JP2002350119A - Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program - Google Patents

Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program

Info

Publication number
JP2002350119A
JP2002350119A JP2001158934A JP2001158934A JP2002350119A JP 2002350119 A JP2002350119 A JP 2002350119A JP 2001158934 A JP2001158934 A JP 2001158934A JP 2001158934 A JP2001158934 A JP 2001158934A JP 2002350119 A JP2002350119 A JP 2002350119A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
sample
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001158934A
Other languages
Japanese (ja)
Inventor
Satoshi Ito
聡 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001158934A priority Critical patent/JP2002350119A/en
Publication of JP2002350119A publication Critical patent/JP2002350119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure and evaluate at high speeds a sample in-plane distribution of a twist angle and an average inclination angle of liquid crystal molecules and a thickness of a liquid crystal layer in a reflective liquid crystal display element. SOLUTION: There are comprised of a light source having a plurality of wavelengths, a beam expander 2 for expanding light to enable wide-range observation, a polarizer 3 for controlling a polarization state of the light entering a sample 5, a phase element, a phase element for measuring the polarization state of the light passing the sample, an analyzer 6, an imaging lens 7, a two-dimensional CCD camera 8, and a sample stage 4 having a mechanism for rotating the liquid crystal display element of the sample 5 in a sample in-plane direction and a mechanism for moving the sample in parallel within the sample plane. The twist angle of the liquid crystal layer, the average inclination angle and the thickness of the liquid crystal layer are determined by measuring the sample direction dependency and the wavelength dispersion dependency of an intensity of reflecting light generated when the light is rotated in the sample in-plane direction while keeping a constant angle of incidence to the sample plane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射型液晶表示素
子評価方法とその評価装置に関し、特に液晶表示素子内
の液晶のツイスト角(ねじれ角)と平均傾き角、及び液
晶層の厚さを測定する液晶表示素子の評価方法とその評
価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for evaluating a reflection type liquid crystal display device, and more particularly to a method for evaluating a twist angle (twist angle) and an average tilt angle of a liquid crystal in a liquid crystal display device and a thickness of a liquid crystal layer. The present invention relates to a method for evaluating a liquid crystal display element to be measured and an apparatus for evaluating the method.

【0002】[0002]

【従来の技術】従来の反射型液晶表示素子評価方法とそ
の評価装置としては、各種の方法があるが、ツイスト角
の測定方法としては、偏光子と検光子に挟まれた液晶セ
ルを透過する光の強度から決定する方法が、アンカリン
グ強度を測定することを目的として提案されている
(「液晶表示素子の界面アンカリング強度の測定方法」
特開平6−265839,265840号公報(以下従
来例1という)に示されている。
2. Description of the Related Art There are various methods for evaluating a conventional reflection type liquid crystal display device and its evaluation apparatus. As a method for measuring a twist angle, a method of transmitting light through a liquid crystal cell sandwiched between a polarizer and an analyzer is known. A method of determining from the light intensity has been proposed for the purpose of measuring the anchoring intensity (“Method of measuring interface anchoring intensity of liquid crystal display element”).
This is disclosed in Japanese Patent Application Laid-Open No. Hei 6-265839, 265840 (hereinafter referred to as Conventional Example 1).

【0003】また、特開平8−184413号公報(以
下従来例2という)に提案されたものは、液晶表示素子
の液晶層の厚さ(以下セルギャップという)とツイスト
角を測定する方法として、単色光源、偏光子、液晶表示
素子、検光子、光検出器の順に配置された装置を用い、
偏光子もしくは検光子の方位と液晶表示素子の方位を調
整することにより、光検出器で検出される透過光強度が
極小になる2組の液晶表示素子方位と偏光子もしくは検
光子方位よりセルギャップとツイスト角を決定する方法
である。
A method proposed in Japanese Patent Application Laid-Open No. 8-184413 (hereinafter referred to as Conventional Example 2) is a method for measuring the thickness (hereinafter referred to as a cell gap) and the twist angle of a liquid crystal layer of a liquid crystal display device. Using a device arranged in the order of a monochromatic light source, polarizer, liquid crystal display element, analyzer, photodetector,
By adjusting the azimuth of the polarizer or analyzer and the azimuth of the liquid crystal display element, the cell gap is determined from the two sets of liquid crystal display element azimuth and the polarizer or analyzer azimuth where the transmitted light intensity detected by the photodetector is minimized. And a method for determining the twist angle.

【0004】さらに、特許番号2778935号(平成
10年5月発行;以下従来例3という)は、液晶のアン
カリング強度を測定することを目的とした、セルギャッ
プとツイスト角の決定法として、決定透過光強度が極小
となる検光子方位及び液晶素子の方位を精度よく決定す
るために、光源、偏光子、液晶表示素子、検光子、光検
出器、及び光弾性素子を用いる方法が提案されている。
Further, Japanese Patent No. 2778935 (issued in May 1998; hereinafter referred to as Conventional Example 3) has been determined as a method for determining a cell gap and a twist angle for the purpose of measuring the anchoring strength of a liquid crystal. A method using a light source, a polarizer, a liquid crystal display element, an analyzer, a photodetector, and a photoelastic element has been proposed in order to accurately determine an analyzer direction and a liquid crystal element direction in which transmitted light intensity is minimal. I have.

【0005】また、本発明の先願として、特願平11−
345107号(以下先願という)で提案されたもの
は、セルギャップとツイスト角と平均傾斜角の決定法と
して、試料の面内回転機構と、複数の波長の光源及び試
料に入射する光の偏光状態を制御する偏光子、位相子、
及び試料を透過した光の偏光状態を測定するための位相
子、検光子、及び光の波長を単色化する分光器と光検出
器を用いる方法が提案されている。図9はこの先願の構
成を説明するブロック図である。
Further, as a prior application of the present invention, Japanese Patent Application No.
No. 345107 (hereinafter referred to as a prior application) proposes a method for determining a cell gap, a twist angle, and an average tilt angle, a mechanism for rotating an in-plane of a sample, a light source having a plurality of wavelengths, and polarization of light incident on the sample. Polarizer, phaser, which controls the state,
In addition, a method using a phase shifter, an analyzer, a spectroscope for monochromaticizing the wavelength of light, and a photodetector for measuring the polarization state of light transmitted through a sample has been proposed. FIG. 9 is a block diagram illustrating the configuration of this prior application.

【0006】図において、31は光源であるHe−Ne
レーザ、3は偏光子、4は光軸を中心に回転する試料ス
テージで、試料方位を読み取るエンコーダを備えでお
り、5aは試料となる液晶表示素子である。6は光軸を
中心に回転する検光子で検光子の方位を読み取るエンコ
ーダを備えており、32は光強度検出器でフォトマルチ
プライヤを用いている。9aは試料台4及び検光子6の
方位を制御し、光強度検出器32で検出される強度から
透過光の偏光状態の試料方位依存性を計算し、試料のセ
ルギャップ、ツイスト角、及び液晶の平均傾き角を計算
するコンピュータである。
In FIG. 1, reference numeral 31 denotes a light source He-Ne.
The laser, 3 is a polarizer, 4 is a sample stage that rotates around the optical axis, and has an encoder for reading the direction of the sample, and 5a is a liquid crystal display element as a sample. Reference numeral 6 denotes an analyzer which rotates around the optical axis, and includes an encoder for reading the direction of the analyzer. Reference numeral 32 denotes a light intensity detector using a photomultiplier. 9a controls the orientation of the sample table 4 and the analyzer 6, calculates the sample orientation dependence of the polarization state of the transmitted light from the intensity detected by the light intensity detector 32, and calculates the sample cell gap, twist angle, and liquid crystal. Is a computer that calculates the average tilt angle of

【0007】この場合の測定に際して、光の進行方向に
垂直で互いに直交する2つの方位を考え、光の電場ベク
トルの一方の方位の成分をS成分、それとは直交する方
位の成分をP成分とする。測定に際しては入射光のS成
分とP成分が1:1の直線偏光になるように偏光子がS
成分方向およびP成分方向と45度になるようにおい
た。試料を透過した光の偏光状態は検光子の方位に対す
る検出光強度依存性から決定する回転検光子法を用い
た。検出光強度の測定は検光子方位間隔2度ごとに18
0方位について測定した。
In the measurement in this case, two directions perpendicular to each other and perpendicular to the traveling direction of light are considered, and a component of one direction of the electric field vector of the light is defined as an S component, and a component of the direction orthogonal to the direction is defined as a P component. I do. At the time of measurement, the polarizer is set so that the S component and the P component of the incident light are linearly polarized at 1: 1.
The angle was set to 45 degrees with the component direction and the P component direction. The rotation analyzer method, which determines the polarization state of the light transmitted through the sample from the dependence of the detected light intensity on the orientation of the analyzer, was used. The measurement of the detected light intensity is 18 for every two degrees of the analyzer azimuth interval.
It measured about 0 direction.

