JPS6184508A - Evaluating device for film quality of insulation film - Google Patents

Evaluating device for film quality of insulation film

Info

Publication number
JPS6184508A
JPS6184508A JP20757384A JP20757384A JPS6184508A JP S6184508 A JPS6184508 A JP S6184508A JP 20757384 A JP20757384 A JP 20757384A JP 20757384 A JP20757384 A JP 20757384A JP S6184508 A JPS6184508 A JP S6184508A
Authority
JP
Japan
Prior art keywords
sample
light
film
annealing
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20757384A
Other languages
Japanese (ja)
Other versions
JPH0313542B2 (en
Inventor
Sunao Nishioka
西岡 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20757384A priority Critical patent/JPS6184508A/en
Publication of JPS6184508A publication Critical patent/JPS6184508A/en
Publication of JPH0313542B2 publication Critical patent/JPH0313542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To vary an insulating film during measuring operation and obtain versatile information by irradiating a sample insulating film with light for annealing while irradiating the film with light for measurement at a specific angle, and holding the film at specific temperature through a sample heating device. CONSTITUTION:The light from a measurement light source 1 is reflected by the surface of the sample 100 and enters a photodetector 7 through a rotary analyzer 6. The sample heating device 11 heats the sample 100 up to the specific temperature. The sample 100 is irradiated with annealing light from an annealing light source 10. The rotary analyzer 6 starts continuous operation after the same is heated up to the specific temperature and the annealing light source enters stable operation. The output of the photodetector 7 is transmitted on every rotation of the analyzer 61 and a computer calculates the film thickness and refractive index. The insulating film has variation owing to the annealing light and heating, so versatile information is obtained with time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体素子に用いられる絶縁膜の膜質を評
価する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for evaluating the film quality of an insulating film used in a semiconductor element.

〔症JIA−小技術〕[JIA-Small technology]

従来この種の装置として“ELLIPSOMETRY 
ANDPOLARIZED LIGHT  、 R,M
、A、AZZAM AND N、?+。
Conventionally, this type of device was called “ELLIPSOMETRY”.
ANDPOLARIZED LIGHT, R,M
, A, AZZAM AND N,? +.

BASHARA、N0RTH−11OLLAND  P
UBLISIIING  COMPANY−AMSTE
RDAM、 NIEW YORK、 0XFORD、 
1977、 page 412に記載された装置があり
、これは第5図に示すものであった。図において100
は膜質を評価すべき試料、1は単一波長の光を放射する
測定用光源、2は該測定用光源1からの光を偏光する偏
光子、3は該偏光子2を通過した光の位相を変えたい場
合に用いられる附加的な1/4波長板、4は光の断面形
状を規制するアパーチャ、5は光が試料100の表面で
望ましい角度で反射されているかどうかをチェックする
ための試料アライメントターゲット、61は同期モータ
(図示せず)により一定速度で回転される検光子、62
は該検光子61の回転角度θを検出する角度エンコーダ
、6は検光子61と角度エンコーダ62が一体となって
構成された回転検光子、7は回転検光子6を通過した光
の強度を検出する光電検出器、8は回転検光子6からの
角度に関するデータパルスによって光電検出器7からの
光強度に関するアナログ信号をデジタル信号に変換する
A−Dコンバータ、9は該A−Dコンバータ8からのデ
ジタル信号と、検光子61の切角度を示す角度エンコー
ダ62からのスタートパルス信号とが入力され、試料1
00の膜厚、屈折率を算出するコンピュータである。
BASHARA, N0RTH-11OLLAND P
UBLISIIIING COMPANY-AMSTE
RDAM, NIEW YORK, 0XFORD,
1977, page 412, which is shown in FIG. 100 in the figure
is the sample whose film quality is to be evaluated, 1 is a measurement light source that emits light of a single wavelength, 2 is a polarizer that polarizes the light from the measurement light source 1, and 3 is the phase of the light that has passed through the polarizer 2. 4 is an aperture that regulates the cross-sectional shape of the light; 5 is a sample for checking whether the light is reflected at a desired angle on the surface of the sample 100; Alignment target 61 is an analyzer rotated at a constant speed by a synchronous motor (not shown), 62
is an angle encoder that detects the rotation angle θ of the analyzer 61; 6 is a rotary analyzer configured by integrating the analyzer 61 and the angle encoder 62; 7 is a rotary analyzer that detects the intensity of light passing through the rotary analyzer 6. 8 is an A-D converter that converts the analog signal regarding the light intensity from the photoelectric detector 7 into a digital signal by the data pulse regarding the angle from the rotating analyzer 6; A digital signal and a start pulse signal from the angle encoder 62 indicating the cutting angle of the analyzer 61 are input, and the sample 1
This is a computer that calculates the film thickness and refractive index of 00.

