JPS6187245A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6187245A
JPS6187245A JP19121184A JP19121184A JPS6187245A JP S6187245 A JPS6187245 A JP S6187245A JP 19121184 A JP19121184 A JP 19121184A JP 19121184 A JP19121184 A JP 19121184A JP S6187245 A JPS6187245 A JP S6187245A
Authority
JP
Japan
Prior art keywords
alloy
magneto
layer
optical recording
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19121184A
Other languages
Japanese (ja)
Inventor
Mamoru Sugimoto
守 杉本
Satoshi Nehashi
聡 根橋
Akira Aoyama
明 青山
Tatsuya Shimoda
達也 下田
Satoshi Shimokawato
下川渡 聡
Shin Funada
舩田 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19121184A priority Critical patent/JPS6187245A/en
Publication of JPS6187245A publication Critical patent/JPS6187245A/en
Priority to US07/193,020 priority patent/US5100741A/en
Priority to US08/231,866 priority patent/US5529854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To provide a photomagnetic recording medium which has a high S/N ratio and permits high-density recording and high-speed recording by forming said medium so as to have a photomagnetic recording layer consisting of an alloy added with specific elements and a low coercive force material layer consisting of a specific alloy and dominantly amorphous alloy and forming a non-magnetic layer having a specific thickness or below between these layers. CONSTITUTION:The photomagnetic recording medium has the photomagnetic recording layer consisting of the alloy composed of elements of at least >=1 kinds of Ce, Pr and Nd as well as Fe and impurities or said alloy added further with elements of >=1 kinds among Ti, Zr, Ta, Hf, Nb, W, Y, Mo, or the alloy added further with >=1 kinds among Cr, Co, Cu, Ni and Mn and the low coercive force material layer of which the coercive force is <=1/5 the coercive force of the photomagnetic recording layer and <=100 oersted and which consists of the alloy composed of elements of >=1 kinds among Si, B and P as well as Fe and impurities or the alloy added further with >=1 kinds among Co, Ni, Cr, Mo and W to said alloy and the dominantly amorphous. The non-magnetic layer having <=100 nonometer thickness is formed between the magnetic recording layer and the low coercive force material layer.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、膜面と垂直な方向に磁化容易軸を有し、磁気
カー効果などの磁気光学効果を利用して読み出すことの
できる磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium that has an axis of easy magnetization in a direction perpendicular to the film surface and can be read using magneto-optic effects such as the magnetic Kerr effect. It is.

〔従来技術〕[Prior art]

光磁気メモリの研゛究は、1957年にMnB1薄膜上
に熱ペンを用いて記録を行ない、その書き込み磁区を磁
気光学効果によりて観察したのがその端緒であるといわ
れている。その後のレーザの発展に刺激されて、MnB
1系の材料を中心として精力的な研究が行なわれてきた
が、レーザ光源ならびにその利用技術が未成熟でありた
ために実用化には至らなかった。
Research on magneto-optical memory is said to have its beginnings in 1957, when recording was performed on a MnB1 thin film using a hot pen, and the written magnetic domain was observed using the magneto-optic effect. Spurred by the subsequent development of lasers, MnB
Although intensive research has been carried out mainly on 1-based materials, practical application has not been achieved because laser light sources and the technology for using them are still immature.

しかし、1970年代における光情報処理関連技術の進
展および非晶質希土類遷移金属合金薄膜に代表される新
しい磁性薄膜材料の研究が進み(特許出願公告昭56−
57607)、(l17e。
However, in the 1970s, advances in optical information processing related technology and research into new magnetic thin film materials such as amorphous rare earth transition metal alloy thin films progressed (Patent Application Publication 1982-
57607), (l17e.

Tb1Fe 、D7Fe 、GdCoなどの合金薄膜が
開発されてきた。これらの材料は、一般に次のような特
徴を有している。
Alloy thin films such as Tb1Fe, D7Fe, and GdCo have been developed. These materials generally have the following characteristics.

GdFe 、Ga0oなどの補償点記録用光磁気記録媒
体は、カー回転角がキューリ一点記録用光磁気記録媒体
に比較して大きく光再生特性は優れているものの保磁力
が小さく(数百エルステッド)1μ濯径程度の微小ビッ
トが安定に得られない0また・TbFe 、DylFe
などのキューリ一点記録用光磁気記録媒体は、上述と逆
に保磁力が大きく(数キロエルステッド)1μ悟径程度
の微小ビットを安定に得ることが出来るものの、カー回
転角が小さく光再生特性があまり良くないなどの欠点を
有していた。またTb 、 G(1、Dy 、 Ho 
、etc。
Magneto-optical recording media for compensation point recording such as GdFe and Ga0o have a larger Kerr rotation angle than magneto-optical recording media for single-point Curie recording, and have excellent optical reproduction characteristics, but have a small coercive force (several hundred oersteds) of 1μ. It is not possible to stably obtain small bits with a diameter of about 100 ml.・TbFe, DylFe
Curie magneto-optical recording media for single point recording, contrary to the above, have a large coercive force (several kilo Oersteds) and can stably obtain minute bits with a diameter of about 1μ, but their Kerr rotation angle is small and their optical reproduction characteristics are poor. It had drawbacks such as not being very good. Also, Tb, G(1, Dy, Ho
, etc.

重希土類は価格が高く実用に不向きである。Heavy rare earths are expensive and unsuitable for practical use.