【0008】測定に用いた試料5aは、次のように作成
した。幅30mm、長さ40mm、厚さ1.1 mmの
ガラスに日産化学製のポリイミドPI−Aをスピンコー
トにより塗布し、80度に設定したオーブンで15分乾
燥の後、250度に設定したオーブンで60分加熱する
ことにより焼成した。その後、2枚の基板を室温中でレ
ーヨンを植毛した直径3cmのラビングローラを用いて
回転数800rpm、押し込み長さ0.3 mm、ロー
ラー走査速度20mm/sで3回ラビングした。それぞ
れの基板のラビング方向が90度になるように5mmの
スペーサを混ぜた2液性エポキシ系接着剤で基板を張り
合わせて液晶素子とした。転移温度が62度で633n
mの光に対して屈折率が1.586、1.510の液晶
を室温で毛管現象を利用してセル内に注入した。注入部
をエポキシ系接着剤で封止後、セルごと90度に設定し
たオーブンにいれて2時間加熱する液晶配向を均一化す
る処理(アイソトロピック処理)を行った。このような
手順で作製した試料Aの透過光の偏光状態Δ、ψの試料
方位依存性の測定結果を図10に示す。Δ、ψともに2
回回転対称性が明瞭に観測されている。
The sample 5a used for the measurement was prepared as follows. A polyimide PI-A manufactured by Nissan Chemical Co., Ltd. is applied to glass having a width of 30 mm, a length of 40 mm, and a thickness of 1.1 mm by spin coating, dried in an oven set at 80 degrees for 15 minutes, and then set in an oven set at 250 degrees. For 60 minutes. Thereafter, the two substrates were rubbed three times at room temperature by using a rubbing roller having a diameter of 3 cm and implanted with rayon at a rotation speed of 800 rpm, a pushing length of 0.3 mm, and a roller scanning speed of 20 mm / s. The substrates were bonded to each other with a two-liquid epoxy adhesive mixed with a 5 mm spacer so that the rubbing direction of each substrate was 90 degrees, to obtain a liquid crystal element. 633n with a transition temperature of 62 degrees
Liquid crystals having a refractive index of 1.586 and 1.510 with respect to the light of m were injected into the cell at room temperature by utilizing the capillary phenomenon. After the injection portion was sealed with an epoxy-based adhesive, each cell was placed in an oven set at 90 degrees and heated for 2 hours to perform a process for homogenizing the liquid crystal orientation (isotropic process). FIG. 10 shows the measurement results of the sample orientation dependence of the polarization states Δ and ψ of the transmitted light of the sample A manufactured in such a procedure. Δ and ψ are both 2
The rotational symmetry is clearly observed.

【0009】この測定結果から、試料Aのセルギャップ
とツイスト角は以下のようにして決定した。波長λの光
を屈折率Ne、Noの液晶を注入したセルギャップd、
ツイスト角Φ、平均傾斜角θ、光のS成分に対する方位
角0度の液晶素子に入射した際の液晶表示素子の光学的
特性を示す2行2列のJone(ジョーン)行列の成分
J11、J12、J21,J22は J11=sin(Φ)sin(ΦV)+cos(Φ) cos(ΦV)/V+iU
cos(Φ) sin(ΦV)/V J12=cos(Φ)sin(ΦV)−sin(Φ) cos(ΦV)/V−iU
sin(Φ) sin(ΦV)/V J21=−cos(Φ)sin(ΦV)+sin(Φ) cos(ΦV)/V+i
Usin(Φ) sin(ΦV)/V J22=sin(Φ)sin(ΦV)+cos(Φ) cos(ΦV)/V−iU
cos(Φ) sin(ΦV)/V となる。だだし、iは虚数単位、U、Vはそれぞれ U=πd(Ne{1+(Ne2/No2―1)sin2θ}
-1/2−No)/λΦ V=(1+U21/2 と書ける。
From the measurement results, the cell gap and twist angle of Sample A were determined as follows. A cell gap d in which light having a wavelength λ is injected with a liquid crystal having a refractive index of Ne and No,
Twist angle φ, average tilt angle θ, components J11 and J12 of a 2 × 2 Jone matrix showing the optical characteristics of the liquid crystal display element when the liquid crystal element has an azimuth of 0 ° with respect to the S component of light. , J21 and J22 are J11 = sin (Φ) sin (ΦV) + cos (Φ) cos (ΦV) / V + iU
cos (Φ) sin (ΦV) / V J12 = cos (Φ) sin (ΦV) -sin (Φ) cos (ΦV) / V-iU
sin (Φ) sin (ΦV) / V J21 = −cos (Φ) sin (ΦV) + sin (Φ) cos (ΦV) / V + i
Usin (Φ) sin (ΦV) / V J22 = sin (Φ) sin (ΦV) + cos (Φ) cos (ΦV) / V-iU
cos (Φ) sin (ΦV) / V However, i is an imaginary unit, and U and V are respectively U = πd (Ne {1+ (Ne 2 / No 2 −1) sin 2 θ})
-1/2 -No) / λΦ V = (1 + U 2 ) 1/2

【0010】液晶素子の方位が光のS成分方向に対して
角度Aをもつとき、液晶素子のJone行列の各要素J
11(A)、J12(A)、J21(A)、J22
(A)は J11(A)=J11cos2(A)−(J12+J21)s
in(A)cos (A)+J22sin2(A) J12(A)=J12cos2(A)+(J11−J22)s
in(A)cos (A)−J21sin2(A) J21(A)=J21cos2(A)+(J11−J22)s
in(A)cos (A)−J12sin2(A) J22(A)=J22cos2(A)+(J12+J21)s
in(A)cos (A)+J11sin2(A) となる。
When the azimuth of the liquid crystal element has an angle A with respect to the S component direction of light, each element J of the Jone matrix of the liquid crystal element
11 (A), J12 (A), J21 (A), J22
(A) is J11 (A) = J11cos 2 (A)-(J12 + J21) s
in (A) cos (A) + J22 sin 2 (A) J12 (A) = J12 cos 2 (A) + (J11−J22) s
in (A) cos (A) -J21 sin 2 (A) J21 (A) = J21 cos 2 (A) + (J11-J22) s
in (A) cos (A)-J12 sin 2 (A) J22 (A) = J22 cos 2 (A) + (J12 + J21) s
in (A) cos (A) + J11 sin 2 (A)

【0011】この測定条件の場合、S成分とP成分が
1:1の直線偏光を入射しているから、透過光のS成分
はJ11(A)+J12(A)、P成分はJ21(A)
+J22(A)のS成分J11+J12(A)に対する
位相差Δ(A)とそれぞれの絶対値の比|J21(A)
+J22(A)|/|J11(A)+J12(A)|を
与える tanΨ(A)の角度Ψ(A)であらわされる。こ
のようにして計算された偏光状態Δ(A)、Ψ(A)と
測定された偏光状態Δ、Ψとの差の二乗和が最小となる
ようなツイスト角Φ、セルギャップdの値を求める。
In this measurement condition, since the S component and the P component enter linearly polarized light of 1: 1, the S component of the transmitted light is J11 (A) + J12 (A), and the P component is J21 (A).
+ J22 (A) with respect to S component J11 + J12 (A) with respect to phase difference Δ (A) and ratio of their absolute values | J21 (A)
+ J22 (A) | / | J11 (A) + J12 (A) | is given by an angle Ψ (A) of tanΨ (A). The values of the twist angle Φ and the cell gap d that minimize the sum of squares of the difference between the polarization states Δ (A) and Ψ (A) calculated in this way and the measured polarization states Δ and Ψ are obtained. .

【0012】偏光状態Δ(A)、Ψ(A)はセルギャッ
プdとツイスト角偏光状態Δ(A)に対する非線型性が
大きいため、マーカット法や最速降下法、ガウスニュー
トン法等の通常の非線型最小二乗法では解をえることが
できない。そこで、セルギャップd、ツイスト角Φを一
定の範囲内で一定の間隔で変化させ、計算からえられた
Δ(A)、Ψ(A)の値と測定値との差の二乗和を計算
する。つまりツイスト角Φmin からΦmax の範囲をδ間
隔で(Φmax −Φmin )/δ+1条件、および各ツイス
ト角についてセルギャップdmin からdmax の範囲を間
隔ηで(dmax−dmin )/η+1条件、合計で{(Φm
ax −Φmin )/δ+1}{(dmax −dmin )/η+
1}の組み合わせについてΔ(A)、Ψ(A)を計算す
る。
Since the polarization states Δ (A) and Ψ (A) have a large nonlinearity with respect to the cell gap d and the twist angle polarization state Δ (A), ordinary non-linear methods such as the Marcut method, the fastest descent method, and the Gauss-Newton method are used. The linear least squares method does not provide a solution. Therefore, the cell gap d and the twist angle Φ are changed at fixed intervals within a fixed range, and the sum of squares of the difference between the measured values Δ (A) and Ψ (A) and the measured value is calculated. . That is, the range of the twist angles Φmin to Φmax at the interval of δ (Φmax−Φmin) / δ + 1, and the range of the cell gap dmin to dmax for each twist angle at the interval η, the condition of (dmax−dmin) / η + 1, is {(合計). Φm
ax−Φmin) / δ + 1} {(dmax−dmin) / η +
Δ (A) and Ψ (A) are calculated for the combination of 1}.

【0013】計算された二乗和の中から最小の二乗和を
与えるd1、Ψ1の組み合わせを探す。この際、Δ
(A)、Ψ(A)を計算するツイスト角およびセルギャ
ップの間隔が所望の精度よりも大きい場合には、d1−
ηからd1+ηの範囲をηより小さい間隔、例えばη/
10間隔で偏光状態を計算する。ツイスト角についても
同様で各セルギャップについてΦ1−δからΦ1+δの
範囲をδより小さい間隔、例えばδ/10の間隔で系1
21組について偏光状態を計算し、測定値と計算値の差
の二乗和が最小となるセルギャップ、ツイスト角の組み
合わせd2、Φ2を探す。以上の手続きを計算するセル
ギャップ間隔、ツイスト角間隔が所望の精度より小さく
なるまで繰り返す。
From the calculated sum of squares, a combination of d1 and 11 that gives the minimum sum of squares is searched. At this time, Δ
When the twist angle and the cell gap interval for calculating (A) and Ψ (A) are larger than desired accuracy, d1-
The range from η to d1 + η is set to an interval smaller than η, for example, η /
The polarization state is calculated at 10 intervals. The same applies to the twist angle. For each cell gap, the range of Φ1-δ to Φ1 + δ is set at an interval smaller than δ, for example, at an interval of δ / 10.
The polarization state is calculated for the 21 sets, and a combination d2, Φ2 of the cell gap and the twist angle that minimizes the sum of squares of the difference between the measured value and the calculated value is searched. The above procedure is repeated until the calculated cell gap interval and twist angle interval become smaller than desired accuracy.

