JPS6187243A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6187243A
JPS6187243A JP19120984A JP19120984A JPS6187243A JP S6187243 A JPS6187243 A JP S6187243A JP 19120984 A JP19120984 A JP 19120984A JP 19120984 A JP19120984 A JP 19120984A JP S6187243 A JPS6187243 A JP S6187243A
Authority
JP
Japan
Prior art keywords
alloy
magneto
optical recording
recording medium
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19120984A
Other languages
Japanese (ja)
Inventor
Mamoru Sugimoto
守 杉本
Satoshi Nehashi
聡 根橋
Akira Aoyama
明 青山
Tatsuya Shimoda
達也 下田
Satoshi Shimokawato
下川渡 聡
Shin Funada
舩田 伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19120984A priority Critical patent/JPS6187243A/en
Publication of JPS6187243A publication Critical patent/JPS6187243A/en
Priority to US07/193,020 priority patent/US5100741A/en
Priority to US08/231,866 priority patent/US5529854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To provide a photomagnetic recording medium which has a high S/N ratio and permits high-density recording and high-speed recording by forming said medium so as to have a photomagnetic recording layer consisting of an alloy added with specific elements and a low coercive force material layer consisting of a specific alloy and dominently amorphous alloy. CONSTITUTION:The photomagnetic recording medium has the photomagnetic recording layer consisting of the alloy composed of elements of at least &i1 kinds of Ce, Pr and Nd as well as Fe and impurities or said alloy added further with elements of >=1 kinds among B, C, Si, P and Al and the alloy added with elements of >=1 kinds of Cr, Co, Cu, Ni and Mn to said alloy and the low coercive force material layer of which the coercive force is <=1/5 the coer cive force of the photomagnetic recording layer and <=100 oersted and which consists of the alloy composed of elements of >=1 kinds of Si, B and P as well as Fe and impurities of the alloy added with further >=1 kinds among Co, Ni, Cr, Mo and W to aid alloy and the dominantly amorphous alloy.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、膜面と垂直な方向に磁化容易軸を有し、磁気
カー効果などの磁気光学効果を利用して読み出すことの
できる磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium that has an axis of easy magnetization in a direction perpendicular to the film surface and can be read using magneto-optic effects such as the magnetic Kerr effect. It is.

光磁気メモリの研究は、1957年にM?ZB z薄膜
上に熱ペンを用いて記録を行ない、その書き込み磁区を
磁気光学効果によって観察したのがその端緒であるとい
われている。その後のレーザの発展に刺激されて、Mn
B1系の材料を中心として精力的な研究が行なわれてき
たが、レーザ光源ならびにその利用技術が未成熟であっ
たために実用化には至らなかった。
Research on magneto-optical memory began in 1957 with M? It is said that the origin of this technology is that a hot pen was used to record on a ZBz thin film, and the written magnetic domain was observed using the magneto-optic effect. Spurred by subsequent developments in lasers, Mn
Although intensive research has been carried out mainly on B1-based materials, practical use has not been achieved because laser light sources and the technology for using them are still immature.

しかし、1970年代における光情報処理関連技術の進
展および非晶質希土類遷移金属合金薄膜に代表される新
しい磁性薄膜材料の研究が進み、(%許出願公告昭56
−87607 ) GdFe、 T6F#。
However, in the 1970s, advances in optical information processing related technology and research into new magnetic thin film materials such as amorphous rare-earth transition metal alloy thin films progressed.
-87607) GdFe, T6F#.

DyFg、 GdC0などの合金薄膜が開発されてきた
。これらの材料は、一般に次のような特徴を有している
Alloy thin films such as DyFg and GdC0 have been developed. These materials generally have the following characteristics.

GdFe、 GdCoなどの補償点記録用光磁気記録媒
体は、カー回転角がキューリ一点記録用光磁気記録媒体
に比較して大きく光再生特性は優れているものの保磁力
が小さく(数百エルステッド)1μm程度の微小ビット
が安定に得られない、また、TbFg 、Dy’?6な
どのキューリ一点記録用光磁気記録媒体は、上述と逆に
保磁力が大きく(数キロエルステッド)1.un径程度
の微小ビットを安定に得ることが出来るものの、カー回
転角が小さく光再生特性があまり良くないなどの欠点を
有して込た。
Compensation point recording magneto-optical recording media such as GdFe and GdCo have a larger Kerr rotation angle than Curie single-point recording magneto-optical recording media and have excellent optical reproduction characteristics, but have a small coercive force (several hundred oersteds) of 1 μm. It is not possible to stably obtain bits as small as TbFg, Dy'? Contrary to the above, magneto-optical recording media for Curie single-point recording such as No. 6 have a large coercive force (several kilo Oersteds). Although it is possible to stably obtain a minute bit with a diameter of about 100 mm, it has disadvantages such as a small Kerr rotation angle and poor optical reproduction characteristics.

