JPS6186608A - Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus - Google Patents

Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus

Info

Publication number
JPS6186608A
JPS6186608A JP20823384A JP20823384A JPS6186608A JP S6186608 A JPS6186608 A JP S6186608A JP 20823384 A JP20823384 A JP 20823384A JP 20823384 A JP20823384 A JP 20823384A JP S6186608 A JPS6186608 A JP S6186608A
Authority
JP
Japan
Prior art keywords
angle
rangefinder
changing mechanism
shape
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20823384A
Other languages
Japanese (ja)
Inventor
Yoshio Kojima
小島 吉夫
Yusuke Takagi
勇輔 高木
Kazuo Moriguchi
森口 一夫
Tsunehiko Takakusaki
高草木 常彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20823384A priority Critical patent/JPS6186608A/en
Publication of JPS6186608A publication Critical patent/JPS6186608A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make the direction of the coordinate-axis of a three-dimensional driving mechanism correspond to the rotary angle of an angle changing mechanism, by using lighting body for specified angle alignment, actually measuring the shape of a lighting surface, and detecting the direction of the angle of the original point of the angle changing mechanism. CONSTITUTION:In detecting the direction of the angle of the original point of an angle changing mechanism 4, the first operation is performed as follows. A lighting body 14 for angle alignment, which has a reference point on a lighting surface 15, is provided in parallel with a reference axis of a driving mechanism 7. Then, the positions of the lighting surface 15 and the rotary center of the angle changing mechanism 4, to which a distance meter 1 is attached, are determined. As the second operation, the angle changing mechanism 4 is turned, the shape of the lighting surface 15 of the lighting body 14 for angle alignment is measured and the data is processed. Thus the direction of the angle of the original point of the angle changing mechanism 4 is detected. Therefore, the direction of the coordinate axis of the three-dimensional driving mechanism is made to correspond to the rotary angle of the angle changing mechanism, which changes the lighting angle of the distance meter, and the shape of the body to be measured can be accurately measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、レーザー光等を利用した非接触の距離計によ
り物体形状を計測する3次元形状計測装置の角度変化機
構の角度検出方法に係わυ、特に距離計の物体に対する
光の照射角度と3次元駆動機構の座標軸の方向とを高精
度に対応させる方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an angle detection method of an angle change mechanism of a three-dimensional shape measuring device that measures the shape of an object with a non-contact distance meter using laser light or the like. In particular, the present invention relates to a method of making the irradiation angle of a rangefinder's light on an object correspond with the direction of the coordinate axes of a three-dimensional drive mechanism with high precision.

〔発明の背景〕[Background of the invention]

近年、オプトエレクトロニクスの急激な進歩に伴って、
機械加工物等の物体の3次元形状の計測に、光学武士/
すを用いる非接触計測法が開゛発されている。なかでも
、センサとしてレーザー光等を利用した距離計を用い、
これを3次元駆動機構に取付けて形状を計測する方法が
主流であり、「センサ技術J 19B3年2月号の”光
点検出センサによる物体形状の測定”と題する文献にも
その−例が紹介されている。
In recent years, with the rapid progress of optoelectronics,
For measuring the three-dimensional shape of objects such as machined products, Optical Bushi/
A non-contact measurement method using a glass has been developed. Among these, we use a distance meter that uses laser light etc. as a sensor,
The mainstream method is to attach this to a three-dimensional drive mechanism and measure the shape, and an example of this is also introduced in the document entitled "Measurement of object shape using a light spot detection sensor" in the February 19B3 issue of Sensor Technology J. has been done.

この種の計測方法で、高精度の計測結果を得るためには
、3次元駆動機構自身のもつ座標軸の方向と、距1’i
lf計を回転させて照射角度を変化させる角度変化機構
の回転角度との対応を、高精度でとる操作(角度検出)
が必要である。
In order to obtain highly accurate measurement results with this type of measurement method, it is necessary to determine the direction of the coordinate axes of the three-dimensional drive mechanism itself and the distance 1'i.
An operation that corresponds with the rotation angle of the angle changing mechanism that rotates the LF meter to change the irradiation angle with high precision (angle detection)
is necessary.