【0014】なお、液晶表示素子のラビング方向が不明
の場合は、上記の手順に従って偏光状態Δ(A)、Ψ
(A)を計算し、それぞれの最大値もしくは最小値を与
える方位Amax もしくはAmin と測定された偏光状態
Δ、Ψの最大もしくは最小を与える方位Omax もしくは
Omin と比較して、試料のラビング方位を推定する。そ
して偏光状態の方位依存性をΔ(A―Amax +Omax
)、Ψ(A―Amax +Omax )もしくはΔ(A―Amin
+Omin )、Ψ(A―Amin +Omin )として改めて
計算し、測定された偏光状態と計算された偏光状態の差
の二乗和を求める。
When the rubbing direction of the liquid crystal display device is unknown, the polarization state Δ (A), Ψ
(A) is calculated, and the rubbing direction of the sample is estimated by comparing the direction Amax or Amin that gives the maximum value or the minimum value with the direction Omax or Omin that gives the maximum or minimum value of the measured polarization states Δ and Ψ. I do. Then, the azimuth dependence of the polarization state is calculated as Δ (A−Amax + Omax).
), Ψ (A-Amax + Omax) or Δ (A-Amin
+ Omin) and Ψ (A-Amin + Omin) to obtain the sum of squares of the difference between the measured polarization state and the calculated polarization state.

【0015】試料Aの場合にはツイスト角が90度程
度、セルギャップが5μm程度と予想されるため、計算
の範囲をツイスト角では80度から100度、セルギャ
ップは4μmから6μmとした。このようにしてえられ
たセルギャップとツイスト角において、液晶の平均傾斜
角を0度から5度まで1度間隔に変化させて、測定され
た偏光状態と計算された偏光状態の残差二乗和をもとめ
ると、平均傾斜角が3度で極小となった。以上の手続き
をプログラム化しコンピュータ108において自動的に
実行する。以上の手続きにより、液晶セルの平均傾斜角
を0度としたとき試料Aのセルギャップは5.13μ
m、ツイスト角は89.8度、平均傾斜角は3度と決定
された。
In the case of sample A, the twist angle is expected to be about 90 degrees and the cell gap is assumed to be about 5 μm. Therefore, the calculation range was set to 80 to 100 degrees for the twist angle and the cell gap was set to 4 to 6 μm. At the cell gap and twist angle obtained in this way, the average tilt angle of the liquid crystal is changed at intervals of 1 degree from 0 to 5 degrees, and the residual square sum of the measured polarization state and the calculated polarization state is obtained. , The average inclination angle was 3 degrees and became a minimum. The above procedure is programmed and automatically executed in the computer 108. According to the above procedure, when the average tilt angle of the liquid crystal cell is set to 0 degree, the cell gap of the sample A is 5.13 μm.
m, the twist angle was determined to be 89.8 degrees, and the average inclination angle was determined to be 3 degrees.

【0016】[0016]

【発明が解決しようとする課題】上述した従来の透過光
強度の波長依存性を測定する従来例1や共焦点を測定す
る方法はいずれも、液晶と基板の屈折率に差があること
を利用してセルギャップを決定しているが、液晶表示素
子の構造を特徴づける因子であるツイスト角を決定する
ことはできない。また、偏光子と検光子に挟まれた液晶
セルを透過する光の強度から決定する従来例2は、セル
ギャップが既知でないとツイスト角を求めることができ
ない。
The above-mentioned prior art 1 for measuring the wavelength dependence of the transmitted light intensity and the method for measuring the confocal point both use the difference in the refractive index between the liquid crystal and the substrate. However, the twist angle, which is a factor characterizing the structure of the liquid crystal display element, cannot be determined. Further, in Conventional Example 2, which is determined from the intensity of light transmitted through the liquid crystal cell sandwiched between the polarizer and the analyzer, the twist angle cannot be obtained unless the cell gap is known.

【0017】一方、従来例2,3の、偏光子、試料、検
光子を通過する光の強度が極小となる2組の試料方位と
偏光子もしくは検光子の方位を測定する方法は、セルギ
ャップとツイスト角を決定することが可能である。しか
し、光の強度が極小となる2組の試料方位と偏光子もし
くは検光子の方位を与えるセルギャップとツイスト角の
組み合わせは複数存在するため、それらの組み合わせの
中から試料のセルギャップとツイスト角を決定するため
には、セルギャップもしくはツイスト角のどちらか一方
の値の範囲が既知であることが必要である。測定精度は
極小の透過光強度を与える液晶素子方位と偏光子、もし
くは検光子の方位の測定精度がセルギャップ、ツイスト
角の決定精度に影響を与えるために、測定精度の向上は
容易ではない。さらに、表示素子の透過光を観測するの
で、反射型LCDのように光が透過しないものに関して
は、測定が困難である。
On the other hand, in the conventional examples 2 and 3, the method of measuring the two sets of sample orientations and the orientation of the polarizer or analyzer in which the intensity of light passing through the polarizer, the sample, and the analyzer is minimized is the cell gap. And the twist angle can be determined. However, since there are a plurality of combinations of the sample orientation and the cell gap and the twist angle which give the orientation of the polarizer or the analyzer at which the light intensity is minimal, the cell gap and the twist angle of the sample are selected from these combinations. In order to determine the value, it is necessary that the value range of either the cell gap or the twist angle is known. The measurement accuracy is not easy to improve because the measurement accuracy of the azimuth of the liquid crystal element and the polarizer or the analyzer giving the minimum transmitted light intensity affects the accuracy of determining the cell gap and the twist angle. In addition, since the transmitted light of the display element is observed, it is difficult to measure a light-transmitting element such as a reflective LCD.

【0018】さらに、先願のセルギャップとツイスト角
と平均傾斜角の決定法として、試料の面内回転機構と、
複数の波長の光源及び試料に入射する光の偏光状態を制
御する偏光子、位相子、及び試料を透過した光の偏光状
態を測定するための位相子、検光子、及び光の波長を単
色化する分光器と光検出器を用いる方法においても同様
に、反射型LCDのような光が透過しない素子の測定は
困難である。
Further, as a method of determining the cell gap, twist angle and average inclination angle of the prior application, an in-plane rotation mechanism of the sample,
Polarizers and retarders that control the polarization state of light incident on a light source and a sample with multiple wavelengths, and a phaser, analyzer, and monochromatic light wavelength that measure the polarization state of light transmitted through the sample Similarly, in a method using a spectroscope and a photodetector, it is difficult to measure an element that does not transmit light, such as a reflective LCD.

【0019】本発明の目的は、これらの問題を解決し試
料のセルギャップとツイスト角の面内分布、もしくはセ
ルギャップ、ツイスト角、液晶の平均傾き角の面内分布
を高速かつ広範囲に決定することを可能にした液晶表示
素子評価方法およびその評価装置を提供することにあ
る。
An object of the present invention is to solve these problems and determine the in-plane distribution of the cell gap and the twist angle of the sample or the in-plane distribution of the cell gap, the twist angle and the average tilt angle of the liquid crystal at high speed and in a wide range. It is an object of the present invention to provide a method for evaluating a liquid crystal display element and an apparatus for evaluating the method, which enable the above.

【0020】[0020]

【課題を解決するための手段】本発明の液晶表示素子評
価方法の構成は、試料となる反射型液晶表示素子の表示
面に複数の波長及び偏光状態を有する光を一定の入射角
を保って入射し、前記液晶表示素子を面内回転させた際
に発生するこの液晶表示素子からの反射した光の強度の
液晶表示素子の方位依存性または波長依存性を測定する
ことにより、前記液晶表示素子内の液晶のツイスト角
(ねじれ角)と平均傾き角及び液晶層の厚さを決定する
ことを特徴とする。
The structure of the method for evaluating a liquid crystal display element according to the present invention is such that light having a plurality of wavelengths and polarization states is kept at a constant incident angle on a display surface of a reflective liquid crystal display element as a sample. The liquid crystal display element is measured by measuring the azimuth dependence or the wavelength dependence of the intensity of light reflected from the liquid crystal display element, which is generated when the liquid crystal display element is incident and rotated in the plane of the liquid crystal display element. It is characterized in that the twist angle (twist angle) and the average tilt angle of the liquid crystal inside and the thickness of the liquid crystal layer are determined.

【0021】また、本発明の他の液晶表示素子評価方法
の構成は、試料となる反射型液晶表示素子の表示面にビ
ームエキスパンダで広げられた複数の波長及び偏光状態
を有する平行光を一定の入射角を保って入射し、前記液
晶表示素子を面内回転させた際に発生する前記液晶表示
素子の反射した光の強度のその液晶表示素子の方位依存
性または波長依存性を2次元的に測定することにより、
前記液晶表示素子内の液晶のツイスト角(ねじれ角)と
平均傾き角、及び液晶層の厚さの面内分布を高速に決定
することを特徴とする。
Further, another configuration of the method for evaluating a liquid crystal display element according to the present invention is that a parallel light having a plurality of wavelengths and polarization states spread by a beam expander on a display surface of a reflection type liquid crystal display element to be a sample is fixed. , The intensity of the light reflected by the liquid crystal display element, which is generated when the liquid crystal display element is rotated in-plane, is two-dimensionally determined. By measuring to
The twist angle (twist angle) and the average tilt angle of the liquid crystal in the liquid crystal display element and the in-plane distribution of the thickness of the liquid crystal layer are determined at high speed.

