JPS6184036A - Heat-conductive aln ceramics substrate - Google Patents

Heat-conductive aln ceramics substrate

Info

Publication number
JPS6184036A
JPS6184036A JP59204708A JP20470884A JPS6184036A JP S6184036 A JPS6184036 A JP S6184036A JP 59204708 A JP59204708 A JP 59204708A JP 20470884 A JP20470884 A JP 20470884A JP S6184036 A JPS6184036 A JP S6184036A
Authority
JP
Japan
Prior art keywords
aln
substrate
heat
thermal conductivity
aln ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59204708A
Other languages
Japanese (ja)
Inventor
Nobuyuki Mizunoya
水野谷 信幸
Yasuyuki Sugiura
杉浦 康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59204708A priority Critical patent/JPS6184036A/en
Publication of JPS6184036A publication Critical patent/JPS6184036A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To assure remarkable heat-conductivity of AlN ceramics substrate with purity of 95% by a method wherein the separated part of AlN needle type polycrystal is limited to 1/3 or less of substrate thickness. CONSTITUTION:The purity of AlN ceramics is recommended to exceed 95% in terms of the thermal conductivity while adding 0.1-5wt% of Y2O3 as sintering assistant. AlN powder is formed into a substrate 2 by means of sintering it in N2 at 1,600-1,850 deg.C as it is sealed up in a fire resistant vessel after removing grease. At this time, AlN needle type polycrystal 1 with Al-Si-O- N composition formed on the side only shall not exceed 1/3 of substrate thickness (t) while if they are formed on both sides, the total thickness shall be also limited to 1/3 of the same. In such a constitution, the heat-conductivity of AlN ceramics substrate may not be deteriorated at all.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は熱伝導性Δ℃Nセラミックス基板に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a thermally conductive ΔCN ceramic substrate.

[発明の技術的前頭とその問題点] 電子別器の小形化、高性能化の要求に従い、これらに用
いられる半導体も高集積化、高出力化の方向に急速に進
んでいる。このため半導体を実装する基板もより熱伝導
性の大きいものが必要とされ、従来のへλ203セラミ
ックス基板よりも熱伝導性の大きいAβINセラミック
ス基板が注目をあびている。
[Technical Overview of the Invention and Its Problems] In accordance with the demand for smaller electronic devices and higher performance, the semiconductors used in these devices are also rapidly progressing toward higher integration and higher output. For this reason, the substrate on which the semiconductor is mounted is required to have higher thermal conductivity, and AβIN ceramic substrates, which have higher thermal conductivity than the conventional λ203 ceramic substrates, are attracting attention.

ところでこのAlNセラミックス基板は”74 ’7条
件によっては熱伝導性の低いものが得られるという問題
があった。
However, this AlN ceramic substrate had a problem in that it could have low thermal conductivity depending on the ``74''7 conditions.

[発明の目的コ 本発明はこのような問題に対処してなされたもので、熱
伝導性の大きいAANt7ラミツクス基板を提供するこ
とを目的とする。
[Purpose of the Invention] The present invention has been made in response to such problems, and an object thereof is to provide an AANt7 laminated substrate with high thermal conductivity.

[発明の概要] 本発明は、前述の問題が、原料処理や成形工程および焼
成環境において混入するSlやOなとの不純物により焼
結体結晶組成の一部に熱伝導性を阻害する結晶相が生成
することに起因すること、しかしながらこの結晶相は基
板の板厚の1/′3以内に生じた場合は熱伝導性を阻害
することが少ないことという知見に基づいてなされたも
ので、縛 ′度95%以上のAj2Nセラミックス基板
であって、AβNポリタイプからなる針状結晶の析出部
分が基板板厚の1/3以内であることを特徴としている
[Summary of the Invention] The present invention solves the above-mentioned problem by forming a crystal phase that inhibits thermal conductivity in a part of the crystal composition of a sintered body due to impurities such as Sl and O mixed in during raw material processing, molding process, and firing environment. This was done based on the knowledge that this crystalline phase is caused by the formation of The present invention is an Aj2N ceramic substrate with an AβN polytype of 95% or more, and is characterized in that the precipitated portion of needle-like crystals made of AβN polytype is within 1/3 of the substrate thickness.

本発明においてAlNセラミックスの純度は高熱伝導性
の点から95%以上が好ましく、その他焼結助剤として
かつ熱伝導性を向上させるために0.1〜5重間%のY
203を添加づ゛るのが好ましい。
In the present invention, the purity of the AlN ceramics is preferably 95% or more from the viewpoint of high thermal conductivity, and 0.1 to 5 weight% of Y is used as a sintering aid and to improve thermal conductivity.
Preferably, 203 is added.