第6図は上記試料100の詳細を示し、図において、1
01は絶縁膜、102は該絶縁1111!101がその
上面に形成された基板である。
FIG. 6 shows details of the sample 100, and in the figure, 1
01 is an insulating film, and 102 is a substrate on which the insulating film 1111!101 is formed.

次に動作について説明する。測定用光源1からの光は、
偏光子2によって偏光された後、試料100の絶縁膜1
01面の法線に対し一定の角度、この場合は70°、で
試料100に入射する。この入射した光は試料100で
反射し、回転検光子6の検光子61を経て光電検出器7
に入射する。
Next, the operation will be explained. The light from measurement light source 1 is
After being polarized by the polarizer 2, the insulating film 1 of the sample 100
The light is incident on the sample 100 at a constant angle, in this case 70°, with respect to the normal to the 01 plane. This incident light is reflected by the sample 100 and passes through the analyzer 61 of the rotating analyzer 6 to the photoelectric detector 7.
incident on .

同期モータにより検光子61が回転しはじめると、角度
コンコーダ62は第7図(alに示すスタートパルス信
号S1を出力するとともに、検光子61の1回転に対し
第7図(b)に示す複数個の等間隔のデータパルスS2
を出力し、また上記光電検出器7は第7図(C)に示す
アナログ信号S3を出力する。
When the analyzer 61 starts to rotate by the synchronous motor, the angle concoder 62 outputs the start pulse signal S1 shown in FIG. equally spaced data pulses S2
The photoelectric detector 7 also outputs an analog signal S3 shown in FIG. 7(C).

そして上記アナログ信号S3は上記データパルスS2に
よりA−Dコンバータ8において第7図(d)に示すデ
ジタル信号S4に変換される。そして検光子61の1回
転毎に第7図(a)のスタートパルス信号S1と第7図
(d)のデジタル信号S4とがコンピュータ9に入力さ
れ、この入力がある毎に該コンピュータ9において試料
100への入射光の光学的条件と基板102の光学的性
質とから絶縁膜101の膜厚と屈折率が公知の偏光解析
法によって算出される。
The analog signal S3 is converted by the data pulse S2 into the digital signal S4 shown in FIG. 7(d) in the AD converter 8. Each rotation of the analyzer 61, the start pulse signal S1 in FIG. 7(a) and the digital signal S4 in FIG. The film thickness and refractive index of the insulating film 101 are calculated from the optical conditions of the light incident on the insulating film 100 and the optical properties of the substrate 102 by a known ellipsometry method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の絶縁膜の膜質評価装置は以上のように上記動作を
検光子61が1回転する毎に繰り返すように構成されて
いるので、もし検光子61を連続して回転させれば、連
続して膜厚と屈折率の値をコンピュータ9で計算できる
。しかしながら試料100を他の膜質の試料に変えない
かぎり、膜厚。
The conventional insulating film quality evaluation device is configured to repeat the above operation every time the analyzer 61 rotates once, so if the analyzer 61 is rotated continuously, The computer 9 can calculate the film thickness and refractive index values. However, unless sample 100 is changed to a sample with a different film quality, the film thickness will vary.

屈折率は時間が経過してもほとんど変化せず、従って回
転検光子6を連続動作させても、略同値の膜厚、屈折率
しか得られず、その結果上記従来装置では、同じ試料1
00については、膜質に関する多面的な情報は得られな
い欠点があった。
The refractive index hardly changes over time, so even if the rotating analyzer 6 is operated continuously, only approximately the same film thickness and refractive index can be obtained.
Regarding 00, there was a drawback that multifaceted information regarding film quality could not be obtained.