【0022】本発明の液晶表示素子評価装置の構成は、
試料である液晶表示素子の表示面に複数の波長及び偏光
状態を有する光を一定の入射角を保って入射し、前記試
料を面内回転させた際に発生する液晶表示素子から反射
した光の強度の前記液晶表示素子の方位依存性または波
長依存性を測定することにより、前記液晶表示素子内の
液晶のツイスト角(ねじれ角)と平均傾き角、及び液晶
層の厚さを決定することを特徴とする。
The configuration of the liquid crystal display element evaluation apparatus of the present invention is as follows.
Light having a plurality of wavelengths and polarization states is incident on the display surface of a liquid crystal display element as a sample while maintaining a constant incident angle, and light reflected from the liquid crystal display element generated when the sample is rotated in a plane. By measuring the azimuth dependency or the wavelength dependency of the intensity of the liquid crystal display element, the twist angle (twist angle) and the average tilt angle of the liquid crystal in the liquid crystal display element and the thickness of the liquid crystal layer are determined. Features.

【0023】本発明の他の液晶表示素子評価装置の構成
は、試料である液晶表示素子の表示面にビームエキスパ
ンダで広げられた複数の波長及び偏光状態を有する平行
光を一定の入射角を保って入射し、前記試料を面内回転
させた際に発生する前記液晶表示素子を反射した光の強
度の液晶表示素子の方位依存性または波長依存性を2次
元的に測定することにより、前記液晶表示素子内の液晶
のツイスト角(ねじれ角)と平均傾き角、及び液晶層の
厚さの面内分布を高速に決定することを特徴とする。
Another configuration of the liquid crystal display element evaluation apparatus according to the present invention is such that a parallel light having a plurality of wavelengths and polarization states spread by a beam expander on a display surface of a liquid crystal display element, which is a sample, is irradiated at a predetermined incident angle. By keeping the incident and measuring the azimuth dependence or the wavelength dependence of the intensity of the light reflected from the liquid crystal display element generated when the sample is rotated in the plane and reflected by the liquid crystal display element two-dimensionally, It is characterized in that the twist angle (twist angle) and the average tilt angle of the liquid crystal in the liquid crystal display element and the in-plane distribution of the thickness of the liquid crystal layer are determined at high speed.

【0024】これら発明において、試料の反射型液晶表
示素子に入射する平行光の偏光状態がP偏光またはS偏
光のうちの1つであり、前記液晶表示素子からの反射光
がP偏光またはS偏光成分であることができ、また、液
晶表示素子からの反射光を検光子により抽出し、反射光
の強度の方位依存性または波長依存性の2次元的測定
を、2次元CCDカメラで撮影することにより行うこと
が出来、また、液晶表示素子内の液晶のツイスト角(ね
じれ角)と平均傾き角、及び液晶層の厚さの面内分布
を、面内方向に移動する試料ステージにより広範囲及び
高速に決定することが出来る。
In these inventions, the polarization state of the parallel light incident on the reflective liquid crystal display device of the sample is one of P-polarized light and S-polarized light, and the reflected light from the liquid crystal display device is P-polarized light or S-polarized light. The reflected light from the liquid crystal display element is extracted by an analyzer, and the two-dimensional measurement of the azimuth dependence or the wavelength dependence of the intensity of the reflected light is taken by a two-dimensional CCD camera. In addition, the twist angle (twist angle) and average tilt angle of the liquid crystal in the liquid crystal display element, and the in-plane distribution of the thickness of the liquid crystal layer can be controlled over a wide range and at high speed by the sample stage moving in the in-plane direction. Can be determined.

【0025】本発明のコンピュータプログラムを記録し
た記録媒体の構成は、試料となる液晶表示素子の表示面
に複数の波長及び偏光状態を有する光を一定の入射角を
保って入射し、前記試料を面内回転させた際に発生する
液晶表示素子を反射した光の強度の液晶表示素子の方位
依存性または波長依存性を測定することにより、前記液
晶表示素子内の液晶のツイスト角(ねじれ角)と平均傾
き角、及び液晶層の厚さを決定する液晶表示素子の評価
を行うことを特徴とする。
The structure of the recording medium on which the computer program of the present invention is recorded is such that light having a plurality of wavelengths and polarization states is incident on a display surface of a liquid crystal display element serving as a sample at a constant angle of incidence, and the sample is applied to the sample. By measuring the azimuth dependence or the wavelength dependence of the intensity of light reflected from the liquid crystal display element generated when the liquid crystal display element is rotated in a plane, the twist angle (twist angle) of the liquid crystal in the liquid crystal display element is measured. And evaluating the liquid crystal display element which determines the average tilt angle and the thickness of the liquid crystal layer.

【0026】本発明の構成によれば、液晶表示素子の表
示面に単色で一定の偏光状態を有する光を入射し、試料
方位に対する反射光強度の依存性を測定することによ
り、ツイスト角とセルギャップ、平均傾き角を高速かつ
広範囲に決定することを可能とし、さらに、試料を面内
に平行移動する機構を付加することにより、試料のセル
ギャップとツイスト角の面内分布、もしくはセルギャッ
プ、ツイスト角、液晶の平均傾き角の面内分布を高速か
つ広範囲に決定することが可能となる。
According to the structure of the present invention, monochromatic light having a certain polarization state is incident on the display surface of the liquid crystal display element, and the dependence of the reflected light intensity on the sample orientation is measured. Gap and average tilt angle can be determined at high speed and in a wide range, and by adding a mechanism to translate the sample in the plane, the in-plane distribution of the cell gap and twist angle of the sample, or the cell gap, The in-plane distribution of the twist angle and the average tilt angle of the liquid crystal can be determined at high speed over a wide range.

【0027】[0027]

【発明の実施の形態】次に、本発明の実施形態を図面を
用いて説明する。図1は本発明の一実施形態の構成を示
すブロック図である。図1において、1は白色光源、2
はビームエキスパンダ、3は偏光子、4は試料ステージ
で、光軸を中心に回転する試料ステージで、試料方位を
読み取るエンコーダ10及びモニタ11を備えている。
5は試料の液晶表示素子、6は検光子、7は結像レン
ズ、8は2次元CCDカメラ、9は2次元CCDカメラ
8で検出される反射光強度からの試料方位依存性を計算
し、試料のセルギャップ、ツイスト角、及び液晶の平均
傾き角を計算するためのコンピュータである。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. In FIG. 1, 1 is a white light source, 2
Is a beam expander, 3 is a polarizer, 4 is a sample stage, which is a sample stage that rotates around the optical axis, and includes an encoder 10 for reading a sample direction and a monitor 11.
5 is a liquid crystal display element of the sample, 6 is an analyzer, 7 is an imaging lens, 8 is a two-dimensional CCD camera, 9 is a sample azimuth dependency calculated from the reflected light intensity detected by the two-dimensional CCD camera 8, It is a computer for calculating a cell gap, a twist angle, and an average tilt angle of a liquid crystal of a sample.

【0028】この測定に際して、光の進行方向に垂直で
互いに直交する2つの方位を考え、光の電場ベクトルの
一方の方位の成分をS成分、それとは直交する方位の成
分をP成分とする。測定に際しては入射光をS成分と
し、試料に入射した後、反射したS成分の光を検出でき
るように、偏光子と検光子をおいた。検出光強度の測定
は検光子方位間隔30度ごとに6方位について測定し
た。
In this measurement, two directions perpendicular to each other and perpendicular to the traveling direction of the light are considered, and a component of one direction of the electric field vector of the light is defined as an S component, and a component of the direction orthogonal to the direction is defined as a P component. At the time of measurement, the incident light was used as the S component, and after entering the sample, a polarizer and an analyzer were provided so that the reflected S component light could be detected. The detection light intensity was measured in six directions at intervals of 30 degrees between analyzer directions.

【0029】測定に用いた試料A(5)は、次のように
して作成した。幅30mm、長さ40mm、厚さ1.
mmのカラーフィルタ及びTFT基板に日産化学製のポ
リイミドPI−Aをスピンコートにより塗布し、80度
に設定したオーブンで15分乾燥の後、250度に設定
したオーブンで60分加熱することにより焼成した。そ
の後、2枚の基板を室温中でレーヨンを植毛した直径3
cmのラビングローラーを用いて回転数800rpm、
押し込み長さ0.3mm、ローラ走査速度20mm/s
で3回ラビングした。それぞれの基板のラビング方向が
90度になるように5μmのスペーサを混ぜた2液性エ
ポキシ系接着剤で基板を張り合わせて液晶セルとした。
転移温度が62度で633nmの光に対して屈折率が
1.586、1.510の液晶を室温で毛管現象を利用
してセル内に注入した。
The sample A (5) used for the measurement was prepared as follows. Width 30mm, length 40mm, thickness 1.
A polyimide PI-A manufactured by Nissan Chemical Co., Ltd. is applied to a color filter and a TFT substrate by spin coating, dried in an oven set at 80 degrees for 15 minutes, and then baked by heating in an oven set at 250 degrees for 60 minutes. did. After that, the two substrates were implanted with rayon at room temperature and had a diameter of 3
cm using a rubbing roller of 800 cm,
Pushing length 0.3mm, roller scanning speed 20mm / s
Rubbed three times. The substrates were bonded to each other with a two-liquid epoxy-based adhesive mixed with a 5 μm spacer so that the rubbing direction of each substrate was 90 degrees, to form a liquid crystal cell.
Liquid crystals having a transition temperature of 62 degrees and a refractive index of 1.586 and 1.510 with respect to light of 633 nm were injected into the cell at room temperature by utilizing the capillary phenomenon.

【0030】この注入部をエポキシ系接着剤で封止後、
セルごと90度に設定したオーブンにいれて2時間加熱
する液晶配向を均一化する処理(アイソトロピック処
理)を行った。このような手順で作製した試料Aの反射
光強度の試料方位依存性の測定結果を、図2に示す。
After sealing the injection portion with an epoxy adhesive,
Each cell was placed in an oven set at 90 degrees and heated for 2 hours to perform a treatment (isotropic treatment) for homogenizing the liquid crystal alignment. FIG. 2 shows the measurement results of the sample azimuth dependence of the reflected light intensity of the sample A manufactured in such a procedure.