このため、従来は距離計の外形上の特定面を基準面とし
、この基準面が距離計の照射光軸と平行ないし垂直であ
ることを前提とし、機械的に3次元駆動機構自身のもつ
座標軸の方向と角度変化機構の回転角度との対応をとっ
ていた。しかしながら、この方法は手続きが複雑である
割には、高精度が得られないという問題をもっていた。
For this reason, in the past, a specific surface on the outside of the rangefinder was used as a reference surface, and this reference surface was assumed to be parallel or perpendicular to the irradiation optical axis of the rangefinder, and mechanically the coordinate axis of the three-dimensional drive mechanism itself was There was a correspondence between the direction of the angle change mechanism and the rotation angle of the angle change mechanism. However, this method has the problem of not being able to obtain high accuracy despite its complicated procedures.

このため、この種の計測方法において、簡便かつ高精度
な角度検出方法が望まれていた。
Therefore, in this type of measurement method, a simple and highly accurate angle detection method has been desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、3次元、駆動機構のもつ座標軸の方向
と、距離計の照射角度を変化させる角度変化機構の回転
角度とを、簡便かつ高精度に対応させる角度検出方法を
提供することにある。
An object of the present invention is to provide an angle detection method that easily and accurately corresponds the direction of a coordinate axis of a three-dimensional drive mechanism and the rotation angle of an angle change mechanism that changes the irradiation angle of a rangefinder. be.

〔発明の概便〕[Summary of the invention]

本発明は、照射面内に基準点を有する角度合わせ用照射
体を用いて、この照射面の形状を実際に計量lJするこ
とにより、角度変化機構の原点角度方向を検出するよう
にしたものである。
The present invention detects the origin angle direction of the angle changing mechanism by actually measuring the shape of the irradiation surface using an angle adjustment irradiation body having a reference point within the irradiation surface. be.

即ち、本発明の特徴とするところは、光を照射して物体
との距離を測定する距離計と、この距離計を取付けると
共に距離計の物体に対する光の照射角度を変化させる角
度変化機構と、前記角度変化機構を取付けて距離計を3
次元的に駆動させる3次元駆動機構と、距離計による距
離測定値と距離計の照射角度及び3次元駆動機構の駆動
量情報から照射された点の座標を計算するデータ処理機
構とを備え、被測定物体の形状計測を行う計測方法にお
いて、照射面に基準点を有する角度合せ照射体を3次元
駆動機構の基準軸と平行となるように設置し、しかるの
ち、距離計を取付けた角度変化機構の回転中心位置を上
記照射面の形状を計測できる一定の位置におき、次いで
角度変化機構を回動させながら距離計で上記照射面の形
状を計測し、この計測値より上記照射面基準点の座標値
を求め、この座標値を用いてデータ処理機構により角度
変化機構の原点角度方向を検出する3次元形状計測装置
の角度変化機構の角度検出方法にある。
That is, the present invention is characterized by: a rangefinder that measures the distance to an object by emitting light; an angle changing mechanism that attaches the rangefinder and changes the angle at which the rangefinder irradiates the light to the object; Attach the angle change mechanism and set the distance meter to 3.
It is equipped with a three-dimensional drive mechanism that drives the target in a three-dimensional manner, and a data processing mechanism that calculates the coordinates of the irradiated point from the distance measurement value by the rangefinder, the irradiation angle of the rangefinder, and the drive amount information of the three-dimensional drive mechanism. In a measurement method for measuring the shape of a measurement object, an angle adjustment irradiator having a reference point on the irradiation surface is installed parallel to the reference axis of a three-dimensional drive mechanism, and then a distance meter is attached to the angle change mechanism. Place the rotation center position at a fixed position where the shape of the irradiation surface can be measured, then measure the shape of the irradiation surface with a rangefinder while rotating the angle change mechanism, and use this measurement value to determine the shape of the irradiation surface reference point. A method for detecting an angle of an angle changing mechanism of a three-dimensional shape measuring device includes determining coordinate values and using the coordinate values to detect an origin angular direction of the angle changing mechanism using a data processing mechanism.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第7図を用いて説
明する。第1図において距離計1は7ランジ2内に距離
計駆動用モータ3を内蔵した角度変化機構4に回転可能
状態に取付けられ、距離計1の照射光軸5と、角度変化
機構4の回転軸S軸は交点Nを持つように構成されてい
る。前記角度変化機構4は、3次元側M機構の取付は部
6を介して3次元駆動機構7に取付られている。このた
め、距離計1は3次元駆動機構7によシ被測定物体8の
回シで3次元的(図中x、y、z軸方向)に移動可能で
あると共に、角度変化機構先により被測定物体8の形状
に応じて、照射角度を変化させることができる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7. In FIG. 1, a rangefinder 1 is rotatably attached to an angle change mechanism 4 which has a rangefinder drive motor 3 built into a 7-lunge 2, and the irradiation optical axis 5 of the rangefinder 1 and the rotation of the angle change mechanism 4 are shown in FIG. The axis S is configured to have an intersection point N. The angle changing mechanism 4 is attached to the three-dimensional drive mechanism 7 via the attachment part 6 of the three-dimensional side M mechanism. Therefore, the rangefinder 1 can be moved three-dimensionally (in the x, y, and z-axis directions in the figure) by the rotation of the object to be measured 8 by the three-dimensional drive mechanism 7, and can also be moved by the angle changing mechanism. The irradiation angle can be changed depending on the shape of the measurement object 8.

