700 mm deep. Also, as in Example 1, 22 is NaF
eB1.21 is a Fe5iB film. This is sample Nα7
shall be. For comparison, a sample m8 was prepared in which an At film was formed instead of the 1Fe81B amorphous film.

第2図(C)に示す構造を有する媒体で、基板26とし
て実施例4と同じpMMAを用い実施例2の試料随3と
同様のSiO,/NcL?eB/Fe5iByt造とし
たものを試料随9とし、比較として試料随9のlFe5
iBをhLとしたものを試料随10とする。
In the medium having the structure shown in FIG. 2(C), the same pMMA as in Example 4 was used as the substrate 26, and the same SiO,/NcL as in Sample No. 3 of Example 2 was used. Sample No. 9 is made of eB/Fe5iByt, and lFe5 of Sample No. 9 is used for comparison.
Sample No. 10 is obtained by setting iB to hL.

第2図(1)に示す構造を有する媒体で、基板26とし
て実施例4と同じPMMAを用い実施例2の試料随5と
同様のS i O! / N a F e B / S
10、/lFe5iB構造としたものを試料随11とし
、比較として試料随11のFe5iBをhLとしたもの
を試料随12とする。
The medium has the structure shown in FIG. 2(1), the same PMMA as in Example 4 is used as the substrate 26, and the same S i O! as in Sample No. 5 of Example 2. / N a F e B / S
Sample No. 11 has the /lFe5iB structure, and for comparison, Sample No. 12 has Fe5iB of Sample No. 11 as hL.

第2図(cL)の構造を有する媒体で、実施例1の試料
Nil iのl1eSiBをFe0oSiBとしたもの
を試料随13とする。この?eOoSiBの抗磁力は約
5エルステツドである。
Sample No. 13 is a medium having the structure shown in FIG. 2(cL), in which l1eSiB of sample Nil i of Example 1 is replaced with Fe0oSiB. this? The coercive force of eOoSiB is approximately 5 oersteds.

第2図(α)の構造を有する媒体で、実施例1の試料N
llのYeslBをFeN1Pとしたものを試料量14
とする。このlFeN1Pの抗磁力は約6エルステツド
である。
In the medium having the structure shown in FIG. 2 (α), sample N of Example 1
The sample amount is 14 with ll YeslB as FeN1P.
shall be. The coercive force of this lFeN1P is about 6 Oersteds.

第2図(α)の構造を持つ媒体で実施例1の非晶質Nc
lFeBを非晶)XP r p e p厚さ5ooXと
したものを試料量15とし、比較として試料量15の7
θSiBをALとしたものを試料量16とする。
Amorphous Nc of Example 1 in a medium having the structure shown in FIG. 2 (α)
The sample amount is 15, and for comparison, the sample amount is 7 of 15.
Let θSiB be AL as the sample amount 16.

第2図(α)の構造を持つ媒体で実施例1の非晶質Nd
?eBを厚みsooλのCe1FeAt(!としたもの
を試料+11117とし、比較のため試料量17の7e
SiBをhtとしたものを試料NC118とする。
Amorphous Nd of Example 1 was used in the medium having the structure shown in FIG. 2 (α).
? Let eB be Ce1FeAt (!) with thickness sooλ as sample +11117, and for comparison, sample amount 17 7e
Sample NC118 is obtained by changing SiB to ht.

第2図(α)の構造を有する媒体で、実施例1の試料N
11のNdFeBをNdPr?eとしたものを試料量1
9とし、比較のため試料19のYeslBをAtとした
ものを試料20とする。
In the medium having the structure shown in FIG. 2 (α), sample N of Example 1
11 NdFeB to NdPr? The sample amount is 1.
9, and sample 20 is sample 19 in which YeslB is changed to At for comparison.

第2図(α)の構造を有する媒体で、実施例1の試料量
1のNdFeBをNdFe5iCoとしたものを試料量
21とし、比較のため試料量21のFe5iBをhtと
したものを試料N[L22とする6・ 第2図(1)の構造を有する媒体で、実施例5の試料N
19のNdFeBをTb?eとしたものを試料量23と
し、比較のため試料N11L25のYeslBをhLと
したものを試料1a24−とする。
In the medium having the structure shown in FIG. 2 (α), sample amount 21 is a medium in which NdFeB in sample amount 1 of Example 1 is replaced with NdFe5iCo, and for comparison, sample N[ Sample N of Example 5 with the medium having the structure shown in FIG. 2 (1).
Tb of 19 NdFeB? For comparison, the amount of sample N11L25 with Yes1B set as hL is set as sample 1a24-.