【0031】この測定結果から試料Aのセルギャップと
ツイスト角は以下のようにして決定した。波長λの光を
屈折率Ne、の液晶を注入したセルギャップd、ツイス
ト角Φ、平均傾斜角θ、光のS成分に対する方位角0度
の液晶素子に透過した際の液晶表示素子の光学的特性を
示す2行2列のJones行列の成分J11、J12、
J21,J22は、 J11=sin(Φ) sin(Φ+cos(Φ)cos( ΦV)/V+iU
cos(Φ)sin( ΦV)/V J12=cos(Φ) sin(ΦV)―sin(Φ)cos( ΦV)/V―i
Usin()sin( ΦV)/V J21=―cos(Φ) sin(ΦV)+sin(Φ)cos( ΦV)/V+
iUsin(Φ)sin( Φ)/V J22=sin(Φ) sin(ΦV)+cos(Φ)cos( ΦV)/V―i
Ucos(Φ)sin( ΦV)/V となる。だだし、iは虚数単位、U、Vはそれぞれ U=πd(Ne{1+(Ne2 /No2 ―1)sin2θ}-1/2
―No)/λΦ V=(1+U21/2 とかける。
From the measurement results, the cell gap and twist angle of Sample A were determined as follows. The optical characteristics of the liquid crystal display element when the light having the wavelength λ is transmitted through a liquid crystal element having a cell gap d, a twist angle Φ, an average inclination angle θ, and an azimuth angle of 0 degrees with respect to the S component of light when a liquid crystal having a refractive index Ne is injected. The components J11, J12 of the 2-by-2 Jones matrix showing the characteristics,
J21 and J22 are calculated as follows: J11 = sin (Φ) sin (Φ + cos (Φ) cos (ΦV) / V + iU
cos (Φ) sin (ΦV) / V J12 = cos (Φ) sin (ΦV) -sin (Φ) cos (ΦV) / V-i
Usin () sin (ΦV) / V J21 = -cos (Φ) sin (ΦV) + sin (Φ) cos (ΦV) / V +
iUsin (Φ) sin (Φ) / V J22 = sin (Φ) sin (ΦV) + cos (Φ) cos (ΦV) / Vi
Ucos (Φ) sin (ΦV) / V Where i is an imaginary unit, and U and V are respectively U = πd (Ne {1+ (Ne 2 / No 2 -1) sin 2 θ} -1/2
−No) / λΦ V = (1 + U 2 ) 1/2

【0032】液晶素子の方位が光のS成分方向に対して
角度Aをもつとき、液晶素子のJone行列の各要素J
(A)は、 J11(A)=J11cos2(A)―(J12+J21)sin(A)
cos(A)+J22sin2(A) J12 (A)=J12cos2 (A)+(J11―J22)sin
(A)cos(A)―J21sin2 (A) J21 (A)=J21cos2 (A)+(J11―J22)sin
(A)cos(A)―J12sin2 (A) J22 (A)=J22cos2 (A) +(J12+J21)sin
(A)cos(A)+J11sin2 (A) となる。反射型表示素子の場合、光の伝播行列Ψは、入
射前をΨ、反射後をΨAfを反射板の行列をRとする
と、 ΨAf=J・R・J−1・Ψ で表される。光の伝播行列Ψは、(P偏光成分、S偏光
成分)で表され、行列要素の二乗が反射光強度となる。
この反射光強度は、ΨAfのP偏光成分から算出すれば
よい。
When the azimuth of the liquid crystal element has an angle A with respect to the S component direction of light, each element J of the Jone matrix of the liquid crystal element
(A) is J11 (A) = J11cos 2 (A)-(J12 + J21) sin (A)
cos (A) + J22 sin 2 (A) J12 (A) = J12 cos 2 (A) + (J11-J22) sin
(A) cos (A) -J21 sin 2 (A) J21 (A) = J21 cos 2 (A) + (J11-J22) sin
(A) cos (A)-J12 sin 2 (A) J22 (A) = J22 cos 2 (A) + (J12 + J21) sin
(A) cos (A) + J11sin 2 (A) In the case of a reflective display element, the light propagation matrix Ψ is expressed as ΨAf = J ・ R ・ J−1ΨΨ where Ψ is before incidence, ΨAf is after reflection and R is the matrix of the reflector. The light propagation matrix Ψ is represented by (P polarization component, S polarization component), and the square of the matrix element is the reflected light intensity.
This reflected light intensity may be calculated from the P-polarized light component of ΨAf.

【0033】このようにして計算された強度と測定され
た強度との差の二乗和が最小となるように適合させて、
ツイスト角Φ、セルギャップd、平均傾き角θの値を求
める。図3の場合には、ある面積(領域)を決めてその
範囲内で、全ての波長に関して反射光強度の合計を測定
し、こうして得られた試料方位の光強度と計算から得ら
れた光強度とを合わせている。ここでは、ツイスト角Φ
が70度、セルギャップdが3μm、平均傾き角θが3
度となっている。
Adaptation is made to minimize the sum of squares of the difference between the intensity calculated in this way and the measured intensity,
The values of the twist angle Φ, the cell gap d, and the average inclination angle θ are obtained. In the case of FIG. 3, a certain area (region) is determined, and within that range, the sum of the reflected light intensities for all wavelengths is measured, and the light intensity in the sample orientation obtained in this way and the light intensity obtained from the calculation are calculated. And Here, the twist angle Φ
Is 70 degrees, the cell gap d is 3 μm, and the average inclination angle θ is 3
Degree.

【0034】[実施形態2]図3は本発明の他の実施形
態として装置のブロック図である。図3においては図1
の構成に対して、グレーティング12が付加されている
点が相違する。すなわち、、検光子6、結像レンズ7か
らの反射光はグレーティング12により各波長に分散さ
れ、2次元CCDカメラ8に入力される。この構成で
も、コンピュータ9aが、2次元CCDカメラ8で検出
される反射光強度からの試料方位依存性を計算し、試料
5のセルギャップ、ツイスト角、及び液晶の平均傾き角
を計算するためのコンピュータである。
[Embodiment 2] FIG. 3 is a block diagram of an apparatus as another embodiment of the present invention. In FIG. 3, FIG.
The difference is that a grating 12 is added to the above configuration. That is, the reflected light from the analyzer 6 and the imaging lens 7 is dispersed into each wavelength by the grating 12 and input to the two-dimensional CCD camera 8. Also in this configuration, the computer 9a calculates the sample orientation dependency from the reflected light intensity detected by the two-dimensional CCD camera 8, and calculates the cell gap, the twist angle, and the average tilt angle of the liquid crystal of the sample 5. It is a computer.

【0035】この場合、測定に際して、光の進行方向に
垂直で互いに直交する2つの方位を考え、光の電場ベク
トルの一方の方位の成分をS成分、それとは直交する方
位の成分をP成分とする。測定に際しては入射光をS成
分とし、試料に入射した後、反射したS成分の光を検出
できるように、偏光子と検光子をおいた。検出光強度の
測定は検光子方位間隔10度ごとに18方位について測
定した。
In this case, at the time of measurement, two directions perpendicular to each other and perpendicular to the traveling direction of light are considered, and a component of one direction of the electric field vector of the light is defined as an S component, and a component of the direction orthogonal to the direction is defined as a P component. I do. At the time of measurement, the incident light was used as the S component, and after entering the sample, a polarizer and an analyzer were provided so that the reflected S component light could be detected. The detection light intensity was measured for 18 directions at intervals of 10 degrees between analyzer directions.

【0036】測定に用いた試料Bは以下のようにして作
成した。幅30mm、長さ40mm、厚さ1.1mmの
カラーフィルタ及びTFT基板に日産化学製のポリイミ
ドPI−Cをスピンコートにより塗布し、80度に設定
したオーブンで15分乾燥の後、250度に設定したオ
ーブンで60分加熱することにより焼成した。その後、
2枚の基板を室温中でレーヨンを植毛した直径3cmの
ラビングローラを用いて回転数600rpm、押し込み
長さ0.3mm 、ローラ走査速度20mm/sで3回ラ
ビングした。それぞれの基板のラビング方向が80度に
なるように5μmのスペーサを混ぜた2液性エポキシ系
接着剤で基板を張り合わせて液晶セルとした。
The sample B used for the measurement was prepared as follows. A polyimide PI-C manufactured by Nissan Chemical Co., Ltd. is applied to a color filter having a width of 30 mm, a length of 40 mm, and a thickness of 1.1 mm and a TFT substrate by spin coating, dried in an oven set at 80 degrees for 15 minutes, and then heated to 250 degrees. It was baked by heating in a set oven for 60 minutes. afterwards,
The two substrates were rubbed three times at room temperature using a rubbing roller having a diameter of 3 cm and a rayon implanted at a rotation speed of 600 rpm, a pushing length of 0.3 mm, and a roller scanning speed of 20 mm / s. The substrates were bonded to each other with a two-liquid epoxy-based adhesive mixed with a 5 μm spacer so that the rubbing direction of each substrate was 80 °, thereby forming a liquid crystal cell.

【0037】転移温度が62度で633nmの光に対し
て屈折率が1.586、1.510の液晶を室温で毛管
現象を利用してセル内に注入した。この注入部をエポキ
シ系接着剤で封止後、セルごと90度に設定したオーブ
ンにいれて2時間加熱する液晶配向を均一化する処理
(アイソトロピック処理)を行った。このような手順で
作製した試料Bの波長633 nmにおける反射光強度の試
料方位依存性の測定結果を図4に示す。この測定結果か
ら、ツイスト角Φ、セルギャップd、平均傾き角θの値
を実施形態1と同様に求める。
Liquid crystals having a transition temperature of 62 degrees and a refractive index of 1.586 and 1.510 for light of 633 nm were injected into the cell at room temperature by utilizing the capillary phenomenon. After the injection portion was sealed with an epoxy-based adhesive, the cells were placed in an oven set at 90 degrees and heated for 2 hours to perform a process for isolating the liquid crystal orientation (isotropic process). FIG. 4 shows the measurement results of the sample azimuth dependence of the reflected light intensity at a wavelength of 633 nm of the sample B manufactured in such a procedure. From this measurement result, values of the twist angle Φ, the cell gap d, and the average inclination angle θ are obtained in the same manner as in the first embodiment.