第2図は距離計1の概略構造を示したものであり、レー
ザー等の照射光は、光源9より射出され、照射レンズ1
0を通って照射光軸5上を進み、被測定物体8の表面上
の点Pを照射する。P点からの拡散反射光は、照射光軸
5と角度rをなす軸線11上に配置された集光レンズ1
2により集光され、受光器13により検出される。距離
測定の原理は、被測定物体8と距離計1との距離が変化
すると、受光器13の受光面に入射する反射光の位置が
変化するので、この変化を電気的に検出することによっ
ている。ただし、受光面の大きさ等の制約から、距離り
の測定関門には自ずと制限があシ、第2図において p
/〜P“間(距離りはLl、≦L≦L、、、 )がその
範囲となる。
FIG. 2 shows a schematic structure of the rangefinder 1, in which irradiation light such as a laser is emitted from a light source 9, and the irradiation lens 1
0 on the irradiation optical axis 5, and irradiates a point P on the surface of the object to be measured 8. Diffuse reflected light from point P is reflected by a condenser lens 1 arranged on an axis 11 forming an angle r with the irradiation optical axis 5.
The light is collected by the light receiver 2 and detected by the light receiver 13. The principle of distance measurement is that when the distance between the object to be measured 8 and the distance meter 1 changes, the position of the reflected light incident on the light receiving surface of the light receiver 13 changes, and this change is detected electrically. . However, due to constraints such as the size of the light-receiving surface, there are naturally limitations to the distance measurement barrier, and in Figure 2 p
The range is between / and P" (distance is Ll, ≦L≦L, . . . ).

上述のように構成された場合、第1図に示すように、物
体上の測定点Pの座標(Xp 、 Yp 、 Zp)は
、3次元、駆動機構7の位置を示す前述のN点の座標(
Xs 、 YN 、 ZN )、角度変化機構4の回転
角度θ及び距離計1による距離測定値りの情報をデータ
処理機構(図示せず)に入力し、そのデータ処理機構に
よυ下式で計算できるので、これらの点の連なりとして
、物体形状の測定が可能となる。
When configured as described above, the coordinates (Xp, Yp, Zp) of the measurement point P on the object are three-dimensional, as shown in FIG. (
Xs, YN, ZN), the rotation angle θ of the angle change mechanism 4, and the distance measurement value by the distance meter 1 are input to a data processing mechanism (not shown), and the data processing mechanism calculates using the formula below. Therefore, it is possible to measure the shape of an object as a series of these points.

ここで、θは図中のY軸方向と一致した場合を角度O1
即ち原点角度方向と規定している。したがって、角度変
化機構4の原点角度方向が3次元駆動機構7のY軸方向
と一致していないと、上記(1)式の座標計算による被
測定物体8の形状測定ができなくなることがわかる。
Here, θ is the angle O1 when it coincides with the Y-axis direction in the figure.
In other words, it is defined as the angular direction of the origin. Therefore, it can be seen that if the origin angle direction of the angle changing mechanism 4 does not match the Y-axis direction of the three-dimensional drive mechanism 7, the shape of the object to be measured 8 cannot be measured by the coordinate calculation of the above equation (1).