以上23種類のサンプルについてカー効果を測定した。The Kerr effect was measured for the above 23 types of samples.

カー効果の測定は試料に10キロエールステツドの磁場
をかけ、残留磁化状態としHe−Neガスレーザー(波
長63z8ナノメートル)で測定した。測定の結果を表
1に示す。
The Kerr effect was measured by applying a magnetic field of 10 kiloersted to the sample to bring it into a remanent magnetized state and using a He--Ne gas laser (wavelength: 63 x 8 nanometers). The measurement results are shown in Table 1.

(1)〜(6)の試料1〜試料12においてすぺての構
造で非晶J?eSiBを用いたものはAtに比してカー
回転角はほぼ2倍に増加している。また(7)、(a)
の試料13及び試料14においてFe5iB以外の?e
系非晶質薄膜を用いた場合においても試料2のALに対
してやはり2倍程度の増加があった。
Samples 1 to 12 of (1) to (6) have all structures of amorphous J? The Kerr rotation angle of the one using eSiB is approximately twice that of At. Also (7), (a)
In sample 13 and sample 14, other than Fe5iB? e
Even when an amorphous thin film was used, the AL increased by about twice as much as that of Sample 2.

(9)−(12)において記録層としてPr’FeB、
0eIFeA40.NaPr’Fe、NdlFe5in
oとしたものにおいてもやはりカー回転角は大きくなっ
た。
In (9)-(12), Pr'FeB as the recording layer,
0eIFeA40. NaPr'Fe, NdlFe5in
The Kerr rotation angle also became large in the case where the angle was set to o.

(13)は従来より光磁気記録媒体として用いられてい
るTb?eを記録層としカー回転角を測定したがこの場
合でも約1.5倍に増加した。
(13) is Tb?, which has been conventionally used as a magneto-optical recording medium. The Kerr rotation angle was measured using e as the recording layer, and even in this case it increased by about 1.5 times.

尚、光磁気記録媒体にOr、Ni、C!u、Mnを添加
したものは、試料21のco添加と同一の効果で耐候性
に優れ、膜面に垂直に磁化容易軸を有する光磁気記録媒
体であった。さらに、ここでは、1!e系アモルファス
低抗磁力材層の具体例として、heicsi、B、’P
を少なくとも一種以上添加し、さらに1耐候性を上げる
ため、coとN1を添加した例を挙げたが、Or、MO
,Wでも全く同様な効果であった。
In addition, the magneto-optical recording medium contains Or, Ni, C! The one to which u and Mn were added had the same effect as the co addition in sample 21, had excellent weather resistance, and was a magneto-optical recording medium having an axis of easy magnetization perpendicular to the film surface. Furthermore, here, 1! Specific examples of the e-based amorphous low coercive force material layer include heicsi, B, and 'P.
An example has been given in which at least one type of
, W had exactly the same effect.

実施例2 低抗磁力材層の抗磁力とカー回転角の関係を調べた。結
果を第3図に示す。第5図におい゛て横軸は抗磁力、縦
軸はカー回転角である。用いた試料はすべて第2図(α
)の構造を有するもので、αはガラス/ NdFeBん
Fe5iB、bはガラス/ N d F e B / 
F e Co’ S i B 、 cはガラス/Tb 
F e / F e S i Bである。a、b、cの
3種類すべて低抗磁力層の抗磁力が小さくなるに従って
カー回転角が増加する。しかし抗磁力が約100エール
ステツド程度になると、Atの反射層を設けたものと同
等となる(図中、d、g)。さらに抗磁力が大きくなっ
た場合にはむしろALに比してカー回転角は小さくなる
。これは、反射率がALに比して7θ系合金が小さいた
めである。
Example 2 The relationship between the coercive force of the low coercive force material layer and the Kerr rotation angle was investigated. The results are shown in Figure 3. In FIG. 5, the horizontal axis is the coercive force, and the vertical axis is the Kerr rotation angle. All samples used are shown in Figure 2 (α
), where α is glass/NdFeBFe5iB and b is glass/NdFeB/
F e Co' S i B, c is glass/Tb
F e / F e S i B. For all three types a, b, and c, the Kerr rotation angle increases as the coercive force of the low coercive force layer becomes smaller. However, when the coercive force reaches about 100 Oersted, it becomes equivalent to that provided with an At reflective layer (d and g in the figure). Furthermore, when the coercive force becomes larger, the Kerr rotation angle becomes smaller than that of AL. This is because the reflectance of the 7θ-based alloy is lower than that of AL.