【0038】[実施形態3]本発明の第3の実施形態と
して装置の構成は、図2と同様である。この場合もコン
ピュータ9はCCDカメラ8で検出される反射光強度か
らの試料方位依存性を計算し、試料のセルギャップ、ツ
イスト角、及び液晶の平均傾き角を計算するためのコン
ピュータである。測定に際して、光の進行方向に垂直で
互いに直交する2つの方位を考え、光の電場ベクトルの
一方の方位の成分をS成分、それとは直交する方位の成
分をP成分とする。測定に際しては入射光をP成分とS
成分が1:1になるように、また、試料に入射した後、
反射したP成分とS成分が1:1の光を検出できるよう
に、偏光子と検光子をおいた。検出光強度の測定は検光
子方位間隔10度ごとに18方位について測定した。
[Third Embodiment] As a third embodiment of the present invention, the configuration of the apparatus is the same as that of FIG. Also in this case, the computer 9 is a computer for calculating the sample orientation dependency from the intensity of the reflected light detected by the CCD camera 8, and calculating the cell gap, twist angle, and average tilt angle of the liquid crystal of the sample. At the time of measurement, two directions perpendicular to each other and perpendicular to the traveling direction of light are considered, and a component of one direction of the electric field vector of the light is defined as an S component, and a component of the direction orthogonal to the direction is defined as a P component. At the time of measurement, the incident light is P component and S component.
In order for the components to be 1: 1 and after entering the sample,
A polarizer and an analyzer were provided so that the reflected P component and S component could detect 1: 1 light. The detection light intensity was measured for 18 directions at intervals of 10 degrees between analyzer directions.

【0039】測定に用いた試料Cは以下のようにして作
成した。幅30mm、長さ40mm、厚さ1.1mmの
カラーフィルタ及びTFT基板に日産化学製のポリイミ
ドPI−Aをスピンコートにより塗布し、80度に設定
したオーブンで15分乾燥の後、250度に設定したオ
ーブンで60分加熱することにより焼成した。その後、
2枚の基板を室温中でレーヨンを植毛した直径3cmの
ラビングローラーを用いて回転数900rpm、押し込
み長さ0.3mm 、ローラー走査速度20mm/sで
3回ラビングした。それぞれの基板のラビング方向が7
0度になるように5μmのスペーサを混ぜた2液性エポ
キシ系接着剤で基板を張り合わせて液晶セルとした。
The sample C used for the measurement was prepared as follows. A polyimide PI-A manufactured by Nissan Chemical Co., Ltd. is applied to a color filter and a TFT substrate having a width of 30 mm, a length of 40 mm, and a thickness of 1.1 mm by spin coating, dried in an oven set at 80 degrees for 15 minutes, and then heated to 250 degrees. It was baked by heating in a set oven for 60 minutes. afterwards,
The two substrates were rubbed three times at room temperature using a rubbing roller of 3 cm in diameter with rayon implanted at a rotation speed of 900 rpm, a pushing length of 0.3 mm, and a roller scanning speed of 20 mm / s. Rubbing direction of each substrate is 7
The substrates were bonded to each other with a two-part epoxy adhesive mixed with a 5 μm spacer so as to be at 0 ° to form a liquid crystal cell.

【0040】転移温度が62度で633nmの光に対し
て屈折率が1.586、1.510の液晶を室温で毛管
現象を利用してセル内に注入した。注入部をエポキシ系
接着剤で封止後、セルごと90度に設定したオーブンに
いれて2時間加熱する液晶配向を均一化する処理(アイ
ソトロピック処理)を行った。このような手順で作製し
た試料Cの波長450nm(青)、波長533nm
(緑)、波長614nm(赤)における反射光強度の試
料方位依存性の測定結果を図5に示す。この測定結果か
ら、ツイスト角Φ、セルギャップd、平均傾き角θの値
を、実施形態1と同様に求める。
A liquid crystal having a transition temperature of 62 degrees and a refractive index of 1.586 and 1.510 with respect to light of 633 nm was injected into the cell at room temperature by utilizing the capillary phenomenon. After the injection portion was sealed with an epoxy-based adhesive, each cell was placed in an oven set at 90 degrees and heated for 2 hours to perform a process for homogenizing the liquid crystal orientation (isotropic process). A wavelength of 450 nm (blue) and a wavelength of 533 nm of the sample C manufactured by such a procedure.
FIG. 5 shows the measurement results of the sample orientation dependence of the reflected light intensity at (green) and 614 nm (red) wavelengths. From this measurement result, values of the twist angle Φ, the cell gap d, and the average inclination angle θ are obtained in the same manner as in the first embodiment.

【0041】[実施形態4]本発明の第4の実施形態の
構成も図2と同様てあるが、ここでは、試料ステージ4
aとして、図5の斜視図に示される、回転機構と平行移
動機構を備えた試料ステージが用いられている。図5に
おいて、21は回転ステージ、22は試料5の高さ調節
するための平行移動機構、23が試料5が直接保持され
る試料保持台、24、25は互いに移動方向が直交した
平行移動ステージ、26は試料保持台22の傾き角を調
整する機構であり、試料方位を読み取るエンコーダ10
及びモニタ11を備えている。
[Embodiment 4] The structure of a fourth embodiment of the present invention is the same as that of FIG.
As a, a sample stage provided with a rotation mechanism and a parallel movement mechanism shown in the perspective view of FIG. 5 is used. In FIG. 5, 21 is a rotary stage, 22 is a parallel moving mechanism for adjusting the height of the sample 5, 23 is a sample holding table on which the sample 5 is directly held, and 24 and 25 are parallel moving stages whose moving directions are orthogonal to each other. , 26 are mechanisms for adjusting the tilt angle of the sample holder 22, and the encoder 10 for reading the sample direction.
And a monitor 11.

【0042】この場合も回転機構と平行移動機構とをも
つ試料ステージ4aがあるため、試料5の移動が容易で
あり、コンピュータ9は2次元CCDカメラ8から検出
される反射光強度からの試料方位依存性を計算し、試料
のセルギャップ、ツイスト角、及び液晶の平均傾き角を
容易に計算することが出来る。
Also in this case, since there is a sample stage 4a having a rotation mechanism and a parallel movement mechanism, the movement of the sample 5 is easy, and the computer 9 determines the sample azimuth from the reflected light intensity detected from the two-dimensional CCD camera 8. By calculating the dependence, the cell gap, twist angle, and average tilt angle of the liquid crystal of the sample can be easily calculated.

【0043】この測定に際して、光の進行方向に垂直で
互いに直交する2つの方位を考え、光の電場ベクトルの
一方の方位の成分をS成分、それとは直交する方位の成
分をP成分とする。測定に際しては入射光をS成分と
し、試料に入射した後、反射したS成分の光を検出でき
るように、偏光子3と検光子6とを置いた。検出光強度
の測定は検光子方位間隔10度ごとに18方位について
測定した。この手順についてのフローチャートを図7に
示した。
In this measurement, two directions perpendicular to each other and perpendicular to the traveling direction of light are considered, and a component of one direction of the electric field vector of the light is defined as an S component, and a component of the direction orthogonal to the direction is defined as a P component. At the time of the measurement, the polarizer 3 and the analyzer 6 were placed so that the incident light was the S component, and after being incident on the sample, the reflected S component light could be detected. The detection light intensity was measured for 18 directions at intervals of 10 degrees between analyzer directions. A flowchart for this procedure is shown in FIG.

【0044】この測定は、まずステップS1で、測定条
件を入力し、ある測定位置で(ステップS2)、偏光子
3と検光子6とに平行光を入出力し(ステップS3)、
回転方位を固定し(ステップS4)、その光強度の測定
を開始する(ステップS5)。ここで試料5の方位を回
転させて各方位の強度を測定し、各方位の測定が終了す
ると(ステップS6)、その位置のセルギャップ、ツイ
スト角、及び液晶の平均傾き角のパラメータをコンピュ
ータ9aで計算し(ステップS7)、次の試料5の位置
に移動させ、ステップS2からステップS6を繰り返
し、全ての位置の測定を終わると(ステップS8)、測
定終了となる。
In this measurement, first, in step S1, measurement conditions are input, and at a certain measurement position (step S2), parallel light is input / output to / from the polarizer 3 and the analyzer 6 (step S3).
The rotation direction is fixed (step S4), and measurement of the light intensity is started (step S5). Here, the direction of the sample 5 is rotated to measure the intensity in each direction. When the measurement in each direction is completed (step S6), the parameters of the cell gap, twist angle, and average tilt angle of the liquid crystal at that position are calculated by the computer 9a. (Step S7), the sample 5 is moved to the next position, and Steps S2 to S6 are repeated. When the measurement at all positions is completed (Step S8), the measurement ends.