角度変化機構見の原点角度方向の検出にあたり、本発明
では、次の2つの操作を行う。
In detecting the origin angle direction of the angle change mechanism, the following two operations are performed in the present invention.

(A)照射面15に基準点を有する角度合わせ用照射体
14を3次元駆動機構の基準軸と平行となるように設置
し、しかるのち、照射面15と距離計1を取付けた角度
変化機構4の回転中心との位置決めを行う。
(A) An angle changing mechanism in which the angle adjustment irradiator 14 having a reference point on the irradiation surface 15 is installed parallel to the reference axis of the three-dimensional drive mechanism, and then the irradiation surface 15 and the distance meter 1 are attached. Perform positioning with the rotation center of step 4.

(B)角度変化機構4を回動させて、角度合わせ用照射
体14の照射面15の形状を計測し、データ処理を行っ
て角度変化機構4の原点角度方向の検出を行う。
(B) The angle change mechanism 4 is rotated, the shape of the irradiation surface 15 of the angle adjustment irradiation body 14 is measured, data processing is performed, and the origin angle direction of the angle change mechanism 4 is detected.

次に第3図を用いて、本発明による上記(A)の操作方
法を説明する。本実施例では、角度合わせ用照射体14
の照射面15の断面形状が、交点(基準点)をもつ2直
紳部を含む凹面で構成され、かつ照射体外形が長方形で
tA成された場合を示す。
Next, the above operating method (A) according to the present invention will be explained using FIG. In this embodiment, the angle adjustment irradiator 14
The cross-sectional shape of the irradiation surface 15 is a concave surface including two orthogonal sections having an intersection (reference point), and the outer shape of the irradiation body is a rectangle tA.

その手順は、以下のように行われる。The procedure is performed as follows.

1、筐ず、角度合わせ用照射体14の側面18が、3次
元駆動機構のY軸と平行になるように3次元駆動機構の
移動テーブル16上に設置する。
1. Without a housing, place the angle adjustment illuminator 14 on the movable table 16 of the three-dimensional drive mechanism so that the side surface 18 is parallel to the Y-axis of the three-dimensional drive mechanism.

具体的には、第4図、第5図に示すように、角度合わせ
用照射体14の下部17を、前記Y軸と直角方向に削設
された3次元、駆動機構の移動テーブル16の溝に嵌合
する、等の手段を用いる。
Specifically, as shown in FIGS. 4 and 5, the lower part 17 of the angle adjustment irradiator 14 is cut into a three-dimensional groove in the movable table 16 of the drive mechanism, which is cut in a direction perpendicular to the Y axis. Use means such as fitting the

2−3次元駆動機構のY軸と平行な角度合わせ用照射体
14の側面18と、角度変化機構4の72ンジ部2とを
接触させる。この場合の角度変化機構土の回転中心位置
をN1 (Xt 、Y+  )とする。
The side surface 18 of the angle adjustment irradiator 14 parallel to the Y axis of the 2-3-dimensional drive mechanism is brought into contact with the 72-inch portion 2 of the angle change mechanism 4. In this case, the rotation center position of the angle changing mechanism soil is assumed to be N1 (Xt, Y+).

1 角度変化機構4を、照射面15の2直線の交点Pc
を通りY軸と平行な直線PeNoからX軸方向にΔtだ
け離れた位nN2 (X! 、Y! )に設定する。こ
の際のXs座標は、既知の値t′を用いて下式で設定す
る。
1 The angle change mechanism 4 is located at the intersection point Pc of two straight lines on the irradiation surface 15.
Set to nN2 (X!, Y!) at a distance of Δt in the X-axis direction from a straight line PeNo passing through and parallel to the Y-axis. The Xs coordinate at this time is set by the following formula using the known value t'.