またTb、Chi、Dy、Ho、etc、重希土類は価
格が高く実用に不向きである。
Furthermore, Tb, Chi, Dy, Ho, etc., and heavy rare earths are expensive and unsuitable for practical use.

これらの二元合金薄膜の欠点を補うため、従来8つの方
法が試みられてきた。
In order to compensate for the drawbacks of these binary alloy thin films, eight methods have been tried in the past.

(1)三元あるいは四元化する。例えば、二元のGdy
、とT6F、の長所を生かし、欠点を補うGdTbF。
(1) To become ternary or quaternary. For example, the binary Gdy
GdTbF takes advantage of the strengths of , and T6F, and compensates for their weaknesses.

三元合金あるいはGdl?’bFlCQ四元合金のよう
に多元化していく方法、(特開°昭56−126907
゜(2)二元合金薄膜のままで、作製法の改善あるいは
新しい作製法で特性を改善する方法、(日本応用磁気学
会第n回研究会資料27−5)(8)多層構造化する方
法。記録媒体に誘電体層を重ねて多重反射によるカー効
果の増大をはかる。
Ternary alloy or Gdl? 'bMethod of diversification like FlCQ quaternary alloy (Unexamined Japanese Patent Publication No. 56-126907
゜(2) A method of improving the properties of the binary alloy thin film by improving the manufacturing method or using a new manufacturing method, (Japan Society of Applied Magnetics, Nth Research Meeting Material 27-5) (8) A method of creating a multilayer structure . A dielectric layer is layered on the recording medium to increase the Kerr effect due to multiple reflections.

また記録層と再生層を分離して、それぞれに適し・ た
材料を用いる。あるいは記録媒体の裏側に反射層を設け
て、表面からの反射光だけでなく、媒体を透過した光も
反射させて利用するなどの方法である。(%開開58−
200447) また、光磁気記録に重希土類−遷移金属を用い反射膜の
かわりにパーマロイ、 F’s、 Co、 Niを用い
たもの(特開58−222455)も見られるが、ビッ
トが安定に存在する特徴しかなく、パーマロイ、 ’F
e、 co、 lが多結晶であるため、ノイズの原因と
なりS、A1の劣化につながっていた。
Also, the recording layer and reproduction layer are separated, and materials suitable for each are used. Alternatively, a reflective layer may be provided on the back side of the recording medium to reflect and utilize not only the light reflected from the surface but also the light that has passed through the medium. (% opening 58-
200447) In addition, there are also systems in which heavy rare earth-transition metals are used for magneto-optical recording and permalloy, F's, Co, and Ni are used instead of the reflective film (Japanese Patent Laid-Open No. 58-222455), but the bits do not exist stably. Permalloy, 'F
Since e, co, and l are polycrystalline, they cause noise and lead to deterioration of S and A1.

しかしながら、これら上記の方法は、カー回転角は大き
くなるものの反射率が低下する。又カー回向が多少向上
してもキューリ一温度が高くなりレーザー書き込みが難
しくなるなど一長一短があり根本的な改善には至ってい
なかった。
However, in these methods, although the Kerr rotation angle increases, the reflectance decreases. Furthermore, even if the Kerr rotation was improved to some extent, there were advantages and disadvantages, such as the Curie temperature becoming higher and laser writing becoming difficult, and no fundamental improvement was achieved.

〔目的〕〔the purpose〕

本発明は、上記欠点であるカー回転角が小さい、1μ惧
ビツトが安定に得られない等の欠点を根本的に改善し、
相反する特性を向上させ高い。
The present invention fundamentally improves the above-mentioned drawbacks such as the small Kerr rotation angle and the inability to stably obtain 1 μm bits.
It improves contradictory characteristics and is high.

高密度、高安定性、高速読み書きのできる光磁気記録媒
体を提供することを目的とする。
The purpose of the present invention is to provide a magneto-optical recording medium with high density, high stability, and high speed read/write capabilities.

