JPS6184505A - Position detecting device - Google Patents

Position detecting device

Info

Publication number
JPS6184505A
JPS6184505A JP59206414A JP20641484A JPS6184505A JP S6184505 A JPS6184505 A JP S6184505A JP 59206414 A JP59206414 A JP 59206414A JP 20641484 A JP20641484 A JP 20641484A JP S6184505 A JPS6184505 A JP S6184505A
Authority
JP
Japan
Prior art keywords
light
optical system
lens
optical path
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59206414A
Other languages
Japanese (ja)
Other versions
JPH0453241B2 (en
Inventor
Minokichi Ban
箕吉 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59206414A priority Critical patent/JPS6184505A/en
Publication of JPS6184505A publication Critical patent/JPS6184505A/en
Publication of JPH0453241B2 publication Critical patent/JPH0453241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/45Multiple detectors for detecting interferometer signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the position of a surface to be detected irrelevant to the surface shape without contacting by splitting luminous flux into two by using a light source which has short coherence distance, reflecting one piece of the luminous flux by the surface to be detected and passing the other piece through a reference optical system, and superposing the both again on each other and reading interference fringes. CONSTITUTION:Light from a light source 8 is collimated by a collimator 12 into parallel light, which is split into two through a polarization beam splitter 18. One light beam is converged on the object surface of a lens 1 to be detected by adjusting an objective lens 12 and then reflected. The other light beam is reflected by a corner cube 20. The corner cube 20 is movable in the y-direction and the quantity of the movement is measured. Two reflected light beams are superposed on each other and interference fringes are measured. The corner cube 20 is moved and when the output of a photoelectric element 33 peaks, the two split light beams become equal to optical path length.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、光線を反射する被検面、例えばレンズ面と本
発明装置との相対的位薗を、光の干渉を利用して検出す
る位置検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a position detection method that detects the relative position between a surface to be inspected that reflects light, such as a lens surface, and the apparatus of the present invention by using optical interference. This invention relates to a detection device.

(発明の背景) 従来、レンズ面の位置やレンズの中心厚を測定する装置
として、リニアエンコーダを内蔵した、第74図に示さ
れるような測長機がある。1は被検面であるレンズ面を
有するレンズ、2は垂直に移動可能なスピンドル、3は
スピンドル2に取り付けられた光学的なリニアスケール
、4は架台、5は架台4)こ取り付けられ、リニアスケ
ール3の変位量を読み取るセンナ、6はスピンドル3が
精度よく、且つ滑らかに移動できるように支持するベア
リング、7は載物台面である。なお、リニアスケール3
、センサ5及びセンサ5の出力を処理し、リニアスケー
ル3の変位量を表示する電子回路から成るものをリニア
エンコーダと称している。
(Background of the Invention) Conventionally, as a device for measuring the position of a lens surface and the center thickness of a lens, there is a length measuring machine as shown in FIG. 74, which has a built-in linear encoder. 1 is a lens having a lens surface which is a surface to be inspected; 2 is a vertically movable spindle; 3 is an optical linear scale attached to the spindle 2; 4 is a mount; 5 is a mount; A sensor reads the amount of displacement of the scale 3; 6 is a bearing that supports the spindle 3 so that it can move accurately and smoothly; and 7 is a table surface. In addition, linear scale 3
, sensor 5 and an electronic circuit that processes the output of sensor 5 and displays the amount of displacement of linear scale 3 is called a linear encoder.

レンズ1の上面の位置或いは中心厚を測定する場合、ま
ず載物台面7にレンズlが載っていない状態で、スピン
ドル2を載物台面7まで下げ、その時のリニアエンコー
タの表示値を零にセットする。次にスピンドル2を十分
上に上げ、レンズ1を載物台面7に置き、スピンドル2
をレンズ1の上面まで下げる。その時のリニアエンコー
ダの表示値がレンズ1の上面の位置、即ち第7図のよう
に両凸レンズの場合はレンズ1の中心厚を示す。
When measuring the position or center thickness of the upper surface of the lens 1, first lower the spindle 2 to the stage surface 7 with the lens l not placed on the stage surface 7, and then set the displayed value of the linear encoder to zero. set. Next, raise the spindle 2 sufficiently high, place the lens 1 on the stage surface 7, and
lower it to the top of lens 1. The value displayed by the linear encoder at that time indicates the position of the upper surface of the lens 1, that is, the center thickness of the lens 1 in the case of a biconvex lens as shown in FIG.

第7図図示の測長機の問題点は、接触式であるため、被
検面にきすをつけやすいこと、スピンドル2の先端と被
検面又は載物台面7との間に接触圧による弾性変形が生
じ、測定誤差を発生すること、更には、被検物の内面が
測定不可能のため。
The problem with the length measuring machine shown in FIG. 7 is that it is a contact type, so it is easy to scratch the surface to be measured, and there is elasticity due to contact pressure between the tip of the spindle 2 and the surface to be measured or the stage surface 7. Deformation occurs, causing measurement errors, and furthermore, the inner surface of the object cannot be measured.

例えば貼り合わせレンズの貼り合わせ面と表面との距離
、又は複数レンズを組み合わせたレンズ系での空気間隔
を測定することができないこと、などである。
For example, it is impossible to measure the distance between the bonded surface and the surface of a bonded lens, or the air gap in a lens system that combines multiple lenses.