実施例3 光磁気記録再生可能な光学ヘッドを用い、第4囚(α)
に示す媒体構造で周波数特性を調べた。
Example 3 Using an optical head capable of magneto-optical recording and reproduction, the fourth prisoner (α)
The frequency characteristics were investigated using the media structure shown in the figure.

レーザー波長は780+mの半纏体レーザーを用いた。A semi-enveloped laser with a laser wavelength of 780+m was used.

ディスク回転数は1800 r pm *牛径5cIn
に固定とし、書き込み周波数を可変させた。読み書きは
基板側から行った。基板はグループ付ポリカーボネイト
41とし、第2表に記したような薄膜を形成し、6層構
造とした。第1層はAtN42で1300A、第2層は
光磁気記録層45で100DA、第3層は従来例として
At反射膜または本発明によるアモルファスIPe系抵
抗磁力膜44でここでは7θSiBとし、500Aの膜
厚とした。形成手段はDoマグネトロンスパッタ法とし
た。それぞれの光磁気記録媒体における書き込み周波数
に対する/N ratioを示したものが第4図(b)
である。従来の様な反射膜として非磁性hLを用いた場
合と較べ本発明によるアそルファスFe系抵抗磁力層を
設けたことにより0/Nrati。
Disc rotation speed is 1800 rpm *Cow diameter 5cIn
was fixed at , and the writing frequency was varied. Reading and writing were performed from the board side. The substrate was polycarbonate 41 with groups, and a thin film as shown in Table 2 was formed to have a six-layer structure. The first layer is made of AtN42 and has a resistance of 1300A, the second layer is a magneto-optical recording layer 45 that has a resistance of 100DA, and the third layer is an At reflective film as a conventional example or an amorphous IPe-based resistive magnetic film 44 according to the present invention, here 7θSiB, and a film of 500A. Made thick. The forming means was Do magnetron sputtering. Figure 4(b) shows the /N ratio with respect to the writing frequency for each magneto-optical recording medium.
It is. Compared to the conventional case where non-magnetic hL is used as a reflective film, the provision of the amorphous Fe-based resistive magnetic layer according to the present invention reduces the ratio to 0/Nrati.

が上昇した。さらに、不発明による?e中にOe、Pr
 、N(1を少なくとも一種以上含んだ光磁気記録媒体
においては、さらにその効果は大きく、書き込み周波数
特性が飛躍的に向上した。
rose. Furthermore, due to non-invention? Oe in e, Pr
, N(1), the effect was even greater, and the writing frequency characteristics were dramatically improved.

実施例4 第2図(1)に示す構造を持りた媒体を作成し光磁気記
録層と低抗磁力材層の間の非磁性中間層の厚みをパラメ
ータとして、記録パワーを変えた時のC/N比を調べた
Example 4 A medium having the structure shown in Fig. 2 (1) was prepared, and the recording power was changed using the thickness of the nonmagnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer as a parameter. The C/N ratio was examined.

媒体は第2図(1)の21の低抗磁力材層として]Fe
5iBNiを1oooK、22の光磁気記録層としてN
d:FeBを100(LX、24の多重反射層として5
101を9001形成し、25の非磁性中間層としてS
10.を100Kから1000Xまで変えたものを作成
した。非磁性中間層のそれぞれの厚みについて、書込み
レーザーパワーに対するO / N比を第5図に示した
。Sin。
The medium is 21 low coercive force material layers in FIG. 2 (1)]Fe
5iBNi as 1oooK, 22 magneto-optical recording layers as N
d: FeB at 100 (LX, 5 as 24 multi-reflection layers)
101 was formed as 9001, and S was used as the nonmagnetic intermediate layer of 25.
10. I created one with the value changed from 100K to 1000X. The O/N ratio versus writing laser power is shown in FIG. 5 for each thickness of the nonmagnetic intermediate layer. Sin.