これらの二元合金薄膜の欠点を補うため、従来3つの方
法が試みられてきた。
In order to compensate for the drawbacks of these binary alloy thin films, three methods have been attempted in the past.

(1)三元あるいは四元化する◇例えば、二元のGdF
eとTbFeの長所を生かし、欠点を補うGdTbIr
e三元合金あるいはGdTblFe0o四元合金のよう
に多元化していく方法0(特開昭56−126907、
特開昭57−94948) (2)二元合金薄膜のままで、作製法の改善あるいは新
しい作製法で特性を改善する方法。(日本応用磁気学会
第27回研究会資料2.7−5 )(3)多層構造化す
る方法。記録媒体に誘電体層を重ねて多重反射によるカ
ー効果の増大をはかる。
(1) Make ternary or quaternary ◇For example, binary GdF
GdTbIr takes advantage of the strengths of e and TbFe and compensates for their weaknesses.
Method 0 of diversification such as e ternary alloy or GdTblFe0o quaternary alloy (Japanese Patent Application Laid-open No. 126907/1983
JP-A-57-94948) (2) A method of improving the properties of a binary alloy thin film by improving the manufacturing method or by using a new manufacturing method. (Japan Society of Applied Magnetics 27th Research Meeting Material 2.7-5) (3) Method of forming a multilayer structure. A dielectric layer is layered on the recording medium to increase the Kerr effect due to multiple reflections.

また記録層と再生層を分離して、それぞれに適した材料
を用いる0あるいは記録媒体の裏側に反射層を設けて、
表面からの反射光だけでなく、媒体を透過した光も反射
させて利用するなどの方法である。(特開昭58−20
044 y )また、光磁気記録に重希土類−遷移金属
を用い反射膜のかわりにパーマロイ、 Fe 、 Co
 、 Niを用いたもの(特開昭58−222455 
)も見られるが、ビットが安定に存在する特徴しかなく
、パーマロイ、Fe 、Oo 、Mlが多結晶であるた
め、ノイズの原因となりS/Hの劣化にしなかっていた
0 しかしながら、これら上記の方法は、カー回転角は大き
くなるものの反射率が低下する0又力−回転角が多少向
上してもキューリ一温度が高くなりレーザー書き込みが
難しくなるなど一長一短があり根本的な改善には至って
いなかった。
In addition, the recording layer and the reproducing layer are separated, and a reflective layer is provided on the back side of the recording medium using materials suitable for each.
This method uses not only the light reflected from the surface but also the light that has passed through the medium. (Unexamined Japanese Patent Publication No. 58-20
044 y) In addition, heavy rare earth-transition metals are used for magneto-optical recording, and permalloy, Fe, Co is used instead of the reflective film.
, using Ni (Japanese Unexamined Patent Publication No. 58-222455)
), but since the bits only exist stably and permalloy, Fe, Oo, and Ml are polycrystalline, they cause noise and do not cause S/H deterioration. Although the Kerr rotation angle increases, the reflectance decreases, and even if the rotation angle improves somewhat, the Curie temperature increases, making laser writing difficult.There are advantages and disadvantages, and no fundamental improvement has been achieved. Ta.

〔目 的〕〔the purpose〕

本発明は、上記欠点であるカー回転角が小さい・1μm
ビットが安定に得られない等の欠点を根本的に改善し、
相反する特性を向上させ高S / IN 。
The present invention has the disadvantage of having a small Kerr rotation angle of 1 μm.
We have fundamentally improved the drawbacks such as not being able to obtain stable bits,
High S/IN by improving contradictory characteristics.

高密度、高安定性、高速読み書きのできる光磁気記録媒
体を提供することを目的とする。
The purpose of the present invention is to provide a magneto-optical recording medium with high density, high stability, and high speed read/write capabilities.

〔概 要〕〔overview〕

本発明は磁化の向きが膜面に垂直で上向きか下向きかの
二値をとる光磁気記録層に光を照射し記録再生を行う光
磁気記録媒体において、該光磁気記録媒体が、セリウム
(C!、) 、プラセオジウム(Pr)、ネオジウム(
ma)のうち少なくとも一種以上の元素と鉄(Pr)及
び不純物からなる合金あるいは該合金にさらにチタン(
’ri)sジルコニウム(Zr)、タンタル(Ta)、
ハフニウム(ar)、ニオブ(nb)、タングステン(
W)、イツトリウム(Y)、モリブデン(Mo)のうち
少なくとも一種以上の元素を添加した合金あるいはさら
に該合金にクロム(Or)、コバルト(Co)、銅(C
u)、ニッケル(al)、マンガン(Mn)のうち少な
くとも一種以上の元素を添加した合金からなる光磁気記
録層と、該光磁気記録層に対し抗磁力が五分の一以下で
、且つ百エルステッド以下でケイ素(Sl)、ホウ素(
B)、リン(P)のうち少なくとも一種以上の元素と鉄
(Fe ’)および不純物からなる合金、あるいは該合
金にざらにコバル) (CO)、ニッケル(Ni)?ク
ロム(Or)、モリブデン(M、)、タングステン(W
)が少なくとも一種以上添加された合金からなり、優位
的に非晶質な合金からなる低抗磁力材層とを有し、該磁
気記録層と該低抗磁力材層との間に厚さ百ナノメートル
以下の非磁性体層を形成したことを特徴とする。
The present invention provides a magneto-optical recording medium in which recording and reproduction is performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of either upward or downward. ), praseodymium (Pr), neodymium (
An alloy consisting of at least one element among ma), iron (Pr), and an impurity, or an alloy further comprising titanium (Pr) and an impurity.
'ri)s Zirconium (Zr), Tantalum (Ta),
hafnium (ar), niobium (nb), tungsten (
W), yttrium (Y), and molybdenum (Mo), or the alloy further contains chromium (Or), cobalt (Co), and copper (C).
u) a magneto-optical recording layer made of an alloy to which at least one element selected from the group consisting of nickel (al) and manganese (Mn) is added; Silicon (Sl), boron (
B), an alloy consisting of at least one element among phosphorus (P), iron (Fe'), and impurities, or the alloy is roughly coated with cobalt (CO), nickel (Ni)? Chromium (Or), molybdenum (M), tungsten (W)
), and a low coercive force material layer made of a predominantly amorphous alloy, and a layer having a thickness of 100 mm between the magnetic recording layer and the low coercive force material layer. It is characterized by forming a non-magnetic material layer of nanometer size or less.

