JPS6184045A - Integrated circuit cooling structure - Google Patents
Integrated circuit cooling structureInfo
- Publication number
- JPS6184045A JPS6184045A JP20582284A JP20582284A JPS6184045A JP S6184045 A JPS6184045 A JP S6184045A JP 20582284 A JP20582284 A JP 20582284A JP 20582284 A JP20582284 A JP 20582284A JP S6184045 A JPS6184045 A JP S6184045A
- Authority
- JP
- Japan
- Prior art keywords
- conical
- integrated circuit
- cooling structure
- female screw
- thermal conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4338—Pistons, e.g. spring-loaded members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はLSIパッケージ等の集積回路冷却構造に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling structure for integrated circuits such as LSI packages.
従来、プリント配線板あるいはセラミック基板等に実装
されたICを冷却する手段として使用されてきた方法は
、ICのケースあるいはケースに取)付けられた放熱板
(以下ヒートシンクと称す)【ファンを用いて常温の空
気、もしくは冷却装置によって温度を下げた空気を吹き
つける事によって実現して来た。しかしながらICから
発散される熱を機器の外部に運び出す冷媒としての空気
は必ずしも最良のものではない。なぜならば第1の理由
として、固体であるICのケース、もしくはヒート7ン
クと空気の間の熱抵抗が大きく、この間の温度差が大き
くなってしまい、ICの温度を下げるためには冷媒とし
ての空気の温度を下げなければならない。情報処理装置
(以下装置と称す)を例にとれば設置する部屋の空気の
温度を下げるために大がかりな空気調和設備を必要とし
ていた。Conventionally, the method used to cool ICs mounted on printed wiring boards or ceramic substrates is to use a heat sink (hereinafter referred to as a heat sink) attached to the IC case or case. This has been achieved by blowing air at room temperature or air whose temperature has been lowered using a cooling device. However, air is not necessarily the best refrigerant to carry the heat dissipated from the IC out of the device. The first reason is that the thermal resistance between the solid IC case or heat tank and air is large, and the temperature difference between them becomes large. The temperature of the air must be lowered. For example, information processing equipment (hereinafter referred to as the equipment) requires large-scale air conditioning equipment to lower the temperature of the air in the room in which it is installed.
次に第2の理由は、空気Ii熱容唄が小さく、少しのp
Arrtで温度が上ってしまうので、装置内部から大戸
の熱を運び出すためには大最の空気をM置に送り込まな
ければならない。しかしながら近年高性能情報処理装置
においては、その処理速度を易めるために高実績度fと
、高電力化によるICの動作速度の向上、あるいは実装
の高密度化による信号の伝播遅延時間の縮小が図られて
おり、結果として発生熱り、発熱密度の増大を招いてい
る。Next, the second reason is that the air Ii heat capacity is small and a little p
Since the temperature rises at Arrt, the maximum amount of air must be sent to M position in order to carry out the heat from the Oto from inside the device. However, in recent years, high-performance information processing equipment has been developed to increase its processing speed by increasing the performance rate f, increasing the operating speed of ICs by increasing power consumption, or reducing signal propagation delay time by increasing the density of packaging. This results in an increase in heat generation and heat generation density.
従って従来技術で冷却するために装置を設置する部屋に
於ては高い冷却能力の空気調和設備を必要とし、装置内
部に於ては実装密度の同上に起因する。@置内の空気通
路の減少をおき゛なうためと犬h(の熱を装置外部へ排
出するために高風量、高吐出圧力の送風機を必要とする
。この事は装置から発生する送風騒音を異状に大きくす
るのみでなく大it iit %高風速の空気流を装置
内部で均等に分布させる事は非常に困難なためICの冷
却不足による温度上昇が生じ装Tの信頼性をも低下させ
るといった欠点があった。Therefore, in the conventional technology, air conditioning equipment with a high cooling capacity is required in the room in which the device is installed for cooling, and this is due to the same mounting density inside the device. A blower with a high air volume and high discharge pressure is required to reduce the air passage inside the equipment and to discharge the heat of the dog to the outside of the equipment. It is extremely difficult to evenly distribute high-velocity airflow inside the device, which causes a temperature rise due to insufficient cooling of the IC, which also reduces the reliability of the device. there were.
ざらだこれらの欠点を解決すべく第5図に示す様な液体
を冷媒とした冷却構造が提案されている。In order to solve these drawbacks, a cooling structure using a liquid as a refrigerant as shown in FIG. 5 has been proposed.