AlNポリタイプからなる針状結晶は通常A2−3i−
0−Nの化学構造を有し、その大きさは長さが10μm
以上、長さと幅の比率(長さ7幅)が3以上である。
Acicular crystals consisting of AlN polytype are usually A2-3i-
It has a 0-N chemical structure and its size is 10 μm in length.
As described above, the length to width ratio (length 7 width) is 3 or more.

このAJ2Nポリタイプからなる針状結晶1は図面に示
すように片面のみに生じる場合はAβNセラミックス基
板2の板厚tの1/3の深さ以内に生成されている必要
があり、両面の場合は総量で1/3t@限度とする。な
お図中符号3はAβNの結晶粒子を示す。
If the needle-like crystals 1 made of the AJ2N polytype occur on only one side as shown in the drawing, they must be formed within a depth of 1/3 of the thickness t of the AβN ceramic substrate 2, and in the case of both sides. The total amount shall be limited to 1/3 t@. Note that the reference numeral 3 in the figure indicates a crystal particle of AβN.

このようなAβNセラミックス基板を製造するには高純
度のAlN粉末を使用して成形し、この成形体を脱脂し
たのちそのまま不活性雰囲気中で焼成するのではなく耐
火性容器にいったん収納、密閉して窒素ガス、アルゴン
ガスなどの不活性雰囲気中で1,600〜i、aso℃
に加熱して焼成する方法を採用する。
To manufacture such an AβN ceramic substrate, high-purity AlN powder is used to mold it, and the molded body is degreased and then instead of being fired in an inert atmosphere, it is stored in a fireproof container and sealed. in an inert atmosphere such as nitrogen gas or argon gas at 1,600 - i, aso℃.
A method of heating and firing is adopted.

[発明の実施例] 次に本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

実施例 Y203を3重量%含むAβN粉末100部にバインダ
としてポリビニルブチラール樹脂10部、溶剤25部、
可塑剤3部を混合し、ドクターブレード法によって厚さ
0.5n++nの未焼成シートを得た。このシートを一
片が60mmの正方形に裁断し、窒素ガス流中で約70
0°Cまで昇温して脱脂した。これを直径90m+++
、厚さ2mmのAβNセラミックス製円板上に載置し、
さらに内径100mm、高さ12mmの高純度Aβ20
3セラミックス製円筒状部材および蓋で田閉した。この
状態でカーボン発熱体を使用した電気炉に挿入し、窒素
ガス雰囲気下で約1 、800℃に1時間加熱して焼成
を行なった。
100 parts of AβN powder containing 3% by weight of Example Y203, 10 parts of polyvinyl butyral resin as a binder, 25 parts of a solvent,
Three parts of plasticizer were mixed and a green sheet with a thickness of 0.5n++n was obtained by doctor blade method. This sheet was cut into square pieces of 60 mm each, and about 70 mm was cut in a nitrogen gas stream.
The temperature was raised to 0°C and defatted. This is 90m+++ in diameter
, placed on a 2 mm thick AβN ceramic disk,
In addition, high purity Aβ20 with an inner diameter of 100 mm and a height of 12 mm.
3. It was closed with a ceramic cylindrical member and a lid. In this state, it was inserted into an electric furnace using a carbon heating element, and fired at about 1,800° C. for 1 hour in a nitrogen gas atmosphere.

このようにして得られたAJ2Nセラミックス基板の厚
さ方向の断面を走査電子顕微鏡で観察したところ、針状
結晶の生成は115の深さまでにおさえられており、熱
伝導率は80〜100W/ m −Kであった。また針
状結晶はAλ−3i−0−Nを成分とするAlNポリタ
イプであった。
When the cross section of the thus obtained AJ2N ceramic substrate in the thickness direction was observed using a scanning electron microscope, the formation of needle-shaped crystals was suppressed to a depth of 115 mm, and the thermal conductivity was 80 to 100 W/m. -K. Further, the needle-like crystals were an AlN polytype containing Aλ-3i-0-N as a component.

一方前述の未焼成シーi・を密閉しないでそのまま同様
に焼成し、得られた基板を間諜に走査電子顕微鏡でIA
察したところ、針状結晶は1/2の深さまで生成してお
り、また熱伝導率は30〜50W/m−にであった。
On the other hand, the above-mentioned unfired substrate was fired in the same manner without being sealed, and the obtained substrate was subjected to IA using a scanning electron microscope.
It was found that needle-shaped crystals were formed to a depth of 1/2, and the thermal conductivity was 30 to 50 W/m-.