の厚みを増していくと低いレーザーパワーでC/N比が
飽和する。すなわち書込み感度が向上している。しかし
S10.を2000Xと厚くした場合はC/N比が飽和
するレーザーパワーは低いが0/N比の飽和値も低くな
ってしまう。このことから非磁性中間層の厚みは光磁気
記録層と同等かそれ以下が望ましい。
As the thickness increases, the C/N ratio becomes saturated at low laser power. In other words, writing sensitivity is improved. However, S10. When the thickness is increased to 2000X, the laser power at which the C/N ratio is saturated is low, but the saturation value of the 0/N ratio is also low. For this reason, it is desirable that the thickness of the nonmagnetic intermediate layer be equal to or less than that of the magneto-optical recording layer.

なお、第5図中のαは非磁性層の厚みが100久、bは
同200X、(”はsooλ、dは1000^、Cは2
000Aである。
In addition, in Fig. 5, α is the thickness of the nonmagnetic layer of 100×, b is 200×, (” is sooλ, d is 1000^, C is 2
It is 000A.

〔効果〕〔effect〕

以上の実施例に示された様に本発明による構造を有する
光磁気記録媒体は、カー回転角がほぼ2倍に増加し、C
/N比も改善される。
As shown in the above embodiments, the magneto-optical recording medium having the structure according to the present invention has a Kerr rotation angle approximately doubled and a C
/N ratio is also improved.

さらに、記録磁区が安定するために高記録密度において
もO/ N比の劣化が小さく、より高密度記録に適した
媒体である。
Furthermore, since the recording magnetic domain is stable, there is little deterioration in the O/N ratio even at high recording densities, making it a medium that is more suitable for high-density recording.

また、従来のTbFe、GdCo、TbFe0o 、T
bGdFe%の重希土類を含む媒体に比してNd、Pr
、Ceの軽希土類を含むものは材料費が安くなり、本発
明による光磁気記録媒体は、軽希土類を含む媒体に対し
ての方がその効果が大きいという特徴をもっている。
In addition, conventional TbFe, GdCo, TbFe0o, T
bGdFe% compared to the medium containing heavy rare earths, Nd, Pr
, Ce containing light rare earth elements has a lower material cost, and the magneto-optical recording medium according to the present invention is characterized in that the effect is greater for media containing light rare earth elements.

記録10は、非晶質であるため記録層上にFe系非晶賀
を成長させる、あるいは逆にFe系非晶質層上に非晶質
の光磁気記録層を成長させることは非常に容易である。
Since the recording layer 10 is amorphous, it is very easy to grow an Fe-based amorphous layer on the recording layer, or conversely, to grow an amorphous magneto-optical recording layer on the Fe-based amorphous layer. It is.

また、光磁気記録層と低抗磁力材層間に非磁性中間層を
設けることによって書込み感度を向上させることが可能
である。さらに光磁気記録層が多少光を透過するならば
、低抗磁力材層と光磁気記録層間において、カー回転角
をエンハンスメントすることも可能である。
Furthermore, writing sensitivity can be improved by providing a nonmagnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer. Furthermore, if the magneto-optical recording layer transmits some light, it is also possible to enhance the Kerr rotation angle between the low coercive force material layer and the magneto-optical recording layer.

尚、本発明による中間層の実施例としてS10゜膜を挙
げたが、これに限らない。本発明の非磁性中間層として
、五酸化タンタル、酸化バナジウム、アルミナ、810
等の酸化膜でも本発明の効果は全く同様であった。更に
、窒化アルミニウム。
Incidentally, although the S10° film is cited as an example of the intermediate layer according to the present invention, the present invention is not limited thereto. As the non-magnetic intermediate layer of the present invention, tantalum pentoxide, vanadium oxide, alumina, 810
The effects of the present invention were exactly the same with other oxide films. Additionally, aluminum nitride.