すなわち基板20に実装された半導体チップ21にばば
ね25によってピストン23が押圧すれてかり、半導体
チップ21で発生した熱はピストン23→微少間隙24
→熱伝導板26へと伝えら蜆熱伝導板26は冷媒取入口
28から注入され排出口29から排出される冷媒271
Cよって冷却されている。That is, the piston 23 is pressed against the semiconductor chip 21 mounted on the substrate 20 by the spring 25, and the heat generated by the semiconductor chip 21 is transferred from the piston 23 to the minute gap 24.
→The heat conduction plate 26 receives refrigerant 271 which is injected from the refrigerant intake port 28 and discharged from the discharge port 29.
It is cooled by C.
しかしながら第5図に示す冷却構造にも重大な欠点が存
在する。それはまず第1K:半導体チップ21と金属製
のピストン23とが機械的に接触しているため冷媒27
と半導体チップ21間が電気的に絶縁できないことであ
る。冷媒27は熱交換器等を仔て圧縮機や冷媒送出ボン
ダのアースに繋がっているが、このアースは非常にノイ
ズが多く冷ff27に水線外の絶縁体を使用しない限り
半導体チップ21にとっては非常に危険な状態となる。However, the cooling structure shown in FIG. 5 also has significant drawbacks. First, the first K: Since the semiconductor chip 21 and the metal piston 23 are in mechanical contact, the refrigerant 27
and the semiconductor chip 21 cannot be electrically insulated. The refrigerant 27 is connected to the ground of the compressor and refrigerant delivery bonder through a heat exchanger, etc., but this ground is very noisy and is not suitable for the semiconductor chip 21 unless an insulator outside the water line is used for the cooling ff 27. This is an extremely dangerous situation.
湧2にピスト723がばね25の弾性力で押されている
ためビストノ23とばね25でwQ=+なる振動系を形
成する。Since the piston 723 is pressed against the spring 2 by the elastic force of the spring 25, the piston 23 and the spring 25 form a vibration system in which wQ=+.
ここでwou#振角周振数周波数iばね25のばね定数
、mはピストン23の質駄を示す。従って共邊周波数成
分を含む衝撃等の外力が加わった場合ピストン23が振
動して半導体チップ21を破壊しかねない。v、3に基
板20との接続用のけんだ22に常に圧力がかかるため
クリープ変形を生ずる。待て低温はんだを使用した場合
に著しい。Here, wou #oscillation angular frequency frequency i is the spring constant of the spring 25, and m indicates the quality of the piston 23. Therefore, if an external force such as an impact containing a resonance frequency component is applied, the piston 23 may vibrate and the semiconductor chip 21 may be destroyed. Since pressure is constantly applied to the solder 22 for connection to the substrate 20 at v, 3, creep deformation occurs. Wait, this is noticeable when using low-temperature solder.
本発明は、冷Uとして用いられた空気がそれ、はど効率
の良いものでなく、そのため高い能力の空気調和設備を
必要としたり、あるいに半導体チッ決し、半導体チップ
から発生する熱を半導体チップもしくはそのケースに固
体を接触させることなく、かつ冷媒として効率の悪い空
気を介在させることなく、効率良く、装置外部に排出す
る熱抵抗の小さい冷却構造とするものである。In the present invention, the air used as the cooling U is not very efficient, and therefore requires high-capacity air conditioning equipment, or the heat generated from the semiconductor chip is transferred to the semiconductor chip. The purpose of the present invention is to provide a cooling structure that efficiently discharges heat to the outside of the device and has low thermal resistance without bringing solid matter into contact with the chip or its case, and without intervening inefficient air as a refrigerant.
本発明の集積回路冷却構造は、基板と、該基板上に実装
された集積回路と、該集積回路と微小な間隙をへたてて
対向する底面、前記基板に対し垂直方向(摺動可能なす
ベシ対偶の一機素となる中心に円すい穴を有する円筒面
、前記基板だ対し香石方向に穿たれ前記円すい穴と摺動
可能にされためねじ部をもつ円すい軸及び該円すい3ガ
の軸心を通り前記めねじ方向と平行に穿たれた切込み部
を有する熱伝導棒と、該熱伝導棒の円筒面とですべり対
偶を形成する穴を有する熱伝導板と、前記熱伝導棒のめ
ねじ部に挿入されたおねじとからなるものとすることに
より、上記従来の問題点を解決している。The integrated circuit cooling structure of the present invention includes a substrate, an integrated circuit mounted on the substrate, a bottom surface facing the integrated circuit with a small gap therebetween, and a bottom surface that is perpendicular to the substrate (slidable surface). A cylindrical surface with a conical hole in the center that forms one element of the bevel pair, a conical shaft that is bored in the direction of the base plate and has an internal thread that is slidable in the conical hole, and a shaft of the three conical parts. A heat conductive rod having a notch extending through the core and parallel to the direction of the female thread, a heat conductive plate having a hole forming a sliding pair with a cylindrical surface of the heat conductive rod, and a hole of the heat conductive rod. The above-mentioned conventional problems are solved by having a male thread inserted into the threaded part.