本発明は、上記のような従来のものの欠点を除去するた
めになされたもので、絶縁膜の膜厚、屈折率の時間的変
化をとらえることができ、絶縁膜の膜質を多面的に評価
できる膜質評価装置を提供することを目的としている。
The present invention was made in order to eliminate the drawbacks of the conventional methods as described above, and it is possible to detect temporal changes in the thickness and refractive index of an insulating film, and to evaluate the film quality of an insulating film from many aspects. The purpose is to provide a membrane quality evaluation device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、絶縁膜の膜質評価装置において、試料絶縁膜
に測定用光源からの光とは別のアニール用光源からの光
を照射するとともに、該試料を所定温度に昇温保持する
ようにしたものである。
The present invention is an insulating film quality evaluation device in which a sample insulating film is irradiated with light from an annealing light source that is different from light from a measurement light source, and the sample is heated and maintained at a predetermined temperature. It is something.

〔作用〕[Effect]

本発明では、試料が所定温度に保持された状態で測定用
光とともにアニール用光が照射され、これにより膜厚、
屈折率を時間的に変化させる光刺激が試料に与えられ、
さらに該膜厚、屈折率の時間的変化が加熱により促進さ
れる。
In the present invention, the annealing light is irradiated with the measurement light while the sample is held at a predetermined temperature.
A light stimulus that changes the refractive index over time is applied to the sample,
Furthermore, the temporal changes in the film thickness and refractive index are accelerated by heating.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による絶縁膜の膜質評価装置
を示す。図において、第5図と同一符号は同−又は相当
部分を示し、10は測定用光源1の光とは別のアニール
用光を試料100に照射するためのアニール光源であ、
例えば高圧水銀灯。
FIG. 1 shows an apparatus for evaluating the quality of an insulating film according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 5 indicate the same or equivalent parts, and 10 is an annealing light source for irradiating the sample 100 with annealing light different from the light of the measurement light source 1;
For example, high-pressure mercury lamps.

ハロゲンランプ等が用いられる。llaは試料100を
昇温させるための試料加熱部、12は試料加熱部11a
に接続され、試料100の温度を調節するための温度コ
ントローラであり、この加熱部11a、コントローラ1
2により試料100を所定温度に昇温保持する加熱装置
11が構成されている。13はコンピュータ9によって
算出された試料100の絶縁膜101の膜質、屈折率の
時間的変化を記録1表示する表示部である。
A halogen lamp or the like is used. lla is a sample heating section for raising the temperature of the sample 100, and 12 is a sample heating section 11a.
is a temperature controller for adjusting the temperature of the sample 100, and this heating section 11a, controller 1
2 constitutes a heating device 11 that raises and maintains the sample 100 at a predetermined temperature. Reference numeral 13 denotes a display unit that records and displays temporal changes in film quality and refractive index of the insulating film 101 of the sample 100 calculated by the computer 9.

次に作用効果について説明する。Next, the effects will be explained.

まず、本実施例装置の作動原理について説明すれば、高
圧水銀灯からなるアニール光#10からアニール用光を
試料100の絶縁膜101に照射すると、これが例えば
プラズマ窒化シリコン膜の如きものである場合はその膜
質の如何によって膜厚、屈折率の時間的変化に差異が現
れる。これは、光刺激を与えると例えば窒素−水素、シ
リコン−水素、シリコン−窒素などの結合状態が変化し
、この変化量は膜質によって異なり、しかもこの光刺激
を与える時間的経過に伴う上記結合状態の推移、即ち時
間的変化量も膜質によって異なるからである。そして、
試料加熱部11aによって試料100を昇温せしめて、
上述の膜質、屈折率の光刺激による変化を促進すればこ
の膜厚、屈折率が時間的にさらに確実に変化し、その結
果絶縁膜101の膜質に関する多面的な情報が得られる
こととなる。
First, to explain the operating principle of the apparatus of this embodiment, when the insulating film 101 of the sample 100 is irradiated with annealing light from annealing light #10 consisting of a high-pressure mercury lamp, if the insulating film 101 is a plasma silicon nitride film, for example, Depending on the quality of the film, differences appear in the film thickness and changes in refractive index over time. This is because when light stimulation is applied, the bonding state of nitrogen-hydrogen, silicon-hydrogen, silicon-nitrogen, etc. changes, and the amount of this change varies depending on the film quality, and the above bonding state changes over time when this light stimulation is applied. This is because the transition of , that is, the amount of change over time, also differs depending on the film quality. and,
Raising the temperature of the sample 100 by the sample heating section 11a,
If the above-described changes in film quality and refractive index due to optical stimulation are promoted, the film thickness and refractive index will change more reliably over time, and as a result, multifaceted information regarding the film quality of the insulating film 101 can be obtained.