〔実施例〕〔Example〕

以降本発明を図を用いて詳述する。 Hereinafter, the present invention will be explained in detail using figures.

本発明の基本構造を第1図(α)、第1図(6)に示す
The basic structure of the present invention is shown in FIG. 1 (α) and FIG. 1 (6).

11は基板、1248気記録層、13は低抗磁力材層・
14は非磁性層である。
11 is a substrate, 1248 recording layer, 13 is a low coercive force material layer.
14 is a nonmagnetic layer.

゛ 尚、ここでは基板をガラス・プラスチック等の透明
基板とし、読み書きする光学ヘッドは基板側に対向し、
基板を通して読み書きする場合を書いたが、これは本質
的なことではなく、基板に低抗磁力材層・光磁気記録層
、または低抗磁力材層・非磁性層・光磁気記録層と形成
し光学ヘッドを基板に対し光磁気記録媒体側に対向配置
して読み書きしても何ら問題ない。さらに本発明は、前
記構造のみに限定されるものではなく、保護膜・反射防
止膜・多重干渉エンへンス膜・透明導電膜等を設けるこ
とは何らさしつかえない。
゛ In this case, the substrate is a transparent substrate such as glass or plastic, and the optical head for reading and writing faces the substrate side.
Although I wrote about the case of reading and writing through the substrate, this is not essential, and it is possible to form a low coercive force material layer, a magneto-optical recording layer, a low coercive force material layer, a nonmagnetic layer, and a magneto-optical recording layer on the substrate. There is no problem even if the optical head is arranged facing the magneto-optical recording medium side with respect to the substrate for reading and writing. Further, the present invention is not limited to the above-mentioned structure, and it is possible to provide a protective film, an antireflection film, a multiple interference enhancement film, a transparent conductive film, etc.

実施例t (1)第2図(α)に示す構造を有する媒体で基板23
として、よく洗浄したガラスを用い、スパッタ法を用い
てガラス基板上に厚み500Aの非晶質NcLFeTi
垂直磁化膜を22として形成し、その上にスパッタ法を
用い、21としてFe5iB非晶質膜を1000X形成
した。上記Fe5iE非晶質膜の抗磁力は約7エルステ
ツドであり、試料比1とする。また比較として上記Fe
5iB非晶質膜のかわりにA!をスパッタ法で1ooo
X形成したものを試料比2とする。
Example t (1) The substrate 23 is made of a medium having the structure shown in FIG. 2 (α).
Using well-cleaned glass, amorphous NcLFeTi with a thickness of 500A was deposited on a glass substrate using a sputtering method.
A perpendicular magnetization film 22 was formed, and a Fe5iB amorphous film 21 was formed thereon at 1000× using a sputtering method. The coercive force of the Fe5iE amorphous film is about 7 oersted, and the sample ratio is 1. Also, for comparison, the above Fe
A instead of 5iB amorphous film! 1ooo by sputtering method
The sample ratio of the X-formed sample is 2.

(2)第2図(b)に示す構造を有する媒体で、実施例
1と同様に23はガラス基板、22はNdFeTi膜、
21はlFe5iB膜で、24は誘電体層でSin。
(2) In the medium having the structure shown in FIG. 2(b), as in Example 1, 23 is a glass substrate, 22 is an NdFeTi film,
21 is an lFe5iB film, and 24 is a dielectric layer made of Sin.

を800X形成しである。これはNdFeTi膜とガラ
ス基板間にSi0.膜を形成することによりカー回転角
をエンハンスするものである。これを試料比3とする。
It is formed at 800X. This is because Si0. By forming a film, the Kerr rotation angle is enhanced. This is set as sample ratio 3.

また比較として上記1FesiE非晶質膜のかわりにA
2をスパッタ法で1000X形成したものを試料比4と
する。
Also, for comparison, instead of the above 1FesiE amorphous film,
2 was formed by sputtering at 1000X, and the sample ratio was set to 4.

(3)第2図(c)に示す構造を有する媒体で、実施例
2と同様に26はガラス基板、22はNdFeTi膜、
21はFe5iB膜、24は5102膜である◎25は
5102膜で、Nd1FeTi膜とFe5iB膜間に形
成したもので100X厚みである。これを試料比5とし
、比較としてFeSi、B膜をA2膜に置き替えたもの
を試料比6とする。
(3) In the medium having the structure shown in FIG. 2(c), 26 is a glass substrate, 22 is an NdFeTi film,
21 is a Fe5iB film, 24 is a 5102 film. ◎25 is a 5102 film, which is formed between the Nd1FeTi film and the Fe5iB film and has a thickness of 100X. This is set as a sample ratio of 5, and for comparison, a sample ratio of 6 is set in which the FeSi, B film is replaced with an A2 film.