〔概要〕〔overview〕

本発明は磁化の向きが膜面に垂直で上向きが下向きかの
二値をとる光磁気記録層に光を照射し記録再生を行う光
磁気記録媒体において、該光磁気記録媒体が、セリウム
(C#)、プラセオジウム(Pr)ネオジウム(Nd)
のうち少なくとも一種以上の元素と鉄(7g)及び不純
物からなる合金、あるいは該合金にさらにホウ素(B)
、炭素(C)、ケイ素(8り、リン(P)、アルミニウ
ム(ムりのうち少なくとも一種以上の元素を添加した合
金あるいはさらに該合金にりOA (Cy)、 :xパ
ルト(Co)、銅(C1L)、ニッケル(Ni)、マン
ガン(M、L)のうち少なくとも一種以上の元素を添加
した合金からなる光磁気記録層と、該光磁気記録層に対
し抗磁力が五分の一以下で、且つ百エルステッド以下で
ケイ素(S<)。
The present invention provides a magneto-optical recording medium that performs recording and reproduction by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of either upward or downward. #), praseodymium (Pr) neodymium (Nd)
An alloy consisting of at least one of the following elements, iron (7g) and impurities, or the alloy further contains boron (B).
, carbon (C), silicon (8), phosphorus (P), aluminum (aluminum), an alloy to which at least one or more elements are added, or the alloy further contains OA (Cy), : x Part (Co), copper (C1L), nickel (Ni), and manganese (M, L); , and less than 100 oersted silicon (S<).

ホウ素(B)、リン(P)のうち少なくとも一種以上の
元素と鉄Cug)および不純物からなる合金。
An alloy consisting of at least one element selected from boron (B) and phosphorus (P), iron (Cug), and impurities.

あるいは該合金にさらにコバルト(CO)、ニッケル(
Ni)、クロム(Cr)モリブデン(MO) 、タング
ステン(W)が少なくとも一種以上添加された合金から
なり、優位的に非晶質な合金からなる低抗磁力材層とを
有することを特徴とする。
Alternatively, the alloy may be further added with cobalt (CO), nickel (
The material is made of an alloy to which at least one of Ni), chromium (Cr), molybdenum (MO), and tungsten (W) is added, and is characterized by having a low coercive force material layer made of a predominantly amorphous alloy. .

〔笑施例〕[lol example]

以下図面を用いて本発明を詳述する。 The present invention will be explained in detail below using the drawings.

本発明の基本構造を第1図Ca) 、第1図Cb)に示
す。
The basic structure of the present invention is shown in Fig. 1 Ca) and Fig. 1 Cb).

llは基板、12は光磁気記録層、13は低抗磁力材層
、14は非磁性層である。
11 is a substrate, 12 is a magneto-optical recording layer, 13 is a low coercive force material layer, and 14 is a nonmagnetic layer.

尚、とζでは基板をガラスフプラスチック等の透明基板
とし、読み書きする光学ヘッドは基板側に対向し、基板
を通して読み書きする場合を書いたが、これは本質的な
ことではなく、基板に低抗磁力材層・光磁気記録層、ま
たは低抗磁力材層・非磁性層・光磁気記録層と形成し光
学ヘッドを基板に対し光磁気記録媒体側に対向配置して
読み書きしても何ら問題ない、さらに本発明は、前記構
造のみに限定されるものではなく、保護膜拳反射防止膜
・多重干渉エンハンス膜・透明導電膜等を設けることは
何らさしつかえない。
In addition, in ζ, the substrate is a transparent substrate such as glass plastic, and the optical head for reading and writing faces the substrate side, and I wrote that reading and writing is done through the substrate, but this is not essential, and the substrate is made of low resistance. There is no problem even if it is formed with a magnetic material layer, magneto-optical recording layer, or a low coercive force material layer, a non-magnetic layer, and a magneto-optical recording layer, and the optical head is placed facing the magneto-optical recording medium side with respect to the substrate to read and write. Further, the present invention is not limited to the above-mentioned structure, and it is possible to provide a protective film, an anti-reflection film, a multiple interference enhancement film, a transparent conductive film, etc.