X z = X 11 ’          ・・・
・・・・・・(2)ここに、tl :角度合わせ用照射
体のY軸と平行な面18と2直線の交点PcとのX軸方
向距離、D、二角度変化機構の7ランジ2の直径、Δt
:2直線の交点Pcを通りY軸と平行な直線PcNoと
角度変化機構の回転中心N:とのX軸方向の既知のずれ
量でちる。ただし、Y2は照射面15を照射したとき、
前述した距離の測定範囲から外れない位置に設定する必
要がある。
X z = X 11'...
......(2) Here, tl: distance in the X-axis direction between the plane 18 of the irradiator for angle adjustment parallel to the Y-axis and the intersection point Pc of the two straight lines, D, 7 langes 2 of the two-angle changing mechanism diameter, Δt
: It is determined by the known amount of deviation in the X-axis direction between the straight line PcNo passing through the intersection point Pc of the two straight lines and parallel to the Y-axis, and the rotation center N: of the angle changing mechanism. However, Y2 is when the irradiation surface 15 is irradiated,
It is necessary to set it at a position that does not fall outside the distance measurement range described above.

次に第6図は、本発明による前記操作(B)の具体的冑
施方法を説明したものでその手順は、以下のように行わ
れる。
Next, FIG. 6 explains a specific method of applying the armor in the above-mentioned operation (B) according to the present invention, and the procedure is performed as follows.

1、角度変化機構4を回動させ、距離計1が照射面15
の断面内に任意に設定した照射開始点P1を照射するよ
うにする。ここで、この照射光軸方向にX@をとυ、ま
た、y軸をN2点を通りX軸に垂直方向にとる。また、
この場合の角度変化機構4の回転角度θは、このX軸か
らの回転角度とする。
1. Rotate the angle change mechanism 4 so that the rangefinder 1 is on the irradiation surface 15
The irradiation is performed at an arbitrarily set irradiation starting point P1 within the cross section. Here, X@ is defined as υ in the direction of this irradiation optical axis, and the y-axis is defined as passing through point N2 and perpendicular to the X-axis. Also,
The rotation angle θ of the angle changing mechanism 4 in this case is the rotation angle from this X axis.

2 角度変化機構4を回動させながら、照射面15の断
面形状を測定する。ここで、各照射点P+の座標(Xt
 、Y+ )は、回転角度を01、距離計1の距離測定
値をLlとすれば下式により計算される。    ゛ λ 上記2で求めた照射面の断面の2つの直線部の座標
に基づき、データ処理を行って2直線の方程式を求め、
2直紳の交点の座標Pc(xc。
2. Measure the cross-sectional shape of the irradiation surface 15 while rotating the angle changing mechanism 4. Here, the coordinates (Xt
, Y+) is calculated by the following formula, assuming that the rotation angle is 01 and the distance measurement value of the distance meter 1 is Ll.゛λ Based on the coordinates of the two straight line parts of the cross section of the irradiated surface obtained in 2 above, data processing is performed to find the equations of the two straight lines,
Coordinates of the intersection of two orthogonal lines Pc(xc.

yc)を計算する。yc).

4、第7図に示すように、角度変化機構4の本来の回転
角度θの値は、距離計の照射光がY軸方向(Name方
向及びNxPh方向)を向いた場合、すなわち原点角度
方向が0である。このθと、X軸からの回転角度θとの
差θ−は下式にょυ与えられる。
4. As shown in Fig. 7, the value of the original rotation angle θ of the angle change mechanism 4 is determined when the irradiation light of the rangefinder is directed in the Y-axis direction (Name direction and NxPh direction), that is, when the origin angle direction is It is 0. The difference θ- between this θ and the rotation angle θ from the X axis is given by the following formula.

θd=θ、+Δθ    ・・・・・・・・・(4)こ
こで、θ、はPcの座標(x@ + Ya )によυ下
式で求まる。
θd=θ, +Δθ (4) Here, θ is determined by the following equation based on the coordinates of Pc (x@+Ya).

θ、 =t==−1(−)       ・・・・・・
・・・(5)X。
θ, =t==-1(-) ・・・・・・
...(5)X.

一方、Δθの値は次のようにして求める。点P、、Ph
 、N2を結ぶ3角形に注目すると、W1分P、Nz 
(= L、 ) 、f’la分PbPc (= l t
 )及び角度ZNzPhP−(=90’)h既知でhる
ため、Δθは下式により求まる。
On the other hand, the value of Δθ is determined as follows. Point P,, Ph
, N2, we can see that W1 min P, Nz
(= L, ), f'la PbPc (= l t
) and the angle ZNzPhP-(=90')h are known, so Δθ can be found by the following formula.