一方、非接触方法として、光切断法、三角測量法、被検
面に焦点を結ぶレンズ位置の移動量を測る方法があるが
、これらはすべて、被検物の内面を被検面として測定す
る場合には、常に被検物の表面の形状に依存し、その形
状を正確に知らないと、測定できないという大きな問題
点をもっている。
On the other hand, non-contact methods include light sectioning, triangulation, and methods that measure the amount of movement of the lens position that focuses on the test surface, but all of these methods measure the inner surface of the test object as the test surface. In some cases, it always depends on the shape of the surface of the object to be inspected, and there is a major problem in that measurement cannot be performed unless the shape is accurately known.

(発明の目的) 本発明の目的は、上述した問題点を解決し、被検面と接
触しない、且つ被検面の表面の形状に本質的に依存しな
い位置検出装置を提供することである。
(Object of the Invention) An object of the present invention is to solve the above-mentioned problems and to provide a position detection device that does not come into contact with the surface to be measured and does not essentially depend on the shape of the surface of the surface to be measured.

(発明の特徴) 上記目的を達成するために、本発明は、マイケルソンの
干渉計の原理を被検面の位置検出に応用し、その応用に
あたって、マイケルソンの干渉計とは逆の発想で、可干
渉距離の短い、即ちスペクトル幅のある程度広い光源を
用いて、干渉縞の可視度曲線が参照光学系の光路長の変
化に敏感であるようにしたこと、分割された一方の平行
光束を被検面上に集光し、被検面からの反射光束を再び
平行光束とするピント調整可能な対物レンズを設けて、
被検面の位置のみにより一方の光路の光路長が変わるよ
うにしたこと、分割された他方の平行光束の光路長を変
化させる参照光学系及び参照光学系の光路長の変化量を
測長する測長手段を設けて、参照光学系の光路長を変化
させながら、可視度の特定点、即ちピーク或いは変曲点
における前記光路長の変化量を測長し、その変化量から
被検面の位置を検出するようにしたことを特徴とする。
(Characteristics of the Invention) In order to achieve the above object, the present invention applies the principle of Michelson's interferometer to detect the position of a surface to be measured, and in its application, uses an idea opposite to that of Michelson's interferometer. , using a light source with a short coherence length, that is, a somewhat wide spectral width, so that the visibility curve of the interference fringes is sensitive to changes in the optical path length of the reference optical system; A focus-adjustable objective lens is provided that focuses light onto the surface to be inspected and converts the reflected light beam from the surface to parallel light beams again.
The optical path length of one optical path changes only depending on the position of the test surface, the reference optical system changes the optical path length of the other divided parallel beam, and the amount of change in the optical path length of the reference optical system is measured. A length measuring means is provided, and while changing the optical path length of the reference optical system, the amount of change in the optical path length at a specific point of visibility, that is, the peak or inflection point, is measured, and from the amount of change, the amount of change in the optical path length is determined from the amount of change. It is characterized by detecting the position.

(発明の実施例) 光源の発光スペクトル線の幅の測定方法として、マイケ
ルソンの干渉計により光路差に対する可視度曲線を得、
それから計算により求める方法は、古くから知られてい
る。本発明はこの原理を位置検出に応用できるように工
夫したものである。
(Embodiment of the invention) As a method for measuring the width of the emission spectrum line of a light source, a visibility curve with respect to the optical path difference is obtained using a Michelson interferometer.
The method of calculating it has been known for a long time. The present invention is devised so that this principle can be applied to position detection.

第1図は本発明の一実施例の光学系を示す、偏光方向、
移動方向などの説明上、第1図に示した直交座標系を使
用する。即ち、右を2軸、上をy軸、紙面から下へX軸
とする。8は光源、9は熱線吸収フィルタ、10は集光
レンズ、11はピンホール、12はコリメータ、13は
光源8のスペクトル幅、形状を整えるバンドパスフィル
タである。
FIG. 1 shows an optical system according to an embodiment of the present invention.
To explain the direction of movement, etc., the orthogonal coordinate system shown in FIG. 1 will be used. That is, the two axes are on the right, the y-axis is on the top, and the X-axis is on the bottom of the page. 8 is a light source, 9 is a heat ray absorption filter, 10 is a condenser lens, 11 is a pinhole, 12 is a collimator, and 13 is a bandpass filter for adjusting the spectral width and shape of the light source 8.

光源8、熱線吸収フィルタ9及びバンドパスフィルタ1
3は、可干渉距離の短い、即ち光束のスペクトル幅のあ
る程度広い光源を構成する。可干渉距離の短い光源とは
レーザとの対比で表現されたもので、レーザの可干渉距
離が通常100mm以上であるのに対し、本発明に用い
られる光源の可干渉距離は例えば1mm程度以下、波長
との比較でいえば1波長の1000倍程度以下である。
Light source 8, heat absorption filter 9, and bandpass filter 1
3 constitutes a light source having a short coherence length, that is, a light beam having a somewhat wide spectral width. A light source with a short coherence length is expressed in comparison with a laser, and while the coherence length of a laser is usually 100 mm or more, the coherence length of the light source used in the present invention is, for example, about 1 mm or less. In comparison with wavelength, it is about 1000 times or less of one wavelength.

スペクトルがガウス型で、その中心波長を550nmと
した時、可視度が1/2となる光路差を5pmとするた
めには、そのスペクトルの半値幅は27nmとなる。即
ち、ハロゲン電球と干渉フィルタを使えば、適した光源
が簡単に得られる。しかし、光源の1点しか使用しない
ため、輝度が高く、発光効率の高い発光ダイオードを使
うのが好ましい。
When the spectrum is Gaussian and its center wavelength is 550 nm, the half width of the spectrum is 27 nm in order to set the optical path difference at which the visibility is 1/2 to be 5 pm. In other words, a suitable light source can be easily obtained using a halogen bulb and an interference filter. However, since only one light source is used, it is preferable to use a light emitting diode with high brightness and high luminous efficiency.