窒化シリコン、窒化ボロン等の窒化膜でも同様であった
。更には、無機物と限らず、高分子樹脂をドライ法で処
理した中間層は熱伝導率が低いため本発明の効果は絶大
でありた。
The same was true for nitride films such as silicon nitride and boron nitride. Furthermore, the effect of the present invention was tremendous because the intermediate layer made of not only an inorganic material but also a polymer resin treated by a dry method has a low thermal conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)、(A)は本発明による光磁気記録媒体の
基本的層構造を示す図である。(α)。 (b)において 11・・・・・・基板 12・・・・・・光磁気記録層 13・・・・・・低抗磁力1− あるいは 12・・・・・・低抗磁力層 13・・・・・・光磁気記録層 また(b)において 14・・・・・・中間層 である。 第2図(α)〜(f)は本発明による光磁気記録媒体の
具体的実施例の構造を示す図である。各図において、 21・・・・・・低抗磁力層 22・・・・・・光磁気記録層 2S・・・・・・基板 24・・・・・・透明誘電体層 25・・・・・・中間I曽 26・・・・・・案内溝付き基板 である。 第6図は本発明による光磁気記録媒体の効果を示す図で
ある。 a・・・・・・ガラス基板/ N dF e B / 
111e 8 i Bの構造を有する媒体においてFe
5iBの抗磁力に対するカー回転角を示したもの。 b 、、・−・・ガラス基板/ N d ? e B 
/ F e S i Bの構造を有する媒体において?
eSiBの抗磁力に対するカー回転角を示したもの。 C・・・・・・ガラス基板/ T b F e / I
F e S i Bの構造を有する媒体においてFe5
iIlの抗磁力に対するカー回転角を示したもの。 d・・・・・・ガラス基板/ N dF e B / 
A tの構造を有する媒体のカー回転角。 ε・・・・・・ガラス基板/ T b IF e / 
A Lの構造を有する媒体のカー回転角。 第4図は本琵明による光磁気記録媒体の記録再生周波数
特性を示す図である。(α)は実験に用いた媒体の構造
を示し、 41・・・・・・基板 42・・・・・・AtN(透明誘電体層)45・・・・
・・光磁気記録層 44・・・・・・低抗磁力材層あるいはklである。 Cb)は書込み周波数に対するON比を示したもので図
中の1α〜5α及び1b〜5bは第2表に示した試料番
号である。 第5図は光磁気記録層と低抗磁力材層の間の非磁性中間
層の厚みをパラメータとして書込みレーザーパワーに対
するO / N比をとりたものである以  上
FIGS. 1(α) and 1(A) are diagrams showing the basic layer structure of the magneto-optical recording medium according to the present invention. (α). In (b), 11...Substrate 12...Magneto-optical recording layer 13...Low coercive force 1- or 12...Low coercive force layer 13... . . . magneto-optical recording layer, and in (b) 14 . . . intermediate layer. FIGS. 2(α) to 2(f) are diagrams showing the structure of a specific example of a magneto-optical recording medium according to the present invention. In each figure, 21...Low coercive force layer 22...Magneto-optical recording layer 2S...Substrate 24...Transparent dielectric layer 25... . . . Intermediate Iso 26 . . . A substrate with a guide groove. FIG. 6 is a diagram showing the effect of the magneto-optical recording medium according to the present invention. a...Glass substrate/N dF e B/
Fe in the medium with the structure 111e 8 i B
The graph shows the Kerr rotation angle for a coercive force of 5iB. b,...Glass substrate/Nd? e B
/ In a medium with a structure of F e S i B?
The graph shows the Kerr rotation angle with respect to the coercive force of eSiB. C...Glass substrate/T b Fe/I
Fe5 in a medium with the structure of FeSiB
The graph shows the Kerr rotation angle with respect to the coercive force of iIl. d...Glass substrate/N dF e B/
Kerr rotation angle of a medium having the structure of A t. ε...Glass substrate/T b IF e/
Kerr rotation angle of a medium having the structure of AL. FIG. 4 is a diagram showing the recording and reproducing frequency characteristics of the magneto-optical recording medium according to this Bimei. (α) indicates the structure of the medium used in the experiment, 41...Substrate 42...AtN (transparent dielectric layer) 45...
. . . Magneto-optical recording layer 44 . . . Low coercive force material layer or kl. Cb) shows the ON ratio with respect to the writing frequency, and 1α to 5α and 1b to 5b in the figure are the sample numbers shown in Table 2. Figure 5 shows the O/N ratio for the writing laser power using the thickness of the nonmagnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer as a parameter.

Claims (1)