ここに、Ls=i    ・・・明・・(7)ここで、
角度変化機構土の本来の回転角度θと、上述の回転角度
θとの間には、(4)式で求まったθ纏を用いれば次の
関係がある。
Here, Ls=i...light...(7) Here,
The following relationship exists between the original rotation angle θ of the angle changing mechanism soil and the above-mentioned rotation angle θ, using θ obtained by equation (4).

θ=θ−θ−・・・・・・・・・(8)したがって、以
降は(8)式のθを(1)式に代入することにより、<
1)式を用いて物体形状の計測が可能となる。
θ = θ - θ - (8) Therefore, by substituting θ in equation (8) into equation (1), <
1) It becomes possible to measure the shape of an object using the equation.

このように上記(A)、 (B)の操作を行うことによ
シ回転角度θの原点角度方向を自動的に検出でき、回転
角度を設定できることがわかる。この場合、照射開始点
P1は、固定された位置にある必要はなく、照射面15
の断面の一方の直線上にある任意の点でよい。したがっ
て、照射開始点P1の設定に特別な配慮を払う必要がな
いので、従来例に比べて操作が簡単となる。
It can be seen that by performing the operations (A) and (B) above, the origin angular direction of the rotation angle θ can be automatically detected and the rotation angle can be set. In this case, the irradiation starting point P1 does not need to be at a fixed position;
Any point on one straight line of the cross section of is acceptable. Therefore, there is no need to pay special consideration to the setting of the irradiation starting point P1, making the operation easier than in the conventional example.

その際の照射面の形状としては、上述の交点(基準点)
をもつ2直線部を含む凹面で構成された場合に限らず矩
形や円弧形状で構成された場合でも、その形状に固有の
点を基準点にすれば良い。
At that time, the shape of the irradiation surface is the intersection point (reference point) mentioned above.
Not only in the case of a concave surface including two linear portions having a shape of 2, but also in the case of a rectangular or arcuate shape, a point specific to the shape may be used as the reference point.

また、照射面15を計測する際の角度変化機構の回転中
心位置をNo点、すなわち、2直線の交点Pcの正面位
置にすれば、上記(5)式に示すY軸とのずれ角Δθを
考慮する必要がなく、より簡単な計算式による角度検出
ができる。
Furthermore, if the rotation center position of the angle changing mechanism when measuring the irradiation surface 15 is set to the No point, that is, the position in front of the intersection point Pc of the two straight lines, the deviation angle Δθ from the Y axis shown in the above equation (5) can be There is no need to take this into account, and the angle can be detected using a simpler calculation formula.

上述の実施例では、前記操作(A)の角度合わせ用照射
体14と角度変化機構14の回転中心位置決めの具体的
方法として、角度変化機構のフランジ2を角度合わせ用
照射体14の側面18と接触させた後、角度変化機構の
回転中心を点N!へ移動させる方法について述べたが、
この両者の位置決めの方法としては、上記実施例のみに
限定されるものではなく、例えば次のような構造のもの
を用いてもよい。
In the above-mentioned embodiment, as a specific method for positioning the rotational centers of the angle adjustment illuminator 14 and the angle changing mechanism 14 in the operation (A), the flange 2 of the angle changing mechanism is connected to the side surface 18 of the angle adjusting illuminator 14. After making contact, set the rotation center of the angle change mechanism to point N! I mentioned how to move it to
The method of positioning these two is not limited to the above embodiment, and for example, the following structure may be used.

第8Mは、位置決めブロック19を用いて角度合わせ用
照射体14と角度変化機構4の回転中心との位置決めを
行う場合を示す。この場合、位置決めブロック19の図
示の80寸法は下式の値で加工されているものとする。
8M shows a case where the positioning block 19 is used to position the angle adjustment irradiator 14 and the rotation center of the angle changing mechanism 4. In this case, it is assumed that the illustrated dimension 80 of the positioning block 19 is processed according to the value of the following formula.