14は偏光方位がX軸及びy軸に対して45″である偏
光板、15は光源8の光量変動を監視するために若干反
射させるビームスプリッタ、16はレンズ、17は光電
素子、18は、偏光方位がy軸方向の透過光束と、偏光
方位がX軸方向の反射光束の、二つの平行光束に入射光
束を分割する偏光ビームスプリフタ、19は位相の進む
方位をX軸又はZ軸に対して45°とした1/4波長板
、20は、y軸方向に移動可能に配置され、駆動手段及
びその移動量を測長する測長回路を有するコーナキュー
ブ、21は位相の進む方位をX軸又はy軸に対して45
°とした174波長板、22.23はレンズで、レンズ
1の被検面に平行光束をスポット状に集光する対物レン
ズ24を構成する。レンズ23は単独で2軸方向に、レ
ンズ22とレンズ23は一体となってX軸方向に、それ
ぞれ移動可能になっており、被検面上にピントが合うよ
うに調整される。25は、対物レンズ24により被検面
上に平行光束がスポットとなっているかどうかを監視す
るモニタ光学系に若干の光束を導くビームスプリッタ、
26.27.28は前記モニタ光学系を構成するレンズ
、光束折曲げミラー及び接眼レンズ、29は位相の進む
方位をX軸又はz軸に対して45°とした174波長板
、30は集光レンズ、31はビームスプリッタ、32は
偏光ビームスプリフタ、33.34は光電素子、35は
偏光ビームスプリッタ、36.37は光電素子である。
14 is a polarizing plate whose polarization direction is 45'' with respect to the X-axis and the y-axis; 15 is a beam splitter that slightly reflects light in order to monitor variations in the amount of light from the light source 8; 16 is a lens; 17 is a photoelectric element; A polarizing beam splitter 19 splits the incident light beam into two parallel light beams: a transmitted light beam whose polarization direction is in the y-axis direction and a reflected light beam whose polarization direction is in the X-axis direction. A quarter-wave plate 20 is arranged to be movable in the y-axis direction and has a driving means and a length measuring circuit for measuring the amount of movement thereof; 21 is a corner cube that measures the direction in which the phase advances; 45 for the x or y axis
The 174-wavelength plate 22.23 is a lens, which constitutes an objective lens 24 that focuses a parallel light beam on the surface to be measured of the lens 1 in the form of a spot. The lens 23 is movable independently in two axial directions, and the lenses 22 and 23 are movable together in the X-axis direction, and are adjusted to focus on the surface to be inspected. 25 is a beam splitter that guides some light flux to a monitor optical system that monitors whether the parallel light flux forms a spot on the test surface using the objective lens 24;
26, 27, and 28 are lenses, a beam bending mirror, and an eyepiece constituting the monitor optical system, 29 is a 174-wave plate whose phase direction is set at 45 degrees with respect to the X axis or the z axis, and 30 is a condenser. 31 is a beam splitter, 32 is a polarizing beam splitter, 33.34 is a photoelectric element, 35 is a polarizing beam splitter, and 36.37 is a photoelectric element.

偏光ビームスプリッタ32及び光電素子33.34は、
一体となってy軸まわりに回転調整可能になっていて、
1/4波長板19及びコーナキューブ20から成る参照
光学系の光路長と、1/4波長板21、対物レンズ24
及びレンズlの被検面から成る物体光学系の光路長とが
等しい時に光電素子33の出力信号がピークとなるよう
な回転角に調整され、その位置で光電素子33は偏光方
位O0の偏光成分を検出し、光電素子34は偏光方位9
0°の偏光成分を検出する。偏光ビームスプリッタ35
及び光電素子36.37は、一体となって2軸まわりに
回転調整可能になっていて、光電素子36が偏光方位4
5°の偏光成分を検出し、光電素子37が偏光方位13
5’の偏光成分を検出するような回転角に調整される。
The polarizing beam splitter 32 and the photoelectric elements 33,34 are
It is integrated and can be rotated around the y-axis,
The optical path length of the reference optical system consisting of the quarter-wave plate 19 and the corner cube 20, the quarter-wave plate 21, and the objective lens 24.
The rotation angle is adjusted such that the output signal of the photoelectric element 33 reaches its peak when the optical path length of the object optical system consisting of the test surface of the lens L and the test surface of the lens L is equal, and at that position, the photoelectric element 33 detects the polarization component of the polarization direction O0. , and the photoelectric element 34 detects the polarization direction 9
Detects the 0° polarization component. Polarizing beam splitter 35
The photoelectric elements 36 and 37 are integrally rotatable around two axes, and the photoelectric elements 36 and 37 can be rotated in the polarization direction 4.
The photoelectric element 37 detects the polarization component of 5°, and the polarization direction 13 is detected.
The rotation angle is adjusted to detect the 5' polarization component.

なお、偏光板14の偏光方位について、参照光学系の反
射率と物体光学系の反射率との比が1の場合は、偏光方
位は45°がよいが、1以上又は1以下の場合には、参
照光学系と物体光学系の(入射光量×反射率)が等しく
なるように、偏光方位を回転できることが好ましい。
Regarding the polarization direction of the polarizing plate 14, if the ratio of the reflectance of the reference optical system to the reflectance of the object optical system is 1, the polarization direction is preferably 45°, but if the ratio is 1 or more or 1 or less, It is preferable that the polarization direction can be rotated so that (amount of incident light×reflectance) of the reference optical system and the object optical system are equal.