【特許請求の範囲】[Claims] 磁化の向きが膜面に垂直で上向きか下向きかの二値をと
る光磁気記録層に光を照射し記録再生をおこなう光磁気
記録媒体において、該光磁気記録媒体が、セリウム(C
e)、プラセオジウム(Pr)、ネオジウム(Nd)の
うち少なくとも一種以上の元素と鉄(Fe)および不純
物からなる合金、あるいは該合金にさらにホウ素(B)
、炭素(C)、ケイ素(Si)、リン(P)、アルミニ
ウム(Al)のうち少なくとも一種以上の元素を添加し
た合金あるいはさらに該合金にクロム(Cr)、コバル
ト(Co)、銅(Cu)、ニッケル(Ni)、マンガン
(Mn)のうち少なくとも一種以上の元素を添加した合
金からなる光磁気記録層と、該光磁気記録層に対し、抗
磁力が五分の一以下で且つ百エルステッド以下でケイ素
(Si)、ホウ素(B)、リン(P)のうち少なくとも
一種以上の元素と鉄(Fe)および不純物からなる合金
、あるいは該合金にさらにコバルト(Co)、ニッケル
(Ni)、クロム(Cr)、モリブデン(Mo)、タン
グステン(W)が少なくとも一種以上添加された合金か
らなり、優位的に非晶質な合金からなる低抗磁力材層と
を有し、該光磁気記録層と該低抗磁力材層との間に厚さ
百ナノメートル以下の非磁性体層を形成したことを特徴
とした光磁気記録媒体。
In a magneto-optical recording medium in which recording and reproduction are performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward, the magneto-optical recording medium is made of cerium (C).
e), an alloy consisting of at least one element selected from praseodymium (Pr) and neodymium (Nd), iron (Fe), and an impurity; or an alloy further containing boron (B);
, an alloy to which at least one element among carbon (C), silicon (Si), phosphorus (P), and aluminum (Al) is added, or further chromium (Cr), cobalt (Co), and copper (Cu) to the alloy. , nickel (Ni), and manganese (Mn), and the magneto-optical recording layer has a coercive force of 1/5 or less and 100 Oe or less. An alloy consisting of at least one element selected from silicon (Si), boron (B), and phosphorus (P), iron (Fe), and impurities, or the alloy further contains cobalt (Co), nickel (Ni), and chromium ( Cr), molybdenum (Mo), and tungsten (W) are added. A magneto-optical recording medium characterized by forming a non-magnetic layer with a thickness of 100 nanometers or less between a low coercive force material layer.
JP19121284A 1984-09-12 1984-09-12 Photomagnetic recording medium Pending JPS6187246A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19121284A JPS6187246A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium
US07/193,020 US5100741A (en) 1984-09-12 1988-05-12 Magneto-optic recording systems
US08/231,866 US5529854A (en) 1984-09-12 1994-04-25 Magneto-optic recording systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19121284A JPS6187246A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6187246A true JPS6187246A (en) 1986-05-02

Family

ID=16270768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19121284A Pending JPS6187246A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6187246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974057A (en) * 1986-10-31 1990-11-27 Texas Instruments Incorporated Semiconductor device package with circuit board and resin
WO2021083166A1 (en) * 2019-10-28 2021-05-06 华南理工大学 Method for improving coercivity, wear resistance and corrosion resistance properties of neodymium iron boron magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974057A (en) * 1986-10-31 1990-11-27 Texas Instruments Incorporated Semiconductor device package with circuit board and resin
WO2021083166A1 (en) * 2019-10-28 2021-05-06 华南理工大学 Method for improving coercivity, wear resistance and corrosion resistance properties of neodymium iron boron magnet

Similar Documents

Publication Publication Date Title
JPS6066349A (en) Photothermomagnetic recording medium and its production
GB2071696A (en) Magneto-optical Recording Medium
JPH0684212A (en) Magneto-optical memory element
US4666789A (en) Magneto-optic recording medium
US4670316A (en) Thermo-magnetic recording materials supporting small stable domains
JPH01237945A (en) Magneto-optical recording medium
JPS6187246A (en) Photomagnetic recording medium
JPS61246946A (en) Photomagnetic recording medium
US5100741A (en) Magneto-optic recording systems
CA1216941A (en) Thermo-magnetic recording materials supporting small stable domains
US5529854A (en) Magneto-optic recording systems
US4999260A (en) Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric
Iiyori et al. Triple‐layered NdCo amorphous‐alloy films for magneto‐optical media
JPS6187242A (en) Photomagnetic recording medium
KR950004494Y1 (en) Optical recording medium
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JPH0546624B2 (en)
JPS6187236A (en) Photomagnetic recording medium
JP3381960B2 (en) Magneto-optical recording medium
JPH0546623B2 (en)
JPS6187248A (en) Photomagnetic recording medium
JPS6187240A (en) Photomagnetic recording medium
JPS6187245A (en) Photomagnetic recording medium
JPH08227540A (en) Magneto-optical recording medium
JPS6187249A (en) Photomagnetic recording medium