ここに、t、  二角度合わせ用照射体のY軸と平行な
而18と2直線の交点PcとのX軸方向距離、D、二角
度変化機構4のフランジ2の直径、Δt:2直線の交点
Pcを通りY@と平行な直約PcNoと角度変化機構の
回転中心とのX軸方向の既知のずれ量である。なお、こ
の場合の操作(、B)は前述と同様でよい。
Here, t: the distance in the X-axis direction between the intersection point Pc of the two straight lines and the point 18 parallel to the Y-axis of the illumination body for two-angle alignment, D: the diameter of the flange 2 of the two-angle changing mechanism 4, Δt: the distance between the two straight lines This is a known amount of deviation in the X-axis direction between the direct diagonal PcNo that passes through the intersection Pc and is parallel to Y@, and the rotation center of the angle changing mechanism. Note that the operation (, B) in this case may be the same as described above.

本実施例によれば、第3図の実施例とは異なり、角度変
化機構4をN1点からN!5点へ移動する作業が不要と
なるので、よシ簡便に両者の位置決めができるという効
果がある。
According to this embodiment, unlike the embodiment shown in FIG. 3, the angle changing mechanism 4 is changed from point N1 to N! Since there is no need to move to five points, there is an effect that positioning of both can be done more easily.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、3次元駆動機構のもつ座標軸の方向と
距離計の照射角度を変化させる角度変化機構の回転角度
とを簡便かつ高精度に対応させることができる。したが
って、被こ11定物体の形状を高精度で測定できる。
According to the present invention, the direction of the coordinate axes of the three-dimensional drive mechanism and the rotation angle of the angle changing mechanism that changes the irradiation angle of the rangefinder can be made to correspond easily and with high precision. Therefore, the shape of the fixed object can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明角度検出方法に用いられる3次元形状計
測装置の斜視図、第2図は第1図に示される距!’i!
計の概略構造図、第3図は本発明角度検出方法の一実施
例を示す説明図、第4図は本発明角度検出方法に用いら
れる角度合わせ用照射体の一実施例斜視図、第5図は第
4図の角度合わせ用竪射体を3次元駆動接摺の:移動テ
ーブルに1・−1定した縦断面図、第6図及び第7図は
本発明角度検出方法の説明図、第8図は本発明角度検出
方法の他の実施例を示す説明図である。 1・・・距喘計、4・・・角度変化機構、5・・・照射
光軸、7・・・3次元駆動機構、8・・・被測定物体、
9・・・光源、10・・・照射レンズ、11・・・照射
光軸と角度γをなす軸線、12・・・集光レンズ、13
・・・受光器、14・・・角ハ【合わせ用照射体、15
・・・照射面、16・・・移動テーブル、17・・角度
合わせ用照射体の下部、18・・・角度合わせ用照射体
のY軸と平行な面、19・・・位口′(決めブロック。
Fig. 1 is a perspective view of a three-dimensional shape measuring device used in the angle detection method of the present invention, and Fig. 2 shows the distance shown in Fig. 1! 'i!
FIG. 3 is an explanatory diagram showing an embodiment of the angle detection method of the present invention, FIG. 4 is a perspective view of an embodiment of the irradiation body for angle adjustment used in the angle detection method of the present invention, and FIG. The figure is a vertical cross-sectional view of the angle adjustment vertical projector shown in FIG. 4 fixed at 1.-1 on a three-dimensionally driven sliding table; FIGS. 6 and 7 are explanatory diagrams of the angle detection method of the present invention; FIG. 8 is an explanatory diagram showing another embodiment of the angle detection method of the present invention. DESCRIPTION OF SYMBOLS 1... Distance meter, 4... Angle change mechanism, 5... Irradiation optical axis, 7... Three-dimensional drive mechanism, 8... Measured object,
9... Light source, 10... Irradiation lens, 11... Axis line forming angle γ with the irradiation optical axis, 12... Condensing lens, 13
...Receiver, 14...Angle C [Irradiator for alignment, 15
... Irradiation surface, 16... Moving table, 17... Lower part of the irradiator for angle adjustment, 18... Surface parallel to the Y axis of the irradiator for angle adjustment, 19... Position '(determined) block.