光電素子17,33,34,36.37及びコーナキュ
ーブ20の移動量を測長する測長回路38(第2図)か
らそれぞれ出力される信号は、信号処理系により処理さ
れるが、その信号処理系の一例は第2図に示される通り
である。
The signals output from the photoelectric elements 17, 33, 34, 36.37 and the length measurement circuit 38 (Fig. 2) that measures the distance of movement of the corner cube 20 are processed by a signal processing system. An example of the processing system is shown in FIG.

測定手順を説明すると、まず、対物レンズ24のピント
がレンズ1の被検面に合うように眼で接眼レンズ28か
ら観測しながら調整する0次にコーナキューブ20を移
動させることにより、参照光学系と物体光学系の光路長
を一致させ、その時のコーナキューブ20の移動量y0
を測長する。
To explain the measurement procedure, first, the reference optical system is adjusted by moving the zero-order corner cube 20, which is adjusted while observing from the eyepiece 28, so that the focus of the objective lens 24 is on the test surface of the lens 1. and the optical path length of the object optical system, and the movement amount y0 of the corner cube 20 at that time is
Measure the length.

この移動量yoが被検面の位置を示すものとなる。This amount of movement yo indicates the position of the surface to be inspected.

次に動作について説明する。Next, the operation will be explained.

光源8からバンドパスフィルタ13までの構成によって
、可干渉距離の短い平行光束がつくり出される。この平
行光束は偏光板14によりX軸及びy軸に対して45°
の方位をもつ偏光光束となる。偏光ビームスプリッタ1
8で反射された光束はX軸方向に偏光方位をもち、17
4波長板19により円偏光となり、コーナキューブ20
で反射され、再び1/4波長板19を通ることにより再
度直線偏光となるが、その偏光方位はX軸方向となるの
で、偏光ビームスプリッタ18を透過する。他方、偏光
ビームスプリッタ18を透過した光束はy軸方向に偏光
方位をもち、1、/4波長板21により円偏光となり、
対物レンズ24を通り、レンズ1の被検面で反射し、再
びl/4波長板21を通ることにより再度直線偏光とな
るが、その偏光方位はX軸方向となるので、偏光ビーム
スプリッタ18で反射する。
The configuration from the light source 8 to the bandpass filter 13 creates a parallel light beam with a short coherence length. This parallel light flux is 45° with respect to the X-axis and the y-axis by the polarizing plate 14.
It becomes a polarized light beam with the direction of . Polarizing beam splitter 1
The light beam reflected by 8 has a polarization direction in the X-axis direction, and 17
The light is circularly polarized by the four-wavelength plate 19, and the corner cube 20
The light is reflected by the 1/4 wavelength plate 19 and becomes linearly polarized light again, but since its polarization direction is in the X-axis direction, it passes through the polarizing beam splitter 18 . On the other hand, the light beam transmitted through the polarizing beam splitter 18 has a polarization direction in the y-axis direction, and becomes circularly polarized light by the 1/4 wavelength plate 21.
It passes through the objective lens 24, is reflected by the test surface of the lens 1, and passes through the 1/4 wavelength plate 21 again, becoming linearly polarized light again. However, since the polarization direction is in the X-axis direction, the polarizing beam splitter 18 reflect.

偏光ビームスプリッタ18から出射される二つの直交す
る直線偏光の光束は、l/4波長板29に入ると、右回
り及び左回りの二つの円偏光となリ、その合成は単に直
線偏光となり、その方位が参照光学系と物体光学系の光
路差により変化する。そして、全光量に対する直線偏光
の割合(強度)は可視度に比例し、したがって、光路差
により変化する。この直線偏光の強度及び方位は光電素
子33,34,36.37により検出される。
When the two orthogonal linearly polarized light beams emitted from the polarizing beam splitter 18 enter the 1/4 wavelength plate 29, they become two clockwise and counterclockwise circularly polarized lights, and their combination simply becomes linearly polarized light. The orientation changes depending on the optical path difference between the reference optical system and the object optical system. The ratio (intensity) of linearly polarized light to the total amount of light is proportional to visibility, and therefore changes depending on the optical path difference. The intensity and orientation of this linearly polarized light are detected by photoelectric elements 33, 34, 36, 37.

なお、偏光方位0°と180°とは全く同一方向を示す
ため、光電素子33などの出力信号の位相は偏光方位の
2倍となる0例えば、偏光方位180°が信号位相の3
600に対応する。したがって、光電素子33.34の
出力信号の位相差及び光電素子36.37の出力信号の
位相差は180°、光電素子33.36の出力信号の位
相差及び光電素子34.37の出力信号の位相差は90
°である。
Note that since polarization directions 0° and 180° indicate exactly the same direction, the phase of the output signal from the photoelectric element 33, etc. is twice the polarization direction.
Corresponds to 600. Therefore, the phase difference between the output signals of the photoelectric elements 33.34 and the output signals of the photoelectric elements 36.37 is 180°. The phase difference is 90
°.