次に、本実施例の動作について第2図及び第7図を用い
て説明する。本実施例装置では、試料100を試料加熱
部11a上に載置し、該試料加熱部11aからの熱伝導
によって昇温させ、しかる後アニール光源10からの光
を試料100の表面に垂直に照射する。
Next, the operation of this embodiment will be explained using FIG. 2 and FIG. 7. In the apparatus of this embodiment, the sample 100 is placed on the sample heating section 11a, the temperature is raised by heat conduction from the sample heating section 11a, and then light from the annealing light source 10 is irradiated perpendicularly onto the surface of the sample 100. do.

上記試料100の昇温制御は、時刻t1に楠コンピュー
タ9から出力される第2図(a)のパルス信号S5によ
って温度コントローラ12が始動して開始され、試料加
熱部11aは、まず試料100を一定の昇温速度で予め
設定された温度に昇温するよう温度コントローラ12に
より制御され、その後は上記設定温度を維持するよう制
御される。
The temperature increase control of the sample 100 is started when the temperature controller 12 is started by the pulse signal S5 in FIG. The temperature controller 12 controls the temperature to rise to a preset temperature at a constant temperature rise rate, and thereafter controls to maintain the set temperature.

そして上記設定温度に達した時刻t2に、コンピュータ
9から第2図山)のパルス信号S6がアニール光源10
に与えられ、これにより該アニール光源10が動作を開
始し、これが安定な動作状態に移った時刻t3に第2図
(C)のパルス信号S7がコンピュータ9から角度エン
コーダ62に与えられ、回転検光子6はこの時刻t3か
ら連続動作状態になる。
Then, at time t2 when the set temperature is reached, a pulse signal S6 from the computer 9 (see Fig. 2) is sent to the annealing light source 10.
As a result, the annealing light source 10 starts operating, and at time t3 when the annealing light source 10 enters a stable operating state, the pulse signal S7 shown in FIG. The photon 6 enters a continuous operation state from this time t3.

上記回転検光子6の動作状態においては、検光子61は
回転を続け、角度エンコーダ62は検光子61が1回転
する毎に第7図(a)に示すスタートパルス信号S1を
コンピュータ9に出力し、また、測定用光による光電検
出器7からのアナログ信号S3及び第7図(blに示す
データパルスS2がA−Dコンバータ8に出力され、該
A−Dコンバータ8、コンピュータ9により既述の如く
、検光子61の1回転毎に膜厚、屈折率が算出される。
In the operating state of the rotating analyzer 6, the analyzer 61 continues to rotate, and the angle encoder 62 outputs the start pulse signal S1 shown in FIG. 7(a) to the computer 9 every time the analyzer 61 rotates once. In addition, the analog signal S3 from the photoelectric detector 7 by the measurement light and the data pulse S2 shown in FIG. The film thickness and refractive index are calculated each time the analyzer 61 rotates.