(1)第2図0)に示す構造を有する媒体で基板Zとし
て、よく洗浄したガラスを用い、スパッタ法を用いてガ
ラス基板上に厚み500への非晶質NdP 、B垂直磁
化膜′t−nとして形成し、その上にスパッタ法を用い
、21として非晶質膜をxoooX形成した。上記Il
′、s<B非晶質膜の抗磁力は約7エルステツドであり
、試料/IfLlとする。また比較として上記y、s7
B非晶質膜のかわりKAAをスパッタ法テ100OA形
成したものを試料点2とする。
(1) Using a well-cleaned glass as the substrate Z in a medium having the structure shown in FIG. -n, and an amorphous film 21 was formed thereon by sputtering. Il above
', s<B The coercive force of the amorphous film is about 7 oersted, and is assumed to be sample/IfLl. Also, for comparison, the above y, s7
Sample point 2 is obtained by forming 100 OA of KAA by sputtering instead of the B amorphous film.

(2)第2図(b)に示す構造を有する媒体で、(1)
と同様にるはガラス基板−22はHd’F、B膜−21
はv、azB膜で、冴は誘電体層でsho、を800X
形成しである。
(2) With a medium having the structure shown in FIG. 2(b), (1)
Similarly, glass substrate-22 is Hd'F, B film-21
is v, azB film, and sho is dielectric layer, 800X
It is formed.

これはNd’F、B iとガラス基板間に5ho2膜を
形成することによりカー回転角をエンハンスするもので
ある。これを試料A8とする。また比較として上記Fg
S−jE非晶質膜のかわりにA!をスパッタ法で100
0A形成したものを試料&4とする。
This enhances the Kerr rotation angle by forming a 5ho2 film between Nd'F, Bi and the glass substrate. This is designated as sample A8. Also, for comparison, the above Fg
A instead of S-jE amorphous film! 100 by sputtering method
The one formed with 0A is designated as sample &4.

(8)第2図(C)に示す構造を有する媒体で、(匂と
同様に乙はガラス基板・nはHdF、B膜・21はFg
S7B膜−24はBイ02膜である# 25紘8so2
JIkで、NdFeB膜とFe8jB膜間に形成したも
のでtoo′A厚みである。
(8) A medium having the structure shown in Fig. 2 (C) (Same as the odor, O is a glass substrate, n is HdF, B film, and 21 is Fg
S7B film-24 is B-02 film #25 Hiro8so2
It is formed between the NdFeB film and the Fe8jB film using JIk, and has a thickness of too'A.

これを試料A5とし、比較として?d8jB膜をA!膜
に置き替えたものを試料A6とする。
Let's use this as sample A5 for comparison? d8jB film A! The sample replaced with a membrane is designated as sample A6.

(4)第2図(カに示す構造を有する媒体で、3はPM
MA基板であり1.6μm間隔・深さ700Xの案内溝
を設けたものである。また(1)と同様Vc22はN(
9eB脱・21はy6s4.B膜である。これを試料点
7とする。
(4) A medium having the structure shown in Figure 2 (F), where 3 is PM
It is an MA substrate and has guide grooves with a spacing of 1.6 μm and a depth of 700×. Also, as in (1), Vc22 is N(
9eB de-21 is y6s4. This is a B film. This is designated as sample point 7.

また比較として1e8iB非晶質膜のかわりにへ!膜を
形成したものを試料A8とする。
Also, for comparison, instead of 1e8iB amorphous film! The sample on which the film was formed is designated as sample A8.

(6)第2図(61)に示す構造を有する媒体で、基板
部として(4)と同じPMMAを用い■)の試料A8と
同様の8i0−dFgB/l?′、5i13構造とした
ものを試料点9とし、比較として試料A9のF$SjB
をAAとしたものを試料点10とする。
(6) Using a medium having the structure shown in FIG. 2 (61) and using the same PMMA as in (4) as the substrate part, the same 8i0-dFgB/l as in sample A8 in ■)? ', 5i13 structure is designated as sample point 9, and for comparison, F$SjB of sample A9
Let AA be sample point 10.

(6)第2図のに示す構造を有する媒体で、基板26と
して(4)と同じPMMAを用い(2)の試料A5と同
様のsz○v/NdF6B / 570v′EgBsB
構造としたものを試料A11とし、比較として試料点1
1のFe51:E )i5 A!としたものを試料点1
2とする。
(6) A medium having the structure shown in Fig. 2, using the same PMMA as in (4) as the substrate 26, and the same sz○v/NdF6B/570v'EgBsB as in sample A5 in (2).
The structure is called sample A11, and sample point 1 is used for comparison.
1 of Fe51:E ) i5 A! sample point 1
Set it to 2.