(4)第2図(d)に示す構造を有する媒体で、26は
PMMA基板であり16μm間隔・深さ700Xの案内
溝を設けたものである。また実施例1と同様に22はN
dFeTi膜、21はFe5iB膜である。これを試料
比7とする。また比較として・lPe5iB非晶質膜の
かわりにAA膜を形成したものを試料NQ8とする。
(4) In the medium having the structure shown in FIG. 2(d), reference numeral 26 is a PMMA substrate in which guide grooves having a depth of 700× and an interval of 16 μm are provided. Also, as in Example 1, 22 is N
dFeTi film, 21 is a Fe5iB film. This is set as a sample ratio of 7. For comparison, a sample NQ8 was prepared in which an AA film was formed instead of the lPe5iB amorphous film.

(5)第2図(6)に示す構造を有する媒体で、基板2
6として実施例4と同じPMMAを用い実施例2の試料
鳩6と同様の5i02 / NdFeTi/Fe5iB
構造としたものを試料比9とし、比較として試料比9の
?eSiBをAIlとしたものを試料比10とする。
(5) The substrate 2 is a medium having the structure shown in FIG. 2 (6).
The same PMMA as in Example 4 was used as sample pigeon 6, and 5i02/NdFeTi/Fe5iB was used as in sample pigeon 6 of Example 2.
The sample ratio is 9 for the structure, and the sample ratio is 9 for comparison. The sample ratio is 10 for eSiB as AI1.

(6)第2図(1)に示す構造を有する媒体で、基板2
6として実施例4と同じPMMAを用い実施例2の試料
比5と同様のS i O2/N dF e T i /
 S i Ot /XFe5iB構造としたものを試料
FkL11とし、比較として試料比11のlFe5iB
をAf!、としたものを試料比12とする。
(6) The substrate 2 is a medium having the structure shown in FIG. 2 (1).
The same PMMA as in Example 4 was used as 6, and the same S i O2/N dF e T i / as in sample ratio 5 of Example 2 was used.
Sample FkL11 has a S i Ot /XFe5iB structure, and lFe5iB with a sample ratio of 11 is used for comparison.
Af! , the sample ratio is 12.

(7)第2図(α)の構造を有する媒体で、実施例1の
試料比1のFe5iBをlFe0oSiBとしたものを
試料比13とする。この?eOoSiBの抗磁力は約5
エルステツドである。
(7) In a medium having the structure shown in FIG. 2 (α), Fe5iB with a sample ratio of 1 in Example 1 is replaced with lFe0oSiB, and the sample ratio is 13. this? The coercive force of eOoSiB is approximately 5
It is Ersted.

(8)第2図(α)の構造を有する媒体で、実施例1の
試料Nn1のlFe5iBを]!teNiPとしたもの
を試料比14とする。このFeN1P抗磁力は約6エル
ステツドである。
(8) In a medium having the structure shown in FIG. 2 (α), lFe5iB of sample Nn1 of Example 1]! The sample ratio of teNiP is 14. This FeN1P coercive force is approximately 6 Oersteds.

(9)第2図(α)の構造を持つ媒体で実施例1の非晶
質NdFeTiを非晶質P r F e、T a厚さ5
ooXとしたものを試料Nn15とし、比較として試料
Nn15のlFe5iBをA2としたものを試料出16
とする0α0 第2図(α)の構造を持つ媒体で実施例
1の非晶質NdFeTiを厚み500Xの0elPeO
oZrとしたものを試料出17とし、比較のため試料出
17のFe5iBをA2としたものを試料ぬ18とする
0(11)第2図(α)の構造を有す・る媒体で、実施
例1の試料出1のNdFeTiをN4PrIFeMoと
したものを試料出19とし、比較のため試料19のFe
5iBをA2としたものを試料20とする0 α21  第2図(、z)の構造を有する媒体で、実施
例1の試料Nn1のNdlFeTiをNdFeNb0r
としたものを試料出21とし、比較のため試料出21の
Fe5iBをA℃としたものを試料出22とする。
(9) Using a medium with the structure shown in FIG.
ooX is sample Nn15, and for comparison, sample Nn15 with lFe5iB as A2 is sample 16.
The amorphous NdFeTi of Example 1 is 0elPeO with a thickness of 500X in a medium having the structure shown in Figure 2 (α).
Sample No. 17 is taken as oZr, and sample No. 18 is taken as sample No. 18 for comparison, where Fe5iB of sample No. 17 is taken as A2. Sample 19 was obtained by replacing the NdFeTi of sample 1 in Example 1 with N4PrIFeMo, and for comparison, the Fe of sample 19 was
Sample 20 is 5iB as A2. 0α21 A medium having the structure shown in FIG. 2 (,z), NdlFeTi of sample Nn1 of Example 1 is
Sample No. 21 is taken as sample No. 21, and for comparison, sample No. 22 is taken as Fe5iB of sample No. 21 at A°C.