検光子61は連続回転しているので、上記膜厚、屈折率
も連続して算出される。そしてこの際に試料100にア
ニール光による光刺激が与えられ、また昇温によって該
光刺激が促進され、これにより絶縁膜101の膜厚、屈
折率は照射時間の経過に伴って変化することとなり、ま
たこれらの値は表示部13へ出力され、該表示部13に
おいて例えば第3図に示す膜厚、屈折率の出カブロット
A、  Bが表示される。
Since the analyzer 61 is continuously rotating, the film thickness and refractive index are also continuously calculated. At this time, the sample 100 is optically stimulated by annealing light, and the optical stimulation is accelerated by increasing the temperature, and as a result, the thickness and refractive index of the insulating film 101 change as the irradiation time passes. , and these values are output to the display section 13, where, for example, the film thickness and refractive index output plots A and B shown in FIG. 3 are displayed.

このように本実施例では、測定用光により絶縁膜101
の膜厚、屈折率を測定する際に、アニール用光を試料1
00に照射するとともに、試料100を試料加熱装置に
より所定温度に保持するようにしたので、アニール用光
の光刺激により上記膜厚、屈折率を時間の経過に伴って
変化させることができ、しかも上記温度保持により光刺
激を促進でき、膜厚等の時間的変化を確実に得ることが
でき、その結果絶縁膜101の特性を多面的に評価でき
ることとなる。
In this way, in this embodiment, the insulating film 101 is
When measuring the film thickness and refractive index of sample 1, apply the annealing light to sample 1.
00, and the sample 100 was maintained at a predetermined temperature by the sample heating device, so that the above film thickness and refractive index could be changed over time by optical stimulation of the annealing light. By maintaining the temperature described above, optical stimulation can be promoted, and temporal changes in film thickness etc. can be reliably observed, and as a result, the characteristics of the insulating film 101 can be evaluated from multiple angles.

第4図は上記実施例の変形例を示す。図において第1図
と同一符号は同一部分を示し、上記第1図の実施例では
、試料100は大気中に置かれていたが、この変形例は
試料100を所定の雰囲気ガス中に保持するようにした
ものである。第4図において、14は試料100を覆う
ように設けられた試料フードであり、この試料フード1
4には光の入射、射出の妨げにならぬよう光路に窓14
aが設けられ、また試料フード14内に望ましい気体を
流入せしめた後フード14外に流出せしめるための気体
導入、排気通路14b、14cが設けられている。
FIG. 4 shows a modification of the above embodiment. In the figure, the same reference numerals as in FIG. 1 indicate the same parts, and in the embodiment shown in FIG. This is how it was done. In FIG. 4, 14 is a sample hood provided to cover the sample 100, and this sample hood 1
4 has a window 14 in the optical path so as not to obstruct the entrance and exit of light.
A is provided, and gas introduction and exhaust passages 14b and 14c are provided for causing a desired gas to flow into the sample hood 14 and then flow out of the hood 14.