(7)第2図(α)の構造を有する媒体で、(1)の試
料点1のII′、sH:sを1?′gc(、s4Bとし
たものを試料A 13とする。
(7) In a medium having the structure shown in FIG. 2 (α), is II', sH:s at sample point 1 in (1) 1? 'gc(, s4B) is sample A13.

この2c6s4Bの抗磁力は約5エルステツドである。The coercive force of this 2c6s4B is about 5 Oersteds.

(8)第2図(α)の構造を有する媒体で、(1)の試
料&1のF(3EiB t−Fg町Pとしたものを試料
414とする。
(8) Sample 414 is a medium having the structure shown in FIG.

このF、N4pの抗磁力は約6エルステツドである。The coercive force of F and N4p is approximately 6 Oersteds.

(9)第2図(α)の構造を持つ媒体で(1)の非晶質
NdFeBを非晶質PrFeP厚さ500Aとしたもの
を試料点15とし、比較として試料A15のFgSjB
をA!としたものを試料&16とする。
(9) Sample point 15 is a medium with the structure shown in FIG.
A! This is designated as sample &16.

(O第2図(α)の構造を持つ媒体で(1)の非晶質N
dteBを厚み500AのC#F11&#Cとしたもの
を試料点17とし、比較のため試料A17のFe5jB
をA!としたものを試料A18とする。。
(O In a medium with the structure shown in Figure 2 (α), the amorphous N of (1)
Sample point 17 is the one in which dteB is C#F11&#C with a thickness of 500A, and Fe5jB of sample A17 is used for comparison.
A! This is designated as sample A18. .

0第2図(α)の構造を有する媒体で、(1)の試料点
1のNdFgB t−kldPrFeとしたものを試料
A19とし、比較のため試料19のFgS7BをA!と
したものを試料A20とする。
0 A medium having the structure shown in FIG. 2 (α), with NdFgB t-kldPrFe at sample point 1 in (1) as sample A19, and for comparison, FgS7B of sample 19 was used as A! This is designated as sample A20.

(12)第2図(a)の構造を有する媒体で、(1)の
試料A1のNdFeBをNdFe5iCoとしたものを
試料点21とし、比較のため試料点21のv、s6Bを
A!としたものを試料&ρとする。
(12) Sample point 21 is a medium having the structure shown in FIG. 2(a), in which NdFeB of sample A1 in (1) is replaced with NdFe5iCo. For comparison, v and s6B of sample point 21 are A! Let this be the sample &ρ.

(3第2図(g)の構造を有する媒体で、(5)の試料
点9のNdFeBをTb1l’、としたものを試料AZ
3とし、比較のため試料AZ3のF$SzBをA!とじ
たものを試料扁冴とする。
(3) In the medium having the structure shown in Fig. 2 (g), the NdFeB at sample point 9 in (5) is set to Tb1l'.
3, and for comparison, F$SzB of sample AZ3 is A! The bound part is used as the sample plate.

以上お種類のサンプルについてカー効果を測定した。カ
ー効果の測定は試料に10キロエールステラドの磁場を
かけ、残留磁化状態としHe−N。
The Kerr effect was measured for the above types of samples. The Kerr effect was measured by applying a magnetic field of 10 kA to the sample to make it into a remanent magnetized state (He-N).

ガスレーザー(波長682.8+1メートル)で測定し
た。測定の結果を表1F示す。
Measurement was performed using a gas laser (wavelength: 682.8+1 meter). The measurement results are shown in Table 1F.

(1)〜(6)の試料1〜試料12においてすべての構
造で非晶質Fe54Bを用いたものはAJに比してカー
回転角はほぼ2倍に増加している。また■、(8)の試
料13及び試料14においてF’、8<B以外のFe系
非晶質薄膜を用いた場合だおいても試料2のAJに対し
てやはり2倍程度の増加があった。
In Samples 1 to 12 of (1) to (6), the Kerr rotation angle of all structures using amorphous Fe54B is approximately twice as large as that of AJ. In addition, even when Fe-based amorphous thin films other than F', 8<B are used in Samples 13 and 14 of (8), there is still an increase of about twice the AJ of Sample 2. Ta.

(9) 〜42において記録層としてP7FeB 、 
C,IFgAJC、NdPr’?e 、 N47g8S
COとしたものにおいてもやはりカー回転角は大きくな
った。
(9) P7FeB as the recording layer in ~42,
C, IFgAJC, NdPr'? e, N47g8S
The Kerr rotation angle also increased in the case of CO.