[発明の効果] 以上説明したように本発明の基板は熱伝導性を阻害する
針状結晶の生成が限定されているので、AlN本来の優
れた熱伝導性を発揮することができる。
[Effects of the Invention] As explained above, since the substrate of the present invention has limited formation of needle-like crystals that inhibit thermal conductivity, it can exhibit the excellent thermal conductivity inherent to AlN.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明基板のlll’i面を模式的に示す図であ
る。
The drawing is a diagram schematically showing the lll'i plane of the substrate of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  純度95%以上のAlNセラミックス基板であつて、
AlNポリタイプからなる針状結晶の析出部分が基板板
厚の1/3以内であることを特徴とする熱伝導性AlN
セラミックス基板。
An AlN ceramic substrate with a purity of 95% or more,
A thermally conductive AlN characterized in that a precipitated part of needle-like crystals made of an AlN polytype is within 1/3 of the substrate thickness.
Ceramic substrate.
JP59204708A 1984-09-30 1984-09-30 Heat-conductive aln ceramics substrate Pending JPS6184036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59204708A JPS6184036A (en) 1984-09-30 1984-09-30 Heat-conductive aln ceramics substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204708A JPS6184036A (en) 1984-09-30 1984-09-30 Heat-conductive aln ceramics substrate

Publications (1)

Publication Number Publication Date
JPS6184036A true JPS6184036A (en) 1986-04-28

Family

ID=16494994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204708A Pending JPS6184036A (en) 1984-09-30 1984-09-30 Heat-conductive aln ceramics substrate

Country Status (1)

Country Link
JP (1) JPS6184036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226872A (en) * 1988-07-12 1990-01-29 Sumitomo Electric Ind Ltd Window for transmitting high-frequency wave
US5683529A (en) * 1991-05-21 1997-11-04 Fujitsu Limited Process of producing aluminum nitride multiple-layer circuit board
WO2022030637A1 (en) * 2020-08-07 2022-02-10 株式会社U-Map Ceramic substrate, aln single crystal, aln whisker, and aln whisker composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102310A (en) * 1977-02-18 1978-09-06 Tokyo Shibaura Electric Co Heat conducting base plates
JPS54100410A (en) * 1978-01-24 1979-08-08 Tokyo Shibaura Electric Co Ceramic heat conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102310A (en) * 1977-02-18 1978-09-06 Tokyo Shibaura Electric Co Heat conducting base plates
JPS54100410A (en) * 1978-01-24 1979-08-08 Tokyo Shibaura Electric Co Ceramic heat conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226872A (en) * 1988-07-12 1990-01-29 Sumitomo Electric Ind Ltd Window for transmitting high-frequency wave
US5683529A (en) * 1991-05-21 1997-11-04 Fujitsu Limited Process of producing aluminum nitride multiple-layer circuit board
WO2022030637A1 (en) * 2020-08-07 2022-02-10 株式会社U-Map Ceramic substrate, aln single crystal, aln whisker, and aln whisker composite

Similar Documents

Publication Publication Date Title
JP4447750B2 (en) Aluminum nitride sintered body and semiconductor manufacturing member
US6299815B1 (en) Process for producing piezoelectric ceramics
KR20170101782A (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
US5527501A (en) Process for producing piezoelectric ceramic sheet and dielectric ceramic sheet
JPS6184036A (en) Heat-conductive aln ceramics substrate
JP4722463B2 (en) Dielectric ceramics for electrostatic chuck and manufacturing method thereof
TWI276696B (en) Silicon monoxide sintered product and sputtering target comprising the same
CN115304383A (en) Aluminum nitride substrate and preparation method and application thereof
JPS5969473A (en) Sintering silicon carbide powder composition
KR20210052250A (en) Composite sintered body and method of manufacturing composite sintered body
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JPH0196067A (en) Production of aluminum nitride sintered body
JP3629933B2 (en) Method for producing crystal-oriented ceramics
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
JP2673095B2 (en) Aluminum nitride sintered body
JP2000264737A (en) Aluminum nitride sintered compact and its production
JPS59156961A (en) Manufacture of alumina sintered substrate
JPH0288467A (en) Aluminum nitride sintered body and production thereof
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6021854A (en) Manufacture of alumina sintered substrate
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JPH04305057A (en) Method for strengthening piezoelectric ceramics