0階 第2図(g)の構造を有する媒体で、実施例5の
試料出9のNdFeTiをTb’Fθとしたものを試料
出25とし、比較のため試料出23のFe5iBをAX
としたものを試料1に24とする◎以上23種類のサン
プルについてカー効果を測定した。カー効果の測定は試
料に10キロエールステツドの磁場をかけ、残留磁化状
態としHe−Neガスレーザー(波長632.8ナノメ
ートル)で測定した。測定の結果を表1に示す0(1)
〜(6)の試料1〜試料12においてすべての構造で非
晶質Fe5iBを用いたものはA2に比してカー回転角
はほぼ2倍に増加している。また(7)。
0th Floor In the medium having the structure shown in FIG. 2(g), the sample 25 is the NdFeTi of the sample 9 of Example 5 with Tb'Fθ, and the Fe5iB of the sample 23 is AX for comparison.
The Kerr effect was measured for the above 23 types of samples. The Kerr effect was measured by applying a magnetic field of 10 kiloersted to the sample to bring it into a remanent magnetized state and using a He--Ne gas laser (wavelength: 632.8 nanometers). The measurement results are shown in Table 1.0(1)
In Samples 1 to 12 of (6), in which amorphous Fe5iB is used in all structures, the Kerr rotation angle is approximately twice as large as that in A2. Also (7).

(8)の試料13及び試料14において、lFe5iB
以外のFe系非晶質薄膜を用いた場合においても試料2
のA2に対してやはり2倍程度の増加があった0 (9)〜a2において記録層としてPr1FeTa 、
0eFeooZr 、NdPr?eMo 、N(Lアe
NbOrとしたものにおいてもやはりカー回転角は大き
くなった。
In sample 13 and sample 14 of (8), lFe5iB
Even when using Fe-based amorphous thin films other than Sample 2
There was also an increase of about twice as compared to A2.
0eFeooZr, NdPr? eMo, N(L ae
The Kerr rotation angle also increased in the case of NbOr.

a3は従来より光磁気記録媒体として用いられているT
b?eを記録層としカー回転角を測定したがこの場合で
も約15倍に増加した。
a3 is T, which has been conventionally used as a magneto-optical recording medium.
b? The Kerr rotation angle was measured using e as the recording layer, and even in this case it increased by about 15 times.

尚、光磁気記録媒体にOr 、Ni 、Cu 、Mnを
添加したものは、試料21のCO添加と同一の効果で耐
候性に優れ、膜面に垂直に磁化容易軸を有する光磁気記
録媒体であった。さらにここでは、y e /1%アモ
リ7アス低抗抵抗材層の具体例とじて7eにSi、B、
Pを少なくとも一種以上添加し、さらに耐候性を上げる
ため、COとN1を添加した例を挙げたが、Or 、M
o 、Wでも全く同様な効果であった。
Note that magneto-optical recording media to which Or, Ni, Cu, and Mn are added have the same effect as the addition of CO in sample 21, have excellent weather resistance, and have an axis of easy magnetization perpendicular to the film surface. there were. Further, here, as a specific example of the y e /1% amory 7 ass low resistance material layer, 7e includes Si, B,
An example was given in which at least one type of P was added and CO and N1 were added to further improve the weather resistance, but Or, M
o and W had exactly the same effect.

実施例2゜ 低抗磁力材層の抗磁力とカー回転角の関係を調べた。結
果を第3図に示す。第6図において横軸は抗磁力、縦軸
はカー回転角である。用いた試料はすべて第2図(α)
の構造を有するもので〜αはガラス/Nd1FeTi/
Fe5iBN bはガラス/NdFeTi/Fe0oS
iBSOはガラス/TbFe/Fe5iBである。α、
b、cの3種類す々て低抗磁力層の抗磁力が小さくなる
に従りてカー回転角が増加する。しかし抗磁力が約10
0エールステツド程度になると、Af!、の反射層を設
けたものと同等となる(図中d、g、)。さらに抗磁力
が大きくなった場合にはむしろA2に比してカー回転角
は小さくなる。これは、反射率かA2に比してFe系合
金が小さいためである@ 第   1   表 11     I     I     l     
 l     l     l実施例6゜ 光磁気記録再生可能な光学ヘッドを用い、第4図(α)
に示す媒体構造で周波数特性を調べた。レーザー波長は
780nrnの半導体レーザーを用いた。
Example 2 The relationship between the coercive force of the low coercive force material layer and the Kerr rotation angle was investigated. The results are shown in Figure 3. In FIG. 6, the horizontal axis is the coercive force, and the vertical axis is the Kerr rotation angle. All samples used are shown in Figure 2 (α)
It has the structure ~α is glass/Nd1FeTi/
Fe5iBN b is glass/NdFeTi/Fe0oS
iBSO is glass/TbFe/Fe5iB. α,
In all three types b and c, the Kerr rotation angle increases as the coercive force of the low coercive force layer becomes smaller. However, the coercive force is about 10
When it reaches about 0 Aersted, Af! It is equivalent to that provided with a reflective layer (d, g, in the figure). Furthermore, when the coercive force becomes larger, the Kerr rotation angle becomes smaller than that of A2. This is because the reflectance of the Fe-based alloy is smaller than that of A2.
l l lExample 6゜Using an optical head capable of magneto-optical recording and reproduction, Fig. 4 (α)
The frequency characteristics were investigated using the media structure shown in the figure. A semiconductor laser with a laser wavelength of 780 nrn was used.