α3は従来より光磁気記録媒体として用いられているT
bFeを記録層としカー回転角を測定したがこの場合で
も約1.5倍に増加した。
α3 is T
The Kerr rotation angle was measured using bFe as the recording layer, and even in this case it increased by about 1.5 times.

尚光磁気記録媒体にc、 、 y6 、 c、 、 M
nを添加したものは、試料21のCO添加と同一の効果
で耐候性に優れ、膜面に垂直に磁化容易軸を有する光磁
気記録媒体であった。
The magneto-optical recording medium has c, , y6, c, , M
The material to which n was added had the same effect as the addition of CO in Sample 21, had excellent weather resistance, and was a magneto-optical recording medium having an axis of easy magnetization perpendicular to the film surface.

さらに、ここで・はF、系アモルファス低抗磁力材層の
具体例として、FsKBt、B 、 Pを少なくとも一
種以上添加し、さらに、耐候性を上けるため、c、)と
17を添加した例を挙げたが、Cf、MQ、Wでも全く
同様な効果であった。
Furthermore, as a specific example of the F-based amorphous low coercive force material layer, at least one of FsKBt, B, and P is added, and further, c,) and 17 are added to improve weather resistance. However, Cf, MQ, and W had exactly the same effect.

実施例2 低抗磁力材層の抗磁力とカー回転角の関係を調べた。結
果を第8図に示す、第8図において横軸は抗磁力、縦軸
はカー回転角である。用いた試料はすべて第2図(a)
の構造を有するもので、αはガラス/ NdFgB /
 FgSjB 、 ′bはガラス/ HdleBAPe
CQBiB 、 eはガラス/ T6?、/EF、8仰
である。a、bCの3種数すべて低抗磁力層の抗磁力が
小さくな、るに従ってカー回転角が増加する。しかし抗
磁力が約100エールステツド程度になると、AJの反
射層を設けたものと同等と々る。(図中d、e)さらに
抗磁力が大きくなった場合にはむしろ八!に比してカー
回転角は小さくなる。これは、反射率がA7に比して?
、系合金が小さいためである。
Example 2 The relationship between the coercive force of the low coercive force material layer and the Kerr rotation angle was investigated. The results are shown in FIG. 8, where the horizontal axis is the coercive force and the vertical axis is the Kerr rotation angle. All samples used are shown in Figure 2(a).
has the structure, α is glass/NdFgB/
FgSjB, 'b is glass/HdleBAPe
CQBiB, e is glass/T6? , /EF, 8-vertical. The Kerr rotation angle increases as the coercive force of the low coercive force layer becomes smaller for all three species a and bC. However, when the coercive force reaches about 100 Oersted, it is equivalent to that of an AJ with a reflective layer. (d, e in the figure) If the coercive force becomes even larger, it is actually 8! The Kerr rotation angle is smaller than that. Does this mean that the reflectance is higher than that of A7?
, this is because the system alloy is small.

第1表 実施例8 光磁気記録再生可能な光学ヘッドを用h1第4図(α)
に示す媒体構造で周波数特性を調べた。レーザー波長は
780 wxの半導体レーザーを用いた。
Table 1 Example 8 Using an optical head capable of magneto-optical recording and reproduction h1 Fig. 4 (α)
The frequency characteristics were investigated using the media structure shown in the figure. A semiconductor laser with a laser wavelength of 780 wx was used.