第2図に示される信号処理系において、光電素子17は
光源8の光量変動モニタ信号C″を、光電素子33は0
°相の偏光強度信号A1を、光電素子34は180°相
の偏光強度信号A2を、光電素子36は90°相の偏光
強度信号B1を、光電素子37は270°相の偏光強度
信号B2を、それぞれ出力し、リニアエンコーダなどの
測長回路38はコーナキューブ20の零点からの移動量
yを測長し、出力する。零点とは、本装置の位置検出基
準面39(第1図)と偏光ビームスプリッタ18との間
の光路長に、コーナキューブ20と偏光ビームスプリッ
タ18との間の光路長が等しくなる位置である。
In the signal processing system shown in FIG.
The photoelectric element 34 receives the polarized light intensity signal A1 of the 180° phase, the photoelectric element 36 receives the polarized light intensity signal B1 of the 90° phase, and the photoelectric element 37 receives the polarized light intensity signal B2 of the 270° phase. , respectively, and a length measuring circuit 38 such as a linear encoder measures the amount of movement y of the corner cube 20 from the zero point and outputs the length. The zero point is the position where the optical path length between the corner cube 20 and the polarizing beam splitter 18 is equal to the optical path length between the position detection reference plane 39 (FIG. 1) of this device and the polarizing beam splitter 18. .

各信号は増幅器40〜44によりオフセット及びゲイン
調整をされる。その結果、増幅器41により増幅された
偏光強度信号A1の電圧Vを縦軸にとり、コーナキュー
ブ20の移動量y或いはコーナキューブ20を等速度で
移動させた時は時間tを横軸にとると、第3図のように
なる。振幅の一番大きい移動量yoが光路差刃の時で、
可視度のピークに一致する。一方、オシロスコープで横
軸に正弦波、縦軸に余弦波を入れると、その軌跡が第4
図のように円を描くことはよく知られている。正弦波と
余弦波は90°位相がずれたものであるから、偏光強度
信号A1の振幅を求める方法として、偏光強度信号A、
と90°位相のずれた偏光強度信号B1とを使い、それ
ぞれを2乗して加算すれば、振幅の2乗が得られる。
Each signal is offset and gain adjusted by amplifiers 40-44. As a result, if the voltage V of the polarized light intensity signal A1 amplified by the amplifier 41 is taken as the vertical axis, and the amount of movement y of the corner cube 20 or the time t when the corner cube 20 is moved at a constant speed is taken as the horizontal axis, It will look like Figure 3. When the movement amount yo with the largest amplitude is the optical path difference blade,
Coincident with peak visibility. On the other hand, if you put a sine wave on the horizontal axis and a cosine wave on the vertical axis on an oscilloscope, the trajectory will be the fourth one.
It is well known to draw a circle as shown in the figure. Since the sine wave and the cosine wave are out of phase by 90 degrees, the method for determining the amplitude of the polarization intensity signal A1 is to use the polarization intensity signal A,
By using the polarized light intensity signal B1 having a phase shift of 90° and squaring each of them and adding them, the square of the amplitude can be obtained.

しかし、第3図から分かるように、偏光強度信号A、及
びB1は振動の中心がOではなく、■。
However, as can be seen from FIG. 3, the center of vibration of the polarized light intensity signals A and B1 is not O, but ■.

になっている。光量は負のエネルギをもたないからであ
る。直流分v0を0にする方法として簡単なのが偏光強
度信号A、、B1から一定電圧v。
It has become. This is because the amount of light does not have negative energy. A simple way to set the DC component v0 to 0 is to set a constant voltage v from the polarized light intensity signals A, B1.

を引くことであるが、直流分v0は、光源8の光量変動
だけでなしに、対物レンズ24のピント調整や被検面の
反射率等にも依存するため、この方法は賢明ではない、
そこで、第2図では、偏光強度信号Alから1800位
相のずれた偏光強度信号A2を減算回路45により減算
する。同様に、偏光強度信号B1から1800位相のず
れた偏光強度信号B2を減算回路46により減算する。
However, this method is not wise because the DC component v0 depends not only on fluctuations in the light intensity of the light source 8, but also on the focus adjustment of the objective lens 24, the reflectance of the surface to be measured, etc.
Therefore, in FIG. 2, the polarization intensity signal A2 having a phase shift of 1800 degrees is subtracted by the subtraction circuit 45 from the polarization intensity signal Al. Similarly, the subtraction circuit 46 subtracts the polarized light intensity signal B2 having a phase shift of 1800 from the polarized light intensity signal B1.

次に、割算回路47.48により(A+ −A2 )。Next, the division circuits 47 and 48 produce (A+-A2).

(B1−82 )をそれぞれ光量変動モニタ信号Cで割
算し、光量変動を補正する0割算回路47゜48の出力
信号をA、Bとする。信号A、Bをそれぞれ乗算回路4
9.50により2乗してから加算回路51により加える
と、第5図に示されるように、光路差が零となる移動量
yoのところにピークをもつ山型の曲線が得られる。こ
れが可視度曲線を2乗したものに対応する。
(B1-82) are respectively divided by the light amount fluctuation monitor signal C, and the output signals of the zero division circuit 47 and 48 that correct the light amount fluctuation are designated as A and B. Multiplying circuit 4 for signals A and B respectively
By squaring it by 9.50 and adding it by the addition circuit 51, a mountain-shaped curve having a peak at the movement amount yo where the optical path difference becomes zero is obtained, as shown in FIG. This corresponds to the visibility curve squared.