ディスク回転数は1800rpm、半径5 cmに固定
とし、書き込み周波数を可変させた。読み書きは基板側
から行った@基板はグループ付ポリカーボネイト41と
し、第2表に記したような薄膜を形成し、3層構造とし
た〇 第1層はAλN42で80 OA、第2層は光磁気記録
層43で100OA、第3層は従来例としてA1反射膜
または本発明によるアモルファスFe系低抗磁力膜44
でここではlFe5iBとし、500Aの膜厚とした。
The disk rotation speed was fixed at 1800 rpm and the radius was 5 cm, and the writing frequency was varied. Reading and writing were performed from the substrate side.@The substrate was polycarbonate 41 with groups, and a thin film was formed as shown in Table 2, creating a three-layer structure.〇The first layer was AλN42 with 80 OA, and the second layer was magneto-optical. The recording layer 43 has 100 OA, and the third layer is an A1 reflective film as a conventional example or an amorphous Fe-based low coercive force film 44 according to the present invention.
Here, the film was set to lFe5iB and the film thickness was set to 500A.

形成手段はDoマグネトロンスパッタ法とした。それぞ
れの光磁気記録媒体における書き込み周波数に対するO
/Nratioを示したものが第4図(b)である。従
来の様な度射膜として非磁性A2を用いた場合と較べ本
発明によるアモルファスFe系低抗磁力膜を設けたこと
によりC/Nratioが上昇した。さらに、本発明に
よるFe中にCe 、Pr 、Ndを少なくとも一種以
上含′んだ光磁気記録媒体においては、さらにその効果
は大きく、書き込み周波数特性が飛躍的に向上したO 第 2 表 (組成単位は原子%表示)実施例4゜ 第2図(1)に示す構造を持りた媒体を作成し光磁気記
録層と低抗磁力材層の間の非磁性中間層の厚みをパラメ
ータとして、記録パワーを変えた時の0 / N比を調
べた。
The forming means was Do magnetron sputtering. O vs. writing frequency for each magneto-optical recording medium
/Nratio is shown in FIG. 4(b). Compared to the conventional case where non-magnetic A2 is used as a radiation film, the C/N ratio is increased by providing the amorphous Fe-based low coercive force film according to the present invention. Furthermore, in the magneto-optical recording medium containing at least one of Ce, Pr, and Nd in Fe according to the present invention, the effect is even greater, and the writing frequency characteristics are dramatically improved. (expressed in atomic %) Example 4 A medium having the structure shown in Figure 2 (1) was prepared, and recording was performed using the thickness of the nonmagnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer as a parameter. I investigated the 0/N ratio when changing the power.

媒体は第2図(1)の21の低抗磁力材層とじてアes
iBを1000入、22′の光磁気記録層としてNdX
FeTiを1000X、24の多重反射層として510
2を90OA形成し、25の非磁性中間層としてS10
.を100Xから1000父まで変えたものを作成した
。非磁性中間層のそれぞれの厚みについて、書込みレー
ザーパワーに対するC/N比を第5図に示した。510
2の厚みを増していくと低いレーザーパワーでC/N比
が飽和する。すなわち書込み感度が向上している。しか
し5102を2000にと厚くした場合はC/N比が飽
和するレーザーパワーは低いがC/N比の飽和値も低く
なってしまう。このことから非磁性中間層の厚みは光磁
気記録層と同等かそれ以下が望ましい。
The medium is a layer of low coercive force material 21 in Figure 2 (1).
1000 iB, NdX as 22' magneto-optical recording layer
FeTi 1000X, 510 as 24 multi-reflection layers
2 was formed at 90OA, and S10 was formed as a nonmagnetic intermediate layer of 25.
.. I created one that changed from 100X to 1000 Father. FIG. 5 shows the C/N ratio versus writing laser power for each thickness of the nonmagnetic intermediate layer. 510
As the thickness of 2 increases, the C/N ratio becomes saturated at low laser power. In other words, writing sensitivity is improved. However, when the thickness of 5102 is increased to 2000, the laser power at which the C/N ratio is saturated is low, but the saturation value of the C/N ratio is also low. For this reason, it is desirable that the thickness of the nonmagnetic intermediate layer be equal to or less than that of the magneto-optical recording layer.

なお、第5図中のαは非磁性層の厚みが100X、bは
同2ooX、cは5ooX、dは11000Asは20
00Xである。
In Fig. 5, α is the thickness of the nonmagnetic layer of 100X, b is 2OOX, c is 5OOX, d is 11000, and As is 20X.
It is 00X.

〔効 果〕〔effect〕

以上の実施例に示された様に本発明による構造を有する
光磁気記録媒体は、カー回転角がほぼ2倍に増加し、C
/N比も改善胡、る。
As shown in the above embodiments, the magneto-optical recording medium having the structure according to the present invention has a Kerr rotation angle approximately doubled and a C
/N ratio also improved.

さらに、記録磁区が安定するために高記録密度において
もC/ N比の劣化が小さく、より高密度記録に適した
媒体である。
Furthermore, since the recording magnetic domain is stable, there is little deterioration in the C/N ratio even at high recording densities, making it a medium more suitable for high-density recording.

また、従来のTbFe 、 G(100、Tbアeoo
 。
In addition, conventional TbFe, G(100, TbA eoo
.

TbGdFe等の重希土類を含む媒体に比してNd、P
r 、Oeの軽希土類を含むものは材料費が安くなり、
本発明による光磁気記録媒体は・軽希土類を含む媒体に
対しての方がその効果が大きいという特徴をもっている
Compared to media containing heavy rare earths such as TbGdFe, Nd and P
Material costs are lower for those containing light rare earths such as r and Oe.
The magneto-optical recording medium according to the present invention is characterized in that the effect is greater for media containing light rare earth elements.