ディスク回転数は1800 rpm 、半径5cInに
固定とし、書き込み周波数を可変させた。読み書きは基
板側から行った。基板はグループ付ポリカーボネイト4
1とし、第2表に記したような薄膜を形成し、8層構造
とした。第1層はA 7 N 42で80OA、第2層
は光磁気記録層43で100OX、第8層は従来例とし
てAJ反射膜または本発明によるアモルファス?、系抵
抗磁力膜44でこζではp6sinとし% 50QAの
膜厚とした。形成手段はDCマグネトロンスパッタ法と
した。それぞれの光磁気記録媒体における書き込み周波
数に対する≠ratioを示したものが第4図(b)で
ある。従来の様な反射膜として非磁性AAを用いた場合
と較べ本発明によるアモルファス?、系抵抗磁力層を設
けたことによりC/Hrαtioが上昇した。さらに、
本発明による?、中にCe 、 Pr、 Ndを少なく
とも一種以上含んだ光磁気記録媒体においては、さらに
その効果は大きく、書き込み周波数特性が飛躇的に向上
した。
The disk rotation speed was fixed at 1800 rpm and the radius was fixed at 5 cIn, and the writing frequency was varied. Reading and writing were performed from the board side. The board is polycarbonate 4 with groups.
1, and a thin film as shown in Table 2 was formed to have an 8-layer structure. The first layer is A 7 N 42 with an 80 OA, the second layer is a magneto-optical recording layer 43 with a 100 OX, and the eighth layer is a conventional AJ reflective film or an amorphous film according to the present invention. , the system resistance magnetic film 44 was p6sin and had a film thickness of %50QA. The forming means was a DC magnetron sputtering method. FIG. 4(b) shows the ≠ratio with respect to the writing frequency in each magneto-optical recording medium. Compared to the conventional case where non-magnetic AA is used as a reflective film, the present invention's amorphous? , C/Hrαtio increased by providing a system resistive magnetic layer. moreover,
According to the present invention? In magneto-optical recording media containing at least one of Ce, Pr, and Nd, the effect is even greater, and the writing frequency characteristics are dramatically improved.

第2表  (組成単位は原子チ表示) 〔効果〕 以上の実施例に示された様に本発明による構造を有する
光磁気記録媒体は、カー回転角がほぼ2倍に増加し、C
7M比も改善される。
Table 2 (Composition units are expressed in atomic units) [Effects] As shown in the above examples, the magneto-optical recording medium having the structure according to the present invention has a Kerr rotation angle that is almost doubled and a C
The 7M ratio is also improved.

さらに、記録磁区が安定するために高記録密度におりて
も07M比の劣化が小さく、より高密度記録に適した媒
体である。
Furthermore, since the recording magnetic domain is stable, there is little deterioration in the 07M ratio even at high recording densities, making the medium more suitable for high-density recording.

また、従来のTb’Fe、 GdCo、 Tbl1″e
Co、 TbGdFg等の重希土類を含む媒体に比して
Nd、 Dτ、Ceの軽希土類を含むものは材料費が安
くなり、本発明による光磁気記録媒体は、軽希土類を含
む媒体に対しての方がその効果が大きいという特徴をも
ってhる。
In addition, conventional Tb'Fe, GdCo, Tbl1''e
Compared to media containing heavy rare earths such as Co and TbGdFg, materials containing light rare earths such as Nd, Dτ, and Ce are cheaper in material cost, and the magneto-optical recording medium according to the present invention has lower material costs than media containing heavy rare earths such as Co and TbGdFg. It has the characteristic that the effect is greater.

記録層は、非晶質でおるため記録媒上に?、系非晶質を
成長させるあるいは、逆にF、系、非晶質層上に非晶質
の光磁気記録層を成長させることは非常に容易である。
Is the recording layer on the recording medium because it is amorphous? It is very easy to grow an amorphous F, or, conversely, to grow an amorphous magneto-optical recording layer on an amorphous F, amorphous layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(c) (b)は、本発明による光磁気記録媒体
の基本的層構造である。第2図(α)〜(イ)は、本発
明による光磁気記録媒体の具体的実施例の構造である。 第8図は本発明の低抗磁力材層の効果を示す図で低抗磁
力材層の抗磁力に対して、光磁気記録層のカー回転角を
プロットしたものである。第4図(b)は、本発明の光
磁気記録媒体の書き込み周波数特性を示す図で、光磁気
記録媒体の構造を第4図(CL)とし、光磁気記録層を
、各種変えた場合の本発明の効果を示す実施例である。 以   上
FIGS. 1(c) and 1(b) show the basic layer structure of the magneto-optical recording medium according to the present invention. FIGS. 2(a) to 2(a) show the structure of a specific example of the magneto-optical recording medium according to the present invention. FIG. 8 is a diagram showing the effect of the low coercive force material layer of the present invention, in which the Kerr rotation angle of the magneto-optical recording layer is plotted against the coercive force of the low coercive force material layer. FIG. 4(b) is a diagram showing the writing frequency characteristics of the magneto-optical recording medium of the present invention. The structure of the magneto-optical recording medium is shown in FIG. 4(CL), and the magneto-optical recording layer is changed in various ways. This is an example showing the effects of the present invention. that's all

Claims (1)