信号(A 2 +332 )はノイズ除去のためのフィ
ルタ52を通った後、微分回路S3により第6図(A)
のような波形に微分される。toは移動量yoに相当す
る時間であり、ゼロクロス点である。パルス発生回路5
4は時間t0で第6図(B)に示されるパルスPOを発
生する。一方、波形整形回路55は信号(A 2 十B
2 )のレベルがしきい値Lt以上の時にハイレベルの
信号をゲート56に送り、これを開く。これにより、パ
ルスPoはゲート56を通る。
After the signal (A 2 +332) passes through the filter 52 for removing noise, it is converted to the signal shown in FIG. 6 (A) by the differentiating circuit S3.
It is differentiated into a waveform like . to is a time corresponding to the amount of movement yo, and is a zero crossing point. Pulse generation circuit 5
4 generates a pulse PO shown in FIG. 6(B) at time t0. On the other hand, the waveform shaping circuit 55 outputs a signal (A 2 +B
When the level of 2) is above the threshold value Lt, a high level signal is sent to the gate 56 to open it. This causes the pulse Po to pass through the gate 56.

検出動作中、コーナキューブ20は参照光学系と物体光
学系の光路差を零にする方向に移動され、その移動量y
が測長回路38によって測長されて、出力されているが
1通常はゲート57が閉じているので、メモリ58には
入力されない。参照光学系と物体光学系の光路差が零に
なると、パルスPOが発生し、このパルスPOがゲート
57を開くので、その時の移動量y0がメモリ58に入
力し、被検面の位置として記憶される。
During the detection operation, the corner cube 20 is moved in a direction that makes the optical path difference between the reference optical system and the object optical system zero, and the amount of movement y is
is measured and outputted by the length measuring circuit 38, but it is not input to the memory 58 because the gate 57 is normally closed. When the optical path difference between the reference optical system and the object optical system becomes zero, a pulse PO is generated and this pulse PO opens the gate 57, so the movement amount y0 at that time is input to the memory 58 and stored as the position of the surface to be inspected. be done.

レンズ1の中心厚を測定する場合には、その次にレンズ
1の後のレンズ面上に対物レンズ24のピントを合わせ
、前述と同様の動作により移動量y1を測定して、メモ
リ58に記憶させる。レンズlの屈折率をnとすれば、
中心厚dは計算回路59により下記の計算式から求めら
れる。
When measuring the center thickness of the lens 1, the objective lens 24 is then focused on the rear lens surface of the lens 1, and the movement amount y1 is measured by the same operation as described above and stored in the memory 58. let If the refractive index of lens l is n, then
The center thickness d is determined by the calculation circuit 59 using the following calculation formula.

d= (y+ −yo )/n 以上説明したのは、可視度のピークを検出した時の移動
量yoを測定するものであるが、可視度曲線の変曲点を
利用して移動量Voを測定することもできる。第55!
Jに示される可視度の2乗曲線を2回微分すると、第6
図(C)に示される曲線となり、可視度の2乗曲線の二
つの変曲点でゼロクロスする。このゼロクロス点LO1
+t02でパルスP 01 + P 02を発生させ、
それぞれの時点での移動量yor + ’! 02を記
憶し、  yo = (Vot+Yoz)/2を計算す
れば、移動量’loが得られる。
d= (y+ -yo)/n The method described above measures the amount of movement yo when the peak of visibility is detected, but the amount of movement Vo can be measured by using the inflection point of the visibility curve. It can also be measured. 55th!
If we differentiate the visibility squared curve shown in J twice, we get the 6th
The curve becomes the one shown in Figure (C), which crosses zero at the two inflection points of the squared visibility curve. This zero cross point LO1
Generate pulse P 01 + P 02 at +t02,
Movement amount at each point yor + '! By memorizing 02 and calculating yo = (Vot+Yoz)/2, the amount of movement 'lo can be obtained.

本実施例によれば、被検面にスポット光を当てる非接触
式であるから、被検面にきすをつけたり、弾性変形を生
じさせたりすることを防ぐことができる。また、貼り合
わせレンズの貼り合わせ面の位置や複数レンズの空気間
隔を測定することができる。更に、被検面がレンズの内
面のような場合でも、物体光学系の光路長はレンズ表面
の曲率半径により影響を受けることはないので、測定を
簡単にすることができる。
According to this embodiment, since it is a non-contact method in which a spot light is applied to the surface to be inspected, it is possible to prevent the surface to be inspected from being scratched or elastically deformed. Furthermore, it is possible to measure the position of the bonded surfaces of a bonded lens and the air spacing between multiple lenses. Furthermore, even when the surface to be measured is the inner surface of a lens, the optical path length of the object optical system is not affected by the radius of curvature of the lens surface, making the measurement simple.

(発明と実施例の対応) 光源8、熱線吸収フィルタ9及びバンドパスフィルタ1
3が本発明の可干渉距離の短い光源に相当し、集光レン
ズ10、ピンホール11及びコリメータ13がコリメー
ト光学系に相当し、偏光ビームスプリ゛ツタ18が光束
分割手段及び光束合成手段に相当し、1/4波長板29
からゲート56まで(測長回路38及び位置検出基準面
39を除く)が干渉縞読取り手段に相当する。
(Correspondence between the invention and the embodiments) Light source 8, heat ray absorption filter 9, and bandpass filter 1
3 corresponds to a light source with a short coherence length of the present invention, the condenser lens 10, pinhole 11, and collimator 13 correspond to a collimating optical system, and the polarizing beam splitter 18 corresponds to a beam splitting means and a beam combining means. 1/4 wavelength plate 29
The area from to the gate 56 (excluding the length measuring circuit 38 and the position detection reference surface 39) corresponds to interference fringe reading means.