この変形例では、試料100をとりまく雰囲気ガスを所
望のガスに変えることができ、絶縁膜101の膜質をよ
り多面的に評価することができる。
In this modification, the atmospheric gas surrounding the sample 100 can be changed to a desired gas, and the film quality of the insulating film 101 can be evaluated from more aspects.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る絶縁膜の膜質評価装置に
よれば、試料を所定温度に昇温保持し、アニール用光に
よる光刺激を試料に与えつつ、連続して膜厚と屈折率を
測定するようにしたので、この膜厚等の時間の経過に伴
う変化をとらえることができ、絶縁膜に関して多面的な
情報が得られる効果がある。
As described above, according to the insulating film quality evaluation device according to the present invention, the film thickness and refractive index are continuously measured while raising and maintaining the temperature of the sample at a predetermined temperature and applying optical stimulation to the sample with annealing light. Since the measurement is carried out, it is possible to detect changes in the film thickness over time, which has the effect of obtaining multifaceted information regarding the insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による絶縁膜の膜質評価装
置を示すブロック図、第2図及び第3図はその動作を説
明するための図、第4図は上記第1図の実施例の変形例
を示すブロック図、第5図は従来の絶縁膜の膜質評価装
置を示すブロック図、第6図は試料の断面図、第7図は
上記第1図、第4図の実施例及び従来装置の動作を説明
するための図である。 図において、1は測定用光源、10はアニール光源、1
1は試料加熱装置である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing an insulating film quality evaluation apparatus according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining its operation, and FIG. 4 is an embodiment of the above-mentioned FIG. 1. FIG. 5 is a block diagram showing a conventional insulating film quality evaluation apparatus, FIG. 6 is a cross-sectional view of a sample, and FIG. FIG. 2 is a diagram for explaining the operation of a conventional device. In the figure, 1 is a measurement light source, 10 is an annealing light source, 1
1 is a sample heating device. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)測定用光を試料絶縁膜に所定角度で照射し該試料
からの反射光を検知し、該検知した反射光から上記絶縁
膜の膜厚及び屈折率の時間的変化を得て上記絶縁膜の膜
質を評価する装置であって、上記試料に上記測定用光と
同時にアニール用光を照射するアニール光源と、上記試
料を所定温度に保持するための試料加熱装置とを備えた
ことを特徴とする絶縁膜の膜質評価装置。
(1) The measurement light is irradiated onto the sample insulating film at a predetermined angle, the reflected light from the sample is detected, and the temporal changes in the film thickness and refractive index of the insulating film are obtained from the detected reflected light to obtain the above-mentioned insulation film. An apparatus for evaluating film quality of a film, characterized by comprising an annealing light source that irradiates the sample with annealing light at the same time as the measurement light, and a sample heating device that maintains the sample at a predetermined temperature. A film quality evaluation device for insulating films.
(2)上記アニール光源は、試料に法線方向からアニー
ル用光を照射する高圧水銀灯であることを特徴とする特
許請求の範囲第1項記載の絶縁膜の膜質評価装置。
(2) The insulating film quality evaluation apparatus according to claim 1, wherein the annealing light source is a high-pressure mercury lamp that irradiates the sample with annealing light from the normal direction.
JP20757384A 1984-10-02 1984-10-02 Evaluating device for film quality of insulation film Granted JPS6184508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20757384A JPS6184508A (en) 1984-10-02 1984-10-02 Evaluating device for film quality of insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20757384A JPS6184508A (en) 1984-10-02 1984-10-02 Evaluating device for film quality of insulation film

Publications (2)

Publication Number Publication Date
JPS6184508A true JPS6184508A (en) 1986-04-30
JPH0313542B2 JPH0313542B2 (en) 1991-02-22

Family

ID=16541986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20757384A Granted JPS6184508A (en) 1984-10-02 1984-10-02 Evaluating device for film quality of insulation film

Country Status (1)

Country Link
JP (1) JPS6184508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378207U (en) * 1989-11-30 1991-08-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378207U (en) * 1989-11-30 1991-08-07

Also Published As

Publication number Publication date
JPH0313542B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
US3994586A (en) Simultaneous determination of film uniformity and thickness
TWI783980B (en) Advanced optical sensor, system, and methodologies for etch processing monitoring
JP2002544501A (en) System for non-destructive measurement of samples
JP3337734B2 (en) Infrared ellipsometer
TW202018810A (en) Normal-incidence in-situ process monitor sensor
JPH0682098B2 (en) Stress evaluation device
JP2000065536A (en) Method and instrument for measuring film thickness and optical constant
JPS6184508A (en) Evaluating device for film quality of insulation film
KR102195132B1 (en) Method for measuring the light intensity of continuous rotation of a polarizer
KR102194321B1 (en) Continuously measurable spectroscopic ellipsometer
JP2003177093A (en) Infrared analysis apparatus
JPH01114727A (en) Radiation temperature measuring instrument
JP2744221B2 (en) Liquid crystal element evaluation method and evaluation apparatus
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
CA2173564C (en) Method of and device for measuring the refractive index of wafers of vitreous material
JP2002350119A (en) Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JPH0456145A (en) Measuring device for substrate temperature in plasma
Hansen et al. Thickness and refractive index analysis of ellipsometry data of ultra-thin semi-transparent films
JP4267112B2 (en) Temperature measuring method and temperature measuring device
JPS6352004A (en) Measuring instrument
JP2007212330A (en) Optical anisotropic parameter measuring method and measuring instrument
JP2018071982A (en) Absolute reflectance measurement apparatus with 0 degree incidence
JPH0112188Y2 (en)
JPH0425729A (en) Temperature measuring instrument