【0045】測定に用いた試料Dは、次のようにして作
成した。幅30mm、長さ40mm、厚さ1.1mmの
カラーフィルタ及びTFT基板に日産化学製のポリイミ
ドPI−Aをスピンコートにより塗布し、75度に設定
したオーブンで15分乾燥の後、250度に設定したオ
ーブンで60分加熱することにより焼成した。その後、
2枚の基板を室温中でレーヨンを植毛した直径3cmの
ラビングローラーを用いて回転数800rpm、押し込
み長さ0.3mm 、ローラ走査速度20mm/sで3回ラビングし
た。それぞれの基板のラビング方向が70度になるよう
に3μmのスペーサを混ぜた2液性エポキシ系接着剤で
基板を張り合わせて液晶セルとした。この際、セル下辺
側の加圧を上辺側と比較して、1.5倍の圧力でおこな
った。
The sample D used for the measurement was prepared as follows. A polyimide PI-A manufactured by Nissan Chemical Co., Ltd. is applied to a color filter and a TFT substrate having a width of 30 mm, a length of 40 mm, and a thickness of 1.1 mm by spin coating, dried in an oven set at 75 degrees for 15 minutes, and then heated to 250 degrees. It was baked by heating in a set oven for 60 minutes. afterwards,
The two substrates were rubbed three times at room temperature using a rubbing roller having a diameter of 3 cm in which rayon was implanted at a rotation speed of 800 rpm, a pushing length of 0.3 mm, and a roller scanning speed of 20 mm / s. The substrates were bonded to each other with a two-liquid epoxy adhesive mixed with a 3 μm spacer so that the rubbing direction of each substrate was 70 ° to form a liquid crystal cell. At this time, the pressure on the lower side of the cell was 1.5 times higher than that on the upper side.

【0046】転移温度が62度で633nmの光に対し
て屈折率が1.586、1.510の液晶を室温で毛管
現象を利用してセル内に注入した。注入部をエポキシ系
接着剤で封止後、セルごと90度に設定したオーブンに
いれて2時間加熱する液晶配向を均一化する処理(アイ
ソトロピック処理)を行った。このような手順で作製し
た試料Dの波長633 nmにおける反射光強度の試料方位
依存性の測定結果から、ツイスト角Φ、セルギャップ
d、平均傾き角θの値を実施形態1と同様に求め、その
面内分布を、それぞれ図8(a)〜(c)に示されるよ
うに求めている。
A liquid crystal having a transition temperature of 62 degrees and a refractive index of 1.586 and 1.510 for light of 633 nm was injected into the cell at room temperature by utilizing the capillary phenomenon. After the injection portion was sealed with an epoxy-based adhesive, each cell was placed in an oven set at 90 degrees and heated for 2 hours to perform a process for homogenizing the liquid crystal orientation (isotropic process). From the measurement results of the sample azimuth dependence of the reflected light intensity at a wavelength of 633 nm of the sample D manufactured in such a procedure, the values of the twist angle Φ, the cell gap d, and the average inclination angle θ were obtained in the same manner as in the first embodiment. The in-plane distribution is obtained as shown in FIGS. 8 (a) to 8 (c).

【0047】[0047]

【発明の効果】以上説明したように、本発明は、液晶表
示素子の表示面に単色で一定の偏光状態を有する光を入
射し、試料方位に対する反射光強度の依存性を測定する
ことにより、ツイスト角とセルギャップ、平均傾き角を
高速かつ広範囲に決定できる効果がある。
As described above, according to the present invention, monochromatic light having a certain polarization state is incident on the display surface of a liquid crystal display element, and the dependence of the reflected light intensity on the sample orientation is measured. The twist angle, the cell gap, and the average inclination angle can be determined at high speed and in a wide range.

【0048】さらに、試料を面内に平行移動する機構を
付加することにより、試料のセルギャップとツイスト角
の面内分布、もしくはセルギャップ、ツイスト角、液晶
の平均傾き角の面内分布を高速かつ広範囲に決定できる
効果がある。
Further, by adding a mechanism for moving the sample in parallel within the plane, the in-plane distribution of the cell gap and the twist angle of the specimen or the in-plane distribution of the cell gap, the twist angle, and the average tilt angle of the liquid crystal can be increased at a high speed. In addition, there is an effect that can be determined in a wide range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】図1の試料Aの透過光強度の試料方位依存性を
面内方位30°おきに示す特性図。
FIG. 2 is a characteristic diagram showing a sample azimuth dependency of a transmitted light intensity of a sample A of FIG. 1 at every 30 ° in-plane azimuth.

【図3】本発明の第2の実施形態の構成を示すブロック
図。
FIG. 3 is a block diagram showing a configuration of a second embodiment of the present invention.

【図4】図2の試料Bの反射光強度の試料方位依存性の
計算値(実線)及びその測定結果を示す特性図。
FIG. 4 is a characteristic diagram showing a calculated value (solid line) of the sample azimuth dependence of the reflected light intensity of the sample B in FIG. 2 and a measurement result thereof.

【図5】図2で試料Cの各波長(450nm、533nm、
614nm)に対する反射光強度の試料方位依存性の計算
値(実線)及びその測定結果を示す特性図。
FIG. 5 shows each wavelength (450 nm, 533 nm,
614 nm), and a characteristic diagram showing a calculated value (solid line) of the dependence of the reflected light intensity on the sample orientation (solid line) and a measurement result thereof.

【図6】図2の試料ステージ4の構成を示す斜視図。FIG. 6 is a perspective view showing a configuration of a sample stage 4 of FIG. 2;

【図7】図2において、セルギャップ、ツイスト角、平
均傾斜角をもとめるプログラムのフロー図。
FIG. 7 is a flowchart of a program for obtaining a cell gap, a twist angle, and an average inclination angle in FIG. 2;

【図8】(a)〜(c)は図2の試料Dのセルギャッ
プ、ツイスト角および平均傾斜角の分布の測定例を示す
パターン図。
FIGS. 8A to 8C are pattern diagrams showing measurement examples of distributions of a cell gap, a twist angle, and an average inclination angle of the sample D of FIG. 2;

【図9】先願の測定装置の構成を示すブロック図。FIG. 9 is a block diagram showing a configuration of a measuring device of the prior application.

【図10】図9による試料の透過光の偏光状態の方位依
存性を示す特性図。
10 is a characteristic diagram showing the azimuth dependence of the polarization state of the transmitted light of the sample according to FIG.

【符号の説明】[Explanation of symbols]

1 白色光源 2 ビームエキスパンダ 3 偏光子 4 試料ステージ 5 液晶表示素子 5a 試料 6 検光子 7 結像レンズ 8 2次元CCDカメラ 9 コンピュータ 10 エンコーダ 11 モニタ 12 グレーティング 22 平行移動機構 23 試料保持台 21 回転ステージ 24、25 平行移動ステージ 26 傾き角調整機構 DESCRIPTION OF SYMBOLS 1 White light source 2 Beam expander 3 Polarizer 4 Sample stage 5 Liquid crystal display element 5a Sample 6 Analyzer 7 Imaging lens 8 Two-dimensional CCD camera 9 Computer 10 Encoder 11 Monitor 12 Grating 22 Parallel movement mechanism 23 Sample holder 21 Rotation stage 24, 25 translation stage 26 tilt angle adjustment mechanism

フロントページの続き Fターム(参考) 2F065 AA22 AA30 AA31 CC25 DD06 GG01 HH15 JJ03 JJ26 LL09 LL21 LL33 LL34 MM04 QQ17 QQ26 QQ29 2H088 FA12 FA30 HA03 JA05 KA02 KA07 KA11 KA29 MA16 Continued on front page F term (reference) 2F065 AA22 AA30 AA31 CC25 DD06 GG01 HH15 JJ03 JJ26 LL09 LL21 LL33 LL34 MM04 QQ17 QQ26 QQ29 2H088 FA12 FA30 HA03 JA05 KA02 KA07 KA11 KA29 MA16