記録層は、非晶質であるため記録層上にIPe系非晶質
を成長さ奢る、あるいは逆にFe系非晶質上に非晶質の
光磁気記録層を成長させることは非常に容易である。
Since the recording layer is amorphous, it is very easy to grow an IPe-based amorphous on the recording layer, or conversely, to grow an amorphous magneto-optical recording layer on an Fe-based amorphous. It is.

また、光磁気記録層と低抗磁力材層間に非磁性中間層を
設けることによって書込み感度を向上させることが可能
である・さらに光磁気記録層が多少光を透過するならば
、低抗磁力材層と光磁気記録層間において、カー回転角
をエンハンスメントすることも可能である0 尚、本発明による中間層の実施例としてSiO□膜を挙
げたが、本発明の中間層の効果は、この材料に限らない
。本発明の非磁性中間層として、五酸化タンタル、酸化
バナジウム、アルミナ、810等の酸化物薄膜でもよく
、更には、窒化アルミニウム、窒化シリコン、窒化ボロ
ン等の窒化物薄膜でも同様の効果であった。更には、無
機物と限らず高分子樹脂をドライ法等により形成処理し
た中間層は、熱伝導率が無機質より低いため本発明の効
果は絶大であった。
In addition, writing sensitivity can be improved by providing a non-magnetic intermediate layer between the magneto-optical recording layer and the low coercive force material layer.Furthermore, if the magneto-optical recording layer allows some light to pass through, the low coercive force material layer can be used. It is also possible to enhance the Kerr rotation angle between the layer and the magneto-optical recording layer.Although the SiO□ film has been cited as an example of the intermediate layer according to the present invention, the effect of the intermediate layer according to the present invention is Not limited to. As the non-magnetic intermediate layer of the present invention, a thin film of oxide such as tantalum pentoxide, vanadium oxide, alumina, 810, etc. may be used.Furthermore, a thin film of nitride such as aluminum nitride, silicon nitride, boron nitride, etc. may have the same effect. . Furthermore, the effect of the present invention was great because the intermediate layer formed not only from an inorganic material but also from a polymeric resin by a dry method or the like has a lower thermal conductivity than an inorganic material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α) 、 (6)は本発明による光磁競録媒体
の基本的層構造を示す図である。(α) 、 (b)に
おいて11・・・基板 12・・・光磁気記録層 13・・・低抗磁力層 あるいは 12・・・低抗磁力層 13・・・光磁気記録層 また(b)において 14・・・中間層 である。 第2図(α) 、 (1)は本発明による光磁気記録媒
体の具体的実施例の構造を示す図である。 各図において、 21・・・低抗磁力層 22・・・光磁気記録層 23・・・基板 24・・・透明誘電体層 25・・・中間層 26・・・案内溝付き基板 である。 第6図は本発明による光磁気記録媒体の効果を示す図で
ある。 a ”’ガラス基板/NdlFeTi/Fe5iBの構
造を有する媒体においてFe5iBの抗磁力に対するカ
ー回転角を示したもの。 b ・・・ガラス基板/NdFeTi/Fe5iBPの
構造を有する媒体においてFe5iBPの抗磁力に対す
るカー回転角を示したもの。 C・・・ガラス基板/TbFe/lFe5iBの構造を
有する媒体においてFe5iBの抗磁力に対するカー回
転角を示したちのO d・・・ガラス基板/NdFeTi/AR,の構造を有
する媒体のカー回転角O 1e・・・・ガラス基板/TbFe/Aλの構造を有す
る媒体のカー回転角。 第4図は本発明による光磁気記録媒体の記録再生周波数
特性を示す図である。 (a)は実験に用いた媒体の構
造を示し、 41・・・基板 42・・・Anm(透明誘電体層) 43・・・光磁気記録層 44・・・低抗磁力材層あるいはAλ である。 (6)は書込み周波数に対するON比を示したもので図
中の1α〜5α及び1b〜5bは第2表に示した試料番
号である。 第5図は光磁気記録層と低抗磁力材層の間の非磁性中間
層の厚みをパラメータとして書込みレーザーパワーに対
するCZN比をとったものである。 以  上
FIGS. 1(α) and 1(6) are diagrams showing the basic layer structure of the magneto-optical recording medium according to the present invention. (α) In (b), 11...substrate 12...magneto-optical recording layer 13...low coercive force layer, or 12...low coercive force layer 13...magneto-optical recording layer, or (b) In 14... middle class. FIGS. 2(α) and 2(1) are diagrams showing the structure of a specific embodiment of the magneto-optical recording medium according to the present invention. In each figure, 21...Low coercive force layer 22...Magneto-optical recording layer 23...Substrate 24...Transparent dielectric layer 25...Intermediate layer 26...Substrate with guide grooves. FIG. 6 is a diagram showing the effect of the magneto-optical recording medium according to the present invention. a "' Kerr rotation angle with respect to the coercive force of Fe5iB in a medium with a structure of glass substrate/NdlFeTi/Fe5iB. b... Kerr rotation angle with respect to coercive force of Fe5iBP in a medium with a structure of glass substrate/NdFeTi/Fe5iBP. Indicates the rotation angle. C... Indicates the Kerr rotation angle with respect to the coercive force of Fe5iB in a medium with the structure of glass substrate/TbFe/lFe5iB. Kerr rotation angle of the medium having O 1e... Kerr rotation angle of the medium having the structure of glass substrate/TbFe/Aλ. FIG. 4 is a diagram showing the recording and reproducing frequency characteristics of the magneto-optical recording medium according to the present invention. (a) shows the structure of the medium used in the experiment, 41...Substrate 42...Anm (transparent dielectric layer) 43...Magneto-optical recording layer 44...Low coercive force material layer or Aλ (6) shows the ON ratio with respect to the writing frequency, and 1α to 5α and 1b to 5b in the figure are the sample numbers shown in Table 2. Figure 5 shows the magneto-optical recording layer and low coercive force. The CZN ratio to the writing laser power is calculated using the thickness of the nonmagnetic intermediate layer between the material layers as a parameter.