次【本発明の一実施例についてglc1図〜第4図を参
照して詳細に説明する。第1図に本発明の一実施例を断
面図で示す。Next, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4. FIG. 1 shows a cross-sectional view of an embodiment of the present invention.
第1図を参照すると基板12に実装された集積回路11
に微小間隙14を隔てて熱伝導棒15の底面が対向して
いる。Referring to FIG. 1, an integrated circuit 11 mounted on a substrate 12
The bottom surfaces of the heat conductive rods 15 are opposed to each other with a minute gap 14 in between.
本発明において冷却能力を決定する最大の要因は微小間
隙14の厚みでありこれを薄くする事が最も重要な課題
となる。ところが一般に集積回路11+″を接続用のは
んだ13によって基板12に取り付けられるためはんだ
の厚みが犬きくばらつきその範囲は100μmを超える
のが通常であり微小間隙14もこの値以下にすることは
不可能である。In the present invention, the biggest factor determining the cooling capacity is the thickness of the minute gap 14, and making it thinner is the most important issue. However, since the integrated circuit 11+'' is generally attached to the substrate 12 by the connecting solder 13, the thickness of the solder varies greatly and the range usually exceeds 100 μm, and it is impossible to reduce the minute gap 14 to less than this value. It is.
そこで本発明においては基板12に集積回路1工をけん
だ付けした後、11の上に極薄膜等のスペーサをのせ基
板枠18と熱伝導板17をねじ19にで固定し熱伝導棒
15を挿入してll上のスペーサに押し付けたitで熱
伝導棒15のめねじ部8に挿入されているおねじ16を
締めつける事によって熱伝導棒15を熱伝導板17に固
定した後ねじ19をはずして熱伝導板17と基板枠18
を分離し前述のスペーサを取り去り再度組み立てる事に
よってスペーサの厚みと同じ微小間隙を実現する事が可
能となる。Therefore, in the present invention, after the integrated circuit 1 is soldered to the substrate 12, a spacer such as an extremely thin film is placed on the substrate 11, the substrate frame 18 and the heat conductive plate 17 are fixed with the screws 19, and the heat conductive rod 15 is fixed. The heat conduction rod 15 is fixed to the heat conduction plate 17 by tightening the male screw 16 inserted into the female threaded part 8 of the heat conduction rod 15 by inserting it and pressing it against the spacer on ll, and then removing the screw 19. The heat conduction plate 17 and the board frame 18
By separating the above-mentioned spacers and reassembling them, it is possible to realize a minute gap with the same thickness as the spacer.
ここで熱伝導fi15が熱伝導板17に固定されるメカ
ニズムについて詳述する。第2図は熱伝導棒1本を構成
する要素を分割拡大した図である。Here, the mechanism by which the heat conduction fi 15 is fixed to the heat conduction plate 17 will be described in detail. FIG. 2 is a divided and enlarged view of the elements constituting one heat conduction rod.
円筒状で内部に円すい穴を有し、中心を通る切り溝6が
切られ底面にわずかに切り残し部がある。It has a cylindrical shape with a conical hole inside, and a groove 6 is cut through the center, leaving a slight uncut portion on the bottom.
切り込み付円筒10の中に、前記円すい穴と摺動する中
心にめねじ部8を有する円すい1!b9を装着し、底面
部7を取付はロー付する。Inside the notched cylinder 10, there is a cone 1 having a female threaded portion 8 at the center that slides into the conical hole! Attach b9 and attach the bottom part 7 by soldering.