【特許請求の範囲】[Claims] 磁化の向きが膜面に垂直で上向きか下向きかの二値をと
る光磁気記録層に光を照射し記録再生をおこなう光磁気
記録媒体において、該光磁気記録媒体が、セリウム(C
e)、プラセオジウム(Pr)ネオジウム(Nd)のう
ち少なくとも一種以上の元素と鉄(Fe)および不純物
からなる合金、あるいは該合金にさらにホウ素(B)、
炭素(C)、ケイ素(Si)、リン(P)、アルミニウ
ム(Al)のうち少なくとも一種以上の元素を添加した
合金あるいはさらに該合金にクロム(Cr)、コバルト
(Co)、銅(Cu)、ニッケル(Ni)、マンガン(
Mn)のうち少なくとも一種以上の元素を添加した合金
からなる光磁気記録層と、該光磁気記録層に対し、抗磁
力が五分の一以下、且つ百エルステッド以下でケイ素(
Si)、ホウ素(B)、リン(P)のうち少なくとも一
種以上の元素と鉄(Fe)および不純物からなる合金、
あるいは該合金にさらにコバルト(Co)、ニッケル(
Ni)、クロム(Cr)、モリブデン(Mo)、タング
ステン(W)が少なくとも一種以上添加された合金から
なり、優位的に非晶質な合金からなる低抗磁力材層とを
有することを特徴とした光磁気記録媒体。
In a magneto-optical recording medium in which recording and reproduction are performed by irradiating light onto a magneto-optical recording layer in which the direction of magnetization is perpendicular to the film surface and has a binary value of upward or downward, the magneto-optical recording medium is made of cerium (C).
e) An alloy consisting of at least one element selected from praseodymium (Pr) and neodymium (Nd), iron (Fe), and impurities, or the alloy further contains boron (B),
An alloy to which at least one element among carbon (C), silicon (Si), phosphorus (P), and aluminum (Al) is added, or to the alloy, chromium (Cr), cobalt (Co), copper (Cu), Nickel (Ni), manganese (
A magneto-optical recording layer made of an alloy to which at least one element of Mn) is added, and a magneto-optical recording layer having a coercive force of less than one-fifth and less than 100 Oe
an alloy consisting of at least one element among Si), boron (B), and phosphorus (P), iron (Fe), and impurities;
Alternatively, the alloy may be further added with cobalt (Co), nickel (
It is characterized by comprising an alloy to which at least one of Ni), chromium (Cr), molybdenum (Mo), and tungsten (W) is added, and a low coercive force material layer comprising a predominantly amorphous alloy. magneto-optical recording medium.
JP19120984A 1984-09-12 1984-09-12 Photomagnetic recording medium Pending JPS6187243A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19120984A JPS6187243A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium
US07/193,020 US5100741A (en) 1984-09-12 1988-05-12 Magneto-optic recording systems
US08/231,866 US5529854A (en) 1984-09-12 1994-04-25 Magneto-optic recording systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19120984A JPS6187243A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6187243A true JPS6187243A (en) 1986-05-02

Family

ID=16270717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19120984A Pending JPS6187243A (en) 1984-09-12 1984-09-12 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6187243A (en)

Similar Documents

Publication Publication Date Title
GB2071696A (en) Magneto-optical Recording Medium
US4838962A (en) Magneto-optical recording medium
JPH0123927B2 (en)
JPS5984358A (en) Photomagnetic recording medium
JPS6227459B2 (en)
JPS59178641A (en) Photomagnetic recording medium
JPS5968854A (en) Photomagnetic recording medium
JPH0330963B2 (en)
US5639563A (en) Magneto-optical recording medium
Tailhades et al. Thin films and fine powders of ferrites: Materials for magneto-optical recording media
US5100741A (en) Magneto-optic recording systems
JPS6187243A (en) Photomagnetic recording medium
JPS6131533B2 (en)
US5529854A (en) Magneto-optic recording systems
JPH0470705B2 (en)
JPS6187246A (en) Photomagnetic recording medium
JPS6187250A (en) Photomagnetic recording medium
JPS6187244A (en) Photomagnetic recording medium
JPS6187247A (en) Photomagnetic recording medium
JPS61165846A (en) Photomagnetic recording medium
JPS6187241A (en) Photomagnetic recording medium
JPS6187249A (en) Photomagnetic recording medium
JPS6187238A (en) Photomagnetic recording medium
JPS5996714A (en) Magnetic recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film