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 試料となる反射型液晶表示素子の表示面
に複数の波長及び偏光状態を有する光を一定の入射角を
保って入射し、前記液晶表示素子を面内回転させた際に
発生するこの液晶表示素子からの反射した光の強度の液
晶表示素子の方位依存性または波長依存性を測定するこ
とにより、前記液晶表示素子内の液晶のツイスト角(ね
じれ角)と平均傾き角及び液晶層の厚さを決定すること
を特徴とする液晶表示素子評価方法。
1. A liquid crystal display device having a plurality of wavelengths and polarization states incident on a display surface of a reflective liquid crystal display device as a sample while maintaining a predetermined incident angle, and rotating the liquid crystal display device in a plane. By measuring the azimuth dependence or the wavelength dependence of the intensity of the light reflected from the liquid crystal display device, the twist angle (twist angle), the average tilt angle, and the liquid crystal of the liquid crystal in the liquid crystal display device are measured. A method for evaluating a liquid crystal display element, comprising determining a thickness of a layer.
【請求項2】 試料となる反射型液晶表示素子の表示面
にビームエキスパンダで広げられた複数の波長及び偏光
状態を有する平行光を一定の入射角を保って入射し、前
記液晶表示素子を面内回転させた際に発生する前記液晶
表示素子の反射した光の強度のその液晶表示素子の方位
依存性または波長依存性を2次元的に測定することによ
り、前記液晶表示素子内の液晶のツイスト角(ねじれ
角)と平均傾き角、及び液晶層の厚さの面内分布を高速
に決定することを特徴とする液晶表示素子評価方法。
2. A parallel light having a plurality of wavelengths and a polarization state spread by a beam expander is incident on a display surface of a reflection type liquid crystal display element as a sample at a constant incident angle, and the liquid crystal display element is irradiated with the light. By measuring two-dimensionally the azimuth dependence or the wavelength dependence of the intensity of the light reflected by the liquid crystal display element generated when the liquid crystal display element is rotated in the plane, the liquid crystal in the liquid crystal display element is measured. A liquid crystal display element evaluation method, wherein a twist angle (twist angle), an average inclination angle, and an in-plane distribution of a thickness of a liquid crystal layer are determined at high speed.
【請求項3】 試料の反射型液晶表示素子に入射する平
行光の偏光状態がP偏光またはS偏光のうちの1つであ
り、前記液晶表示素子からの反射光がP偏光またはS偏
光成分である請求項1または2記載の液晶表示素子評価
方法。
3. The polarization state of parallel light incident on the reflective liquid crystal display device of the sample is one of P-polarized light and S-polarized light, and the reflected light from the liquid crystal display device is a P-polarized light or an S-polarized light component. 3. The method for evaluating a liquid crystal display device according to claim 1 or 2.
【請求項4】 液晶表示素子からの反射光を検光子によ
り抽出し、反射光の強度の方位依存性または波長依存性
の2次元的測定を、2次元CCDカメラで撮影すること
により行う請求項3記載の液晶表示素子評価方法。
4. The method according to claim 1, wherein the reflected light from the liquid crystal display element is extracted by an analyzer, and the two-dimensional measurement of the azimuth dependence or the wavelength dependence of the intensity of the reflected light is performed by photographing with a two-dimensional CCD camera. 3. The method for evaluating a liquid crystal display element according to 3.
【請求項5】 液晶表示素子内の液晶のツイスト角(ね
じれ角)と平均傾き角、及び液晶層の厚さの面内分布
を、面内方向に移動する試料ステージにより広範囲及び
高速に決定することを特徴とする請求項2,3および4
記載の液晶表示素子評価方法。
5. The twist angle (twist angle) and average tilt angle of liquid crystal in a liquid crystal display element, and the in-plane distribution of the thickness of a liquid crystal layer are determined in a wide range and at high speed by a sample stage moving in the in-plane direction. 5. The method according to claim 2, wherein
The liquid crystal display element evaluation method described in the above.
【請求項6】 試料である液晶表示素子の表示面に複数
の波長及び偏光状態を有する光を一定の入射角を保って
入射し、前記試料を面内回転させた際に発生する液晶表
示素子から反射した光の強度の前記液晶表示素子の方位
依存性または波長依存性を測定することにより、前記液
晶表示素子内の液晶のツイスト角(ねじれ角)と平均傾
き角、及び液晶層の厚さを決定することを特徴とする液
晶表示素子評価装置。
6. A liquid crystal display device which is generated when light having a plurality of wavelengths and polarization states is incident on a display surface of a liquid crystal display device as a sample while maintaining a predetermined incident angle, and the sample is rotated in a plane. By measuring the azimuth dependence or the wavelength dependence of the intensity of light reflected from the liquid crystal display element, the twist angle (twist angle) and average tilt angle of the liquid crystal in the liquid crystal display element, and the thickness of the liquid crystal layer A liquid crystal display element evaluation device characterized by determining:
【請求項7】 試料である液晶表示素子の表示面にビー
ムエキスパンダで広げられた複数の波長及び偏光状態を
有する平行光を一定の入射角を保って入射し、前記試料
を面内回転させた際に発生する前記液晶表示素子を反射
した光の強度の液晶表示素子の方位依存性または波長依
存性を2次元的に測定することにより、前記液晶表示素
子内の液晶のツイスト角(ねじれ角)と平均傾き角、及
び液晶層の厚さの面内分布を高速に決定することを特徴
とする液晶表示素子評価装置。
7. A parallel light having a plurality of wavelengths and a polarization state spread by a beam expander at a constant angle of incidence is incident on a display surface of a liquid crystal display element as a sample, and the sample is rotated in a plane. The two-dimensional measurement of the azimuth dependence or the wavelength dependence of the intensity of the light generated by the liquid crystal display element and reflected by the liquid crystal display element is performed to determine the twist angle (twist angle) of the liquid crystal in the liquid crystal display element. ), The average tilt angle and the in-plane distribution of the thickness of the liquid crystal layer are determined at high speed.
【請求項8】 試料の反射型液晶表示素子に入射する平
行光の偏光状態がP偏光またはS偏光のうちの1つであ
り、前記液晶表示素子からの反射光がP偏光またはS偏
光成分である請求項6または7記載の液晶表示素子評価
装置。
8. The polarization state of parallel light incident on a reflective liquid crystal display device of a sample is one of P-polarized light and S-polarized light, and the reflected light from the liquid crystal display device is a P-polarized light or S-polarized light component. The liquid crystal display element evaluation device according to claim 6 or 7.
【請求項9】 検光子により液晶表示素子からの反射光
が抽出され、2次元CCDカメラの撮影により、反射光
の強度の方位依存性または波長依存性の2次元的測定が
行われる請求項8記載の液晶表示素子評価装置。
9. The reflected light from the liquid crystal display element is extracted by the analyzer, and the two-dimensional measurement of the azimuth dependence or the wavelength dependence of the intensity of the reflected light is performed by photographing with a two-dimensional CCD camera. The liquid crystal display element evaluation device according to the above.
【請求項10】 液晶表示素子内の液晶のツイスト角
(ねじれ角)と平均傾き角、及び液晶層の厚さの面内分
布を測定し、その測定面内を縦横高さ方向に移動する試
料ステージを有する請求項7,8または9記載の液晶表
示素子評価装置。
10. A sample which measures a twist angle (twist angle) and an average tilt angle of liquid crystal in a liquid crystal display element and an in-plane distribution of a thickness of a liquid crystal layer, and moves in a vertical and horizontal height direction in the measurement plane. 10. The liquid crystal display element evaluation device according to claim 7, further comprising a stage.
【請求項11】 試料となる液晶表示素子の表示面に複
数の波長及び偏光状態を有する光を一定の入射角を保っ
て入射し、前記試料を面内回転させた際に発生する液晶
表示素子を反射した光の強度の液晶表示素子の方位依存
性または波長依存性を測定することにより、前記液晶表
示素子内の液晶のツイスト角(ねじれ角)と平均傾き
角、及び液晶層の厚さを決定する液晶表示素子の評価を
行うコンピュータプログラムを記録した記録媒体。
11. A liquid crystal display element generated when light having a plurality of wavelengths and polarization states is incident on a display surface of a liquid crystal display element serving as a sample while maintaining a constant incident angle, and the sample is rotated in a plane. By measuring the azimuth dependence or the wavelength dependence of the intensity of the light reflected from the liquid crystal display element, the twist angle (twist angle) and the average tilt angle of the liquid crystal in the liquid crystal display element, and the thickness of the liquid crystal layer are determined. A recording medium on which a computer program for evaluating a liquid crystal display element to be determined is recorded.
【請求項12】 請求項2〜5記載の液晶表示素子評価
装方法により液晶表示素子の評価を行うコンピュータプ
ログラムを記録した記録媒体。
12. A recording medium on which a computer program for evaluating a liquid crystal display element by the liquid crystal display element evaluation method according to claim 2 is recorded.
JP2001158934A 2001-05-28 2001-05-28 Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program Pending JP2002350119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158934A JP2002350119A (en) 2001-05-28 2001-05-28 Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001158934A JP2002350119A (en) 2001-05-28 2001-05-28 Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program

Publications (1)

Publication Number Publication Date
JP2002350119A true JP2002350119A (en) 2002-12-04

Family

ID=19002590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158934A Pending JP2002350119A (en) 2001-05-28 2001-05-28 Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program

Country Status (1)

Country Link
JP (1) JP2002350119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204378A (en) * 2009-03-03 2010-09-16 Otsuka Denshi Co Ltd Method and apparatus of measuring tilt angle of reflective liquid crystal cell
US7808637B2 (en) 2003-11-26 2010-10-05 Axometrics, Incorporated Method and apparatus for determining liquid crystal cell parameters from full mueller matrix measurements
US8325340B2 (en) 2003-11-26 2012-12-04 Axometrics, Incorporated Method and apparatus for determining polarization-altering element parameters from full mueller matrix measurements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808637B2 (en) 2003-11-26 2010-10-05 Axometrics, Incorporated Method and apparatus for determining liquid crystal cell parameters from full mueller matrix measurements
US8325340B2 (en) 2003-11-26 2012-12-04 Axometrics, Incorporated Method and apparatus for determining polarization-altering element parameters from full mueller matrix measurements
JP2010204378A (en) * 2009-03-03 2010-09-16 Otsuka Denshi Co Ltd Method and apparatus of measuring tilt angle of reflective liquid crystal cell

Similar Documents

Publication Publication Date Title
JP5904793B2 (en) Spectroscopic polarimetry apparatus and method in visible and near infrared region
JP3910352B2 (en) Pretilt angle detection method and detection apparatus
US6859278B1 (en) Multi-AOI-system for easy changing angles-of-incidence in ellipsometer, polarimeter and reflectometer systems
KR100399206B1 (en) Method of evaluating an anisotropic thin film and an evaluating apparatus
US7612879B2 (en) Method and device for three-dimensionally determining the refractive index of transparent or partially transparent layers
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2016535281A (en) Method and apparatus for measuring parameters of optical anisotropy
US5532488A (en) Apparatus and method for evaluating orientation film
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
JP3535786B2 (en) Liquid crystal display element evaluation method and evaluation device
JP3063843B2 (en) Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device
JP3365474B2 (en) Polarizing imaging device
JP2002350119A (en) Method for evaluating reflective liquid crystal display element, evaluating apparatus therefor and recording medium stored with computer program
JP3520379B2 (en) Optical constant measuring method and device
JP3358578B2 (en) Twist angle, cell gap and azimuth angle anchoring measuring device, measuring method and storage medium storing program
JP3813800B2 (en) Liquid crystal cell parameter detector
US7265838B1 (en) Method of calibrating effects of multi-AOI-system for easy changing angles-of-incidence in ellipsometers and the like
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP3196841B2 (en) Anisotropic thin film evaluation method, evaluation apparatus and recording medium
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JP3498014B2 (en) Method and apparatus for evaluating anisotropic thin film
JP2917938B2 (en) Polarization analysis method and polarization analyzer
Tang et al. Using imaging ellipsometry to determine angular distribution of ellipsometric parameters without scanning mechanism
JP3338157B2 (en) Alignment film evaluation system
WO2007053092A1 (en) Computer screen photo-assisted measurement of intensity and/or polarization change of light upon interaction with a sample

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070705