Claims (1)

【特許請求の範囲】[Claims] 磁化の向きが膜面に垂直で上向きか下向きかの二値をと
る光磁気記録層に光を照射し記録再生をおこなう光磁気
記録媒体において、該光磁気記録媒体が、セリウム(C
e)、プラセオジウム(Pr)、ネオジウム(Nd)の
うち少なくとも一種以上の元素と鉄(Fe)および不純
物からなる合金、あるいは該合金にさらにチタン(Ti
)、ジルコニウム(Zr)、タンタル(Ta)、ハフニ
ウム(Hf)、ニオブ(Nb)、タングステン(W)、
イットリウム(Y)、モリブデン(Mo)のうち少なく
とも一種以上の元素を添加した合金あるいはさらに該合
金にクロム(Cr)、コバルト(Co)、銅(Cu)、
ニッケル(Ni)、マンガン(Mn)のうち少なくとも
一種以上の元素を添加した合金からなる光磁気記録層と
、該光磁気記録層に対し、抗磁力が五分の一以下でケイ
素(Si)、ホウ素(B)、リン(P)のうち少なくと
も一種以上の元素と鉄(Fe)および不純物からなる合
金、あるいは該合金にさらにコバルト(Co)、ニッケ
ル(Ni)、クロム(Cr)、モリブデン(Mo)、タ
ングステン(W)が少なくとも一種以上添加された合金
からなり、優位的に非晶質な合金からなる低抗磁力材層
とを有し、該光磁気記録層と該低抗磁力材層との間に厚
さ百ナノメートル以下の非磁性体層を形成したことを特
徴とした光磁気記録媒体。
In a magneto-optical recording medium in which recording and reproduction are performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward, the magneto-optical recording medium is made of cerium (C).
e), an alloy consisting of at least one element selected from praseodymium (Pr), neodymium (Nd), iron (Fe), and impurities, or an alloy containing titanium (Ti).
), zirconium (Zr), tantalum (Ta), hafnium (Hf), niobium (Nb), tungsten (W),
An alloy to which at least one element selected from yttrium (Y) and molybdenum (Mo) is added, or the alloy further contains chromium (Cr), cobalt (Co), copper (Cu),
A magneto-optical recording layer made of an alloy to which at least one element selected from nickel (Ni) and manganese (Mn) is added; An alloy consisting of at least one element among boron (B) and phosphorus (P), iron (Fe), and impurities, or the alloy further contains cobalt (Co), nickel (Ni), chromium (Cr), and molybdenum (Mo). ), and a low coercive force material layer made of an alloy to which at least one type of tungsten (W) is added and which is predominantly amorphous, the magneto-optical recording layer and the low coercive force material layer A magneto-optical recording medium characterized in that a non-magnetic layer with a thickness of 100 nanometers or less is formed between the layers.
JP19121184A 1984-09-12 1984-09-12 Photomagnetic recording medium Pending JPS6187245A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19121184A JPS6187245A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium
US07/193,020 US5100741A (en) 1984-09-12 1988-05-12 Magneto-optic recording systems
US08/231,866 US5529854A (en) 1984-09-12 1994-04-25 Magneto-optic recording systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19121184A JPS6187245A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6187245A true JPS6187245A (en) 1986-05-02

Family

ID=16270751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19121184A Pending JPS6187245A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6187245A (en)

Similar Documents

Publication Publication Date Title
US4838962A (en) Magneto-optical recording medium
JPS6227459B2 (en)
US4666789A (en) Magneto-optic recording medium
JPH04243039A (en) Magneto-optical recording medium
US5030512A (en) Magneto-optical recording medium
JPH0782943B2 (en) Amorphous magneto-optical layer
JPS6187245A (en) Photomagnetic recording medium
JPS61246946A (en) Photomagnetic recording medium
US5100741A (en) Magneto-optic recording systems
US5529854A (en) Magneto-optic recording systems
JPS6187246A (en) Photomagnetic recording medium
JPS6187247A (en) Photomagnetic recording medium
JPS6187242A (en) Photomagnetic recording medium
JPS6187249A (en) Photomagnetic recording medium
JPH01319144A (en) Magneto-optic effect memory medium
JPH0546624B2 (en)
JPS6187248A (en) Photomagnetic recording medium
JPS6187240A (en) Photomagnetic recording medium
JPS6187241A (en) Photomagnetic recording medium
JPS6187244A (en) Photomagnetic recording medium
JPS6187243A (en) Photomagnetic recording medium
KR950004494Y1 (en) Optical recording medium
JPS6187236A (en) Photomagnetic recording medium
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JP3381960B2 (en) Magneto-optical recording medium