さらに、めねじ部8におねじ16を挿入した状卯での円
すい軸9の挙動を示した図が第3図である。この第3図
で示す様におねじ16とめねじ部8の嵌合で円すい軸9
が切り込み付円筒10の内皿を摺動しながら引き上げら
れてゆき、切プ込み付円筒10内部の円すい穴径面に密
着固定され、締付けを完了すると、第4図に示す様に面
接触し、接触圧力5が発生する。この接触圧力5の半径
方向成分4が熱伝導棒15の切り溝6の厚みを拡げる方
向に作用するため熱伝4棒15の円筒面と熱伝導板17
の穴の内面とで圧力を生じ摩擦によって固定されること
になる。Further, FIG. 3 is a diagram showing the behavior of the conical shaft 9 in a state where the screw 16 is inserted into the female threaded portion 8. As shown in FIG. 3, the conical shaft 9
is pulled up while sliding on the inner plate of the notched cylinder 10, and is closely fixed to the diameter surface of the conical hole inside the notched cylinder 10, and when tightening is completed, surface contact is made as shown in Fig. 4. , a contact pressure 5 is generated. Since the radial component 4 of this contact pressure 5 acts in the direction of increasing the thickness of the cut groove 6 of the heat transfer rod 15, the cylindrical surface of the heat transfer rod 15 and the heat transfer plate 17
The inner surface of the hole generates pressure and is fixed by friction.
第1図に戻ってさらに本実施例では前述の手段で全ての
集積回路に対して微小間隙14を設定した後、熱伝導板
17の上面に水冷ジャケット20を固定し水冷ジャケッ
ト内に水30を流して冷却することによって集積回路1
1VC対して電気的に微小間隙14を隔てて水とは絶縁
されたかつ振動系を含まない機械的に安全な低熱抵抗の
冷加構造を実現することができる。Returning to FIG. 1, in this embodiment, after setting micro gaps 14 for all integrated circuits by the above-mentioned means, a water cooling jacket 20 is fixed on the upper surface of the heat conduction plate 17, and water 30 is poured into the water cooling jacket. Integrated circuit 1 by flowing and cooling
It is possible to realize a mechanically safe cooling structure with low thermal resistance that is electrically insulated from water with a small gap 14 for 1 VC and does not include a vibration system.
また微小間隙14に電気絶縁性の熱伝導性充てん剤を充
てんすればさらに熱抵抗の低い冷加構造を実現する事も
可能である。Furthermore, by filling the minute gap 14 with an electrically insulating and thermally conductive filler, it is possible to realize a cooling structure with even lower thermal resistance.
〔発明の効果〕
本発明の集積回路冷却構造は、基板と、該基板上に実装
された集積回路と、該集積回路と微小な間隙をへたてて
対向する底面、前記基板【対し岳【σ方向に摺動可能な
すべり対偶の一機素となる中心に円すい穴を有する円筒
面、前記基板に対し垂直方向に穿たれ前記円すい穴と摺
動可能にされためねじ部をもつ円すい軸及び該円すい軸
の軸心を通り前記めねじ方向と平行に穿たれた切り込み
部を有する熱伝導棒と、該熱伝導棒の円筒面とですべり
対偶を形成する穴を有する熱伝導板と、前記熱伝導棒の
めねじ部に挿入されたおねじとからなるものとしたため
、冷媒として効率の悪い空気を介在させることなく、し
かも、半導体チップ等に固体を接触させることなく、半
導体チノグから生じる熱を効ホ良く装置外部に排出でき
、熱抵抗の小ざい冷却fJ造を提供することができると
いう効央がある。[Effects of the Invention] The integrated circuit cooling structure of the present invention includes a substrate, an integrated circuit mounted on the substrate, a bottom surface facing the integrated circuit with a small gap therebetween, and a bottom surface facing the integrated circuit with a small gap therebetween. a cylindrical surface having a conical hole in the center serving as an element of a sliding pair capable of sliding in the σ direction; a conical shaft having an internal threaded portion bored perpendicularly to the substrate and capable of sliding in the conical hole; a heat conductive rod having a notch formed through the axis of the conical shaft and parallel to the female thread direction; a heat conductive plate having a hole forming a sliding pair with the cylindrical surface of the heat conductive rod; The heat-conducting rod consists of a male thread inserted into the female thread of the heat conduction rod, so the heat generated from the semiconductor chip is removed without intervening air, which is inefficient as a refrigerant, and without bringing solid objects into contact with semiconductor chips. The main advantage is that the heat can be effectively discharged to the outside of the device, and a cooling fJ structure with small thermal resistance can be provided.