Claims (1)

【特許請求の範囲】[Claims] 1、光を照射して物体との距離を測定する距離計と、こ
の距離計を取付けると共に距離計の物体に対する光の照
射角度を変化させる角度変化機構と、前記角度変化機構
を取付けて距離計を3次元的に駆動させる3次元駆動機
構と、距離計による距離測定値と距離計の照射角度及び
3次元駆動機構の駆動量情報から照射された点の座標を
計算するデータ処理機構とを備え、被測定物体の形状計
測を行う計測方法において、照射面に基準点を有する角
度合せ照射体を3次元駆動機構の基準軸と平行となるよ
うに設置し、しかるのち、距離計を取付けた角度変化機
構の回転中心位置を上記照射面の形状を計測できる一定
の位置におき、次いで角度変化機構を回動させながら距
離計で上記照射面の形状を計測し、この計測値より上記
照射面基準点の座標値を求め、この座標値を用いてデー
タ処理機構により角度変化機構の原点角度方向を検出す
ることを特徴とする3次元形状計測装置の角度変化機構
の角度検出方法。
1. A rangefinder that measures the distance to an object by emitting light, an angle change mechanism that changes the angle of light irradiation of the rangefinder to the object while attaching the rangefinder, and a rangefinder that installs the angle change mechanism. It is equipped with a three-dimensional drive mechanism that drives the three-dimensionally, and a data processing mechanism that calculates the coordinates of the irradiated point from the distance measurement value by the rangefinder, the irradiation angle of the rangefinder, and the drive amount information of the three-dimensional drive mechanism. In a measurement method for measuring the shape of an object to be measured, an angle adjustment irradiator having a reference point on the irradiation surface is installed parallel to the reference axis of the three-dimensional drive mechanism, and then the angle at which the rangefinder is attached is adjusted. Place the rotation center position of the changing mechanism at a fixed position where the shape of the irradiation surface can be measured, then measure the shape of the irradiation surface with a rangefinder while rotating the angle change mechanism, and use this measurement value to determine the irradiation surface reference. A method for detecting an angle of an angle changing mechanism in a three-dimensional shape measuring device, characterized in that the coordinate values of a point are determined, and the origin angular direction of the angle changing mechanism is detected by a data processing mechanism using the coordinate values.
JP20823384A 1984-10-05 1984-10-05 Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus Pending JPS6186608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20823384A JPS6186608A (en) 1984-10-05 1984-10-05 Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20823384A JPS6186608A (en) 1984-10-05 1984-10-05 Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6186608A true JPS6186608A (en) 1986-05-02

Family

ID=16552854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20823384A Pending JPS6186608A (en) 1984-10-05 1984-10-05 Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6186608A (en)

Similar Documents

Publication Publication Date Title
JP4926180B2 (en) How to determine the virtual tool center point
JPS59190607A (en) Contactless measuring device for measuring shape of body
JPH0769151B2 (en) Surface shape measuring device
JPS6186608A (en) Angle detecting method of angle changing mechanism of three-dimensional configuration measuring apparatus
CN209416661U (en) A kind of camera lens FOV measuring device based on PSD
KR0131526B1 (en) Optical measuring device and its measuring method
CN108680117B (en) Laser sensor
JPH09189545A (en) Distance measuring device
JPS63225109A (en) Distance and inclination measuring instrument
JPS60142204A (en) Dimension measuring method of object
JPS6210361B2 (en)
JPS61207909A (en) Angle detecting method for angle variation mechanism of non-contact shape measuring instrument
JP2597711B2 (en) 3D position measuring device
JP2000121340A (en) Face inclination angle measuring apparatus
JPH0216965B2 (en)
JP3748479B2 (en) Eccentricity measuring apparatus, eccentricity measuring method, and processing apparatus
JPH02272308A (en) Non-contact type shape measuring instrument
JP2627105B2 (en) Construction surveying machine
JPS63187103A (en) Non-contact measurement of three-dimensional shape
JPS61189405A (en) Non-contacting shape measuring instrument
JPS61236462A (en) Optical tool length measuring device
JPH1194700A (en) Measuring device and method for lens
JPH09280819A (en) System for measuring accuracy of rotation
JP2004223596A (en) Method for simply adjusting multi-shaft of three-dimensional laser machine, and measurement method on machine by guide laser
JPS6227641A (en) Mirror position control device in projection-characteristic measuring apparatus of lens