(変形例) 干渉縞読取り手段としては1図示実施例のものに限定さ
れるものではなく、公知の種々の手段に代えることがで
きる。勿論、偏光を用いない手段をとってもよい。
(Modification) The interference fringe reading means is not limited to the one shown in the illustrated embodiment, and may be replaced by various known means. Of course, a method that does not use polarized light may also be used.

また、可視度のピークを見い出すのは人間の眼で行うよ
うにしてもよい。その場合、光電素子33の代わりに人
間の眼を置き、コーナキューブ20をy方向に移動させ
ながら一番可視度がよくなった時の測長回路38の測長
値を読み取る。精度向上、自動化に対しては得策ではな
いが、簡単で、安価な装置となる利点がある。
Alternatively, finding the peak visibility may be performed using the human eye. In that case, a human eye is placed in place of the photoelectric element 33, and while the corner cube 20 is moved in the y direction, the length measurement value of the length measurement circuit 38 is read when the visibility is the best. Although it is not a good idea for accuracy improvement or automation, it has the advantage of being a simple and inexpensive device.

図示実施例では、光の波長があるスペクトル幅をもった
一つのみであるホモダイン干渉式となっているが、参照
光学系と物体光学系とで若干波長を変化させるヘテロゲ
イン干渉式にすることができる。
In the illustrated embodiment, a homodyne interference type is used in which the wavelength of light is only one with a certain spectral width, but it is possible to use a heterogain interference type in which the wavelength is slightly changed between the reference optical system and the object optical system. can.

参照光学系にコーナキューブ20を用いているが、レン
ズと凹面又は凸面から構成されるキャッツアイなどに代
えることができる。
Although the corner cube 20 is used as the reference optical system, it can be replaced with a cat's eye made of a lens and a concave or convex surface.

参照光学系の光路長を変化させるために、光路中の媒質
の屈折率を変えるようにしてもよい、特に、ガラス厚を
測定する場合、標準の厚みのガラスをそのまま入れるこ
とにより、光路長を機械的に変化させる量を減らすこと
ができる。
In order to change the optical path length of the reference optical system, the refractive index of the medium in the optical path may be changed. In particular, when measuring glass thickness, the optical path length can be changed by inserting glass of standard thickness as it is. The amount of mechanical change can be reduced.

偏光ど−ムスブリッタ18が光束分割手段と光束合成手
段を兼用しているが、別々の手段を用いることがゼきる
Although the polarization beam splitter 18 serves both as a beam splitting means and a beam combining means, separate means may be used.

図示実施例では、ピント調整可能な対物レンズ24を光
軸方向にのみ移動させて被検面に集光させることによっ
て、装置側の物体光学系の光路長を変化させないように
しているが、光路長の既知な他の対物レンズに交換し、
それによる光路長の変化を計算により補正するようにし
てもよい、また、対物レンズ24に自動焦点機構を備え
ることが可能である。
In the illustrated embodiment, the optical path length of the object optical system on the apparatus side is not changed by moving the focus-adjustable objective lens 24 only in the optical axis direction to focus the light on the test surface. Replace with another objective lens of known length,
The resulting change in optical path length may be corrected by calculation, and the objective lens 24 may be equipped with an automatic focusing mechanism.