第1図は、本発明の一実施例を示す側面図、第2図は、
熱伝導棒の構成を示す平面図及び部分切欠き側面、
第3図は、熱伝導棒の円すい軸の挙動を示す平面及び側
面説明図、
第4図は、熱伝導棒におねじを挿入した時の円すい斜面
に働く力を示す説明図、
そして、第5図は、従来技術の冷却構造を示す断面図で
ある。
6・・・切り溝 8・・・めねじ部9・・・
円すい軸 10・・・切り込み付円筒11・・
・集積回路 12・・・基板15・・・熱伝導
棒 16・・・おねじ17・・・熱伝導板FIG. 1 is a side view showing one embodiment of the present invention, and FIG. 2 is a side view showing an embodiment of the present invention.
Figure 3 is a plan view and partially cut-out side view showing the configuration of the heat conduction rod; Figure 3 is a plane view and side view showing the behavior of the conical shaft of the heat conduction rod; Figure 4 is a diagram showing a screw inserted into the heat conduction rod. FIG. 5 is a cross-sectional view showing a conventional cooling structure. 6... Cut groove 8... Female thread part 9...
Conical shaft 10...Cylinder with notch 11...
・Integrated circuit 12... Board 15... Heat conduction rod 16... Male screw 17... Heat conduction plate
Claims (1)
路と微小な間隙をへだてて対向する底面、前記基板に対
し垂直方向に摺動可能なすべり対偶の一機素となる中心
に円すい穴を有する円筒面、前記基板に対し垂直方向に
穿たれ前記円すい穴と摺動可能にされためねじ部をもつ
円すい軸及び該円すい軸の軸心を通り前記めねじ方向と
平行に穿たれた切込み部を有する熱伝導棒と、該熱伝導
棒の円筒面とですべり対偶を形成する穴を有する熱伝導
板と、前記熱伝導棒のめねじ部に挿入されたおねじとか
らなる集積回路冷却構造。A substrate, an integrated circuit mounted on the substrate, a bottom surface facing the integrated circuit with a small gap therebetween, and a conical center serving as an element of a sliding pair capable of sliding in a direction perpendicular to the substrate. A cylindrical surface having a hole, a conical shaft having an internal thread that is perpendicular to the substrate and slidable in the conical hole, and a conical shaft that is bored parallel to the direction of the internal thread through the axis of the conical shaft. An integrated circuit consisting of a heat conduction rod having a notch, a heat conduction plate having a hole that forms a sliding pair with the cylindrical surface of the heat conduction rod, and a male screw inserted into the female thread of the heat conduction rod. Cooling structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20582284A JPS6184045A (en) | 1984-10-01 | 1984-10-01 | Integrated circuit cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20582284A JPS6184045A (en) | 1984-10-01 | 1984-10-01 | Integrated circuit cooling structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6184045A true JPS6184045A (en) | 1986-04-28 |
Family
ID=16513274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20582284A Pending JPS6184045A (en) | 1984-10-01 | 1984-10-01 | Integrated circuit cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6184045A (en) |
-
1984
- 1984-10-01 JP JP20582284A patent/JPS6184045A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4685211A (en) | Method of producing a cooled electronic assembly | |
US5525548A (en) | Process of fixing a heat sink to a semiconductor chip and package cap | |
EP0001153B1 (en) | Cooling heat generating electrical components in an electrical apparatus | |
JPH07106477A (en) | Heat sink assembly with heat conduction board | |
US4781244A (en) | Liquid cooling system for integrated circuit chips | |
US6667885B2 (en) | Attachment of a single heat dissipation device to multiple components with vibration isolation | |
US6479895B1 (en) | High performance air cooled heat sinks used in high density packaging applications | |
US7254033B2 (en) | Method and apparatus for heat dissipation | |
US20070200226A1 (en) | Cooling micro-channels | |
JPS6184045A (en) | Integrated circuit cooling structure | |
JP2812014B2 (en) | Semiconductor device | |
JPS6184044A (en) | Integrated circuit cooling structure | |
JPH0352222B2 (en) | ||
JP2002026214A (en) | Electronic component cooling apparatus | |
JP2506885B2 (en) | Semiconductor device | |
US20080266786A1 (en) | Method and apparatus for heat dissipation | |
JPS6046053A (en) | Cooling structure | |
JP2811884B2 (en) | Integrated circuit cooling device | |
JPH0354472B2 (en) | ||
JPS6136958A (en) | Cooling structure of integrated circuit | |
KR930004251B1 (en) | Power semiconductor package | |
JP3395409B2 (en) | Semiconductor module | |
JPS59155158A (en) | Cooling structure of semiconductor device | |
JP2845447B2 (en) | Integrated circuit cooling structure | |
JP2969812B2 (en) | Integrated circuit cooling structure |