(発明の効果) 以上説明したように、本発明によれば、可干渉距離の短
い、即ちスペクトル幅のある程度広い光源を用いて、干
渉縞の可視度曲線が参照光学系の光路長の変化に敏感で
あるようにしたこと、分割された一方の平行光束を被検
面上に集光し、被検面からの反射光束を再び平行光束と
するピント調整可能な対物レンズを設けて、被検面の位
置のみにより一方の光路の光路長が変わるようにしたこ
と、分割された他方の平行光束の光路長を変化させる参
照光学系及び参照光学系の光路長の変化量を測長する測
長手段を設けて、参照光学系の光路長を変化させながら
、可視度の特定点における前記光路長の変化量を測長し
、その変化量から被検面の位置を検出するようにしたこ
とによって、被検面と接触せずに、且つ被検面の表面の
形状に本質的に依存せずに、被検面の位置を検出するこ
とができる。
(Effects of the Invention) As explained above, according to the present invention, by using a light source with a short coherence length, that is, a somewhat wide spectrum width, the visibility curve of interference fringes changes depending on the change in the optical path length of the reference optical system. The object lens is designed to be sensitive, and is equipped with an adjustable objective lens that focuses one of the split parallel light beams onto the test surface and returns the reflected light flux from the test surface to parallel light fluxes. The optical path length of one optical path changes only depending on the position of the surface, the reference optical system changes the optical path length of the other divided parallel beam, and the length measurement measures the amount of change in the optical path length of the reference optical system. By providing a means to measure the amount of change in the optical path length at a specific point of visibility while changing the optical path length of the reference optical system, and detecting the position of the test surface from the amount of change. The position of the test surface can be detected without contacting the test surface and essentially independent of the surface shape of the test surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光学系を示す配置図、第2
図は本発明の一実施例の信号処理系を示すブロック図、
第3図は偏光強度信号の波形を示す図、第4図は偏光強
度信号の振幅を示す図、第5図は可視度の2乗曲線を示
す図、第6図は信号処理中の波形を示す図、第7図は従
来の測長機を示す図である。 1・・・・・・レンズ、8・・・・・・光源、9・・・
・・・熱線吸収フィルタ、10・・・・・・集光レンズ
、11・・・・・・ピンホール、12・・・・・・コリ
メータ、13・・・・・・バンドパスフィルタ、14・
・・・・・偏光板、17,33,34.36.37・・
・・・・光電素子、18,32.35・・・・・・偏光
ビームスプリッタ、19,21.29・・・・・・1/
4波長板、20・・・・・・コーナキューブ、24・・
・・・・対物レンズ、38・・・・・・測長回路。
FIG. 1 is a layout diagram showing an optical system according to an embodiment of the present invention, and FIG.
The figure is a block diagram showing a signal processing system according to an embodiment of the present invention.
Figure 3 shows the waveform of the polarized light intensity signal, Figure 4 shows the amplitude of the polarized light intensity signal, Figure 5 shows the squared visibility curve, and Figure 6 shows the waveform during signal processing. The figure shown in FIG. 7 is a diagram showing a conventional length measuring machine. 1...Lens, 8...Light source, 9...
... Heat ray absorption filter, 10 ... Condensing lens, 11 ... Pinhole, 12 ... Collimator, 13 ... Bandpass filter, 14.
...Polarizing plate, 17, 33, 34.36.37...
...Photoelectric element, 18,32.35...Polarizing beam splitter, 19,21.29...1/
4 wavelength plate, 20... Corner cube, 24...
...Objective lens, 38... Length measurement circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、可干渉距離の短い光源と、該光源の光束を平行光束
とするコリメート光学系と、該コリメート光学系の平行
光束を二つに分割する光束分割手段と、分割された一方
の平行光束を被検面上に集光し、被検面からの反射光束
を再び平行光束とするピント調整可能な対物レンズと、
分割された他方の平行光束の光路長を変化させる参照光
学系と、該参照光学系の光路長の変化量を測長する測長
手段と、前記対物レンズと前記参照光学系をそれぞれ通
った平行光束を再び重ね合わせる光束合成手段と、重な
り合った平行光束の干渉縞の可視度の特定点を見い出す
ための干渉縞読取り手段とを備えた位置検出装置。
1. A light source with a short coherence length, a collimating optical system that converts the light beam of the light source into a parallel beam, a beam splitting means that splits the parallel beam of the collimating optical system into two, and a beam splitting means that splits the parallel beam of the collimated optical system into two, and a focus-adjustable objective lens that focuses light onto the test surface and converts the reflected light beam from the test surface into a parallel light beam;
a reference optical system that changes the optical path length of the other divided parallel beam; a length measuring means that measures the amount of change in the optical path length of the reference optical system; and a parallel beam that has passed through the objective lens and the reference optical system, respectively. A position detection device comprising a beam combining means for re-superimposing the beams, and an interference fringe reading means for finding a specific point of visibility of the interference fringes of the overlapping parallel beams.
JP59206414A 1984-10-03 1984-10-03 Position detecting device Granted JPS6184505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206414A JPS6184505A (en) 1984-10-03 1984-10-03 Position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206414A JPS6184505A (en) 1984-10-03 1984-10-03 Position detecting device

Publications (2)

Publication Number Publication Date
JPS6184505A true JPS6184505A (en) 1986-04-30
JPH0453241B2 JPH0453241B2 (en) 1992-08-26

Family

ID=16522970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206414A Granted JPS6184505A (en) 1984-10-03 1984-10-03 Position detecting device

Country Status (1)

Country Link
JP (1) JPS6184505A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183549A (en) * 1974-12-04 1976-07-22 Krautkraemer Gmbh
US4336997A (en) * 1979-03-06 1982-06-29 Erwin Sick Gmbh Optik-Electronik Change of distance measuring apparatus
JPS59114404A (en) * 1982-12-22 1984-07-02 Hitachi Ltd Measurement of shape and mounting attitude of magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183549A (en) * 1974-12-04 1976-07-22 Krautkraemer Gmbh
US4336997A (en) * 1979-03-06 1982-06-29 Erwin Sick Gmbh Optik-Electronik Change of distance measuring apparatus
JPS59114404A (en) * 1982-12-22 1984-07-02 Hitachi Ltd Measurement of shape and mounting attitude of magnetic head

Also Published As

Publication number Publication date
JPH0453241B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US5067817A (en) Method and device for noncontacting self-referencing measurement of surface curvature and profile
CN102679894B (en) Method for measuring central thickness of reflecting type differential confocal lens
CN101793500B (en) Method and device for measuring central thickness of differential confocal lens
CN102679895B (en) Method for measuring center thickness of reflective confocal lens
CN101788271A (en) Method and device for measuring thickness of the center of confocal lens
CN109186477B (en) Method and device for measuring central thickness of rear-mounted pupil laser differential confocal lens
CN103123251B (en) Differential confocal internal focusing method lens axis and method for measuring thickness
US7435941B2 (en) Methods for measuring optical characteristics by differential diffractive scanning
TWI502170B (en) Optical measurement system and method for measuring linear displacement, rotation and rolling angles
JPS5979104A (en) Optical device
JPS6184506A (en) Measuring device for optical path length
JPS6184505A (en) Position detecting device
JP2541197Y2 (en) Interference shape measuring instrument
JPH0255722B2 (en)
JP2591143B2 (en) 3D shape measuring device
JPS6353481B2 (en)
JPH0642163Y2 (en) Optical shape measuring device
JPS6236502A (en) Microcsope for measuring minute displacement
JPS60211304A (en) Measuring instrument for parallelism
JPH083410B2 (en) Three-dimensional coordinate measuring machine
JPS59211811A (en) Surface roughness measuring apparatus
Kohno On a few functions of HIPOSS (high precision optical surface sensor) and their applications
JPH05340726A (en) Noncontact probe for three-dimensional shape measuring instrument
JPS63317705A (en) Shape measuring instrument
JPH0510602B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term