JPS6183675A - Manufacture of low expansion substrate - Google Patents

Manufacture of low expansion substrate

Info

Publication number
JPS6183675A
JPS6183675A JP59203269A JP20326984A JPS6183675A JP S6183675 A JPS6183675 A JP S6183675A JP 59203269 A JP59203269 A JP 59203269A JP 20326984 A JP20326984 A JP 20326984A JP S6183675 A JPS6183675 A JP S6183675A
Authority
JP
Japan
Prior art keywords
substrate
low
low expansion
expansion substrate
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59203269A
Other languages
Japanese (ja)
Inventor
中村 淳次
一郎 矢沢
悟朗 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP59203269A priority Critical patent/JPS6183675A/en
Publication of JPS6183675A publication Critical patent/JPS6183675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は低膨張基板の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method of manufacturing a low expansion substrate.

(発明の技術的背景とその問題点) 従来の熱膨張係数の小さなセラミックス基板としては、
コージェライト基板が面状発熱体の基6仮として使われ
ている。この場合にコージエライト凸版は、原料にコー
ジエラ・イト組成の:V、物(シャモット)を使用して
いるため、熱膨張係数は21x 1o  ”/”Cで低
膨張になっているが、基板製造時の焼成温度が1, 2
 0 0〜1, 5 0 0℃と高温になることが欠点
であり、曲げ強度が1)6kg/dと高(ないことも欠
点として上げられる。
(Technical background of the invention and its problems) As a conventional ceramic substrate with a small coefficient of thermal expansion,
A cordierite substrate is used as the base of the sheet heating element. In this case, the cordierite letterpress uses cordierite composition: V, chamotte as the raw material, so the thermal expansion coefficient is 21 x 1o "/"C, which is a low expansion, but when manufacturing the board, The firing temperature of 1, 2
The drawback is that it reaches a high temperature of 0.000 to 1.500° C., and its bending strength is as high as 1) 6 kg/d.

別の低膨張基板としては、ガラスセラミックスがあり、
これは、熱膨張係数が8〜1 5 X 1 0− 7,
!/’Cと小さく、また曲げ強度が1. 5 (10に
9層と大きく、非常に良い低膨張基板である。しかしな
がら、このガラスセラミックは厚みが厚(て重いことと
、製造工程が複雑なために非常に価格が高いことが欠点
として」二げられる。
Another low expansion substrate is glass ceramics.
This has a thermal expansion coefficient of 8 to 15 x 10-7,
! /'C, and the bending strength is 1. 5 (It is large, with 9 layers in 10, and is a very good low-expansion substrate. However, the disadvantages of this glass ceramic are that it is thick and heavy, and the manufacturing process is complicated, making it very expensive.) I can get two.

また、抄紙法を使用して、コージェライト組成の鉱物を
繊維と抄紙しても凝集、抄紙することができないという
欠点もあった。
In addition, there was also a drawback that even if a paper-making method was used to make paper with cordierite-composed minerals and fibers, it would not be possible to agglomerate and make paper.

(発明の目的) 本発明で(・マ、前記のような欠点を除去し、700〜
900°Cの低温で焼成でき、熱膨張係数が小さく、低
価格で作られるセラミックスの低膨張基板の製造する方
法を提供するものである。
(Objective of the invention) The present invention eliminates the above-mentioned drawbacks and
The present invention provides a method for producing a low-expansion ceramic substrate that can be fired at a low temperature of 900°C, has a small coefficient of thermal expansion, and is manufactured at low cost.

(発明の概要) すなわち、本発明は、粘土と暁タルクとカオリスラリー
とし、凝集、抄造して得たシート状物を700〜900
℃で焼成することを特徴とする低膨張基板の製造方法で
ある。
(Summary of the invention) That is, the present invention provides a sheet material obtained by agglomerating and forming a slurry of clay, Akatsuki talc, and kaori into a slurry of 700 to 900
This is a method for manufacturing a low expansion substrate characterized by firing at a temperature of .degree.

(発明の詳述) すなわち、本発明では、セラミックスの基板が700〜
900℃で焼成できるように、また、焼成した基板が熱
衝撃によって割れないように、熱膨張係数が10〜30
X10   /C程度になるように原料を調合する。原
料の調合は、熱膨張係数が小さいコージェライト組成に
なるように、粘土、焼メルク、カオリンと酸化マグネシ
ウムを混合し、アルミナ(A1203)  二酸化ケイ
素(SiO2)77化マグネシウム(MgO)の比率が
2Nigo・2A1203・5S102になるようにす
る。
(Detailed Description of the Invention) That is, in the present invention, the ceramic substrate is
The thermal expansion coefficient is 10 to 30 so that it can be fired at 900°C and to prevent the fired substrate from cracking due to thermal shock.
The raw materials are mixed to approximately X10 /C. The raw materials were mixed with clay, calcined melk, kaolin, and magnesium oxide so that the composition would be cordierite with a small coefficient of thermal expansion, and the ratio of alumina (A1203), silicon dioxide (SiO2), and magnesium 77ide (MgO) was 2Nigo.・Make it 2A1203・5S102.

この点につぎ、さらに具体的に説明すると、通常用いら
れる窯業原料、例えば、蛙目粘土、焼タルク、カオリン
等は、純粋なAIyOs+SiO□、\殴0からなるも
のではなく、その他に水(1−120)やアルカリ金属
酸化物(Na20・l(2(’)など)やアルカリ土ガ
酸化物(CaOなと)のほか、残留鉄分として酸化&(
Fe203など)という化学胸式で換算できろ不純物を
含むものである。これらH2O、Na 20 、 Fe
2O3等の不純物は熱膨張率を上昇させる害があるが、
一方において、少量含むだけで焼結温度を下降させる働
きもある。本発明では、これら不純物を重量比にして3
〜12条の範囲に押さえ、主成分たるA−120s +
 b + O□、Δ・1goの配合比率をコージェライ
ト成になるよう原料を調合するものである。
To explain this point in more detail, commonly used ceramic raw materials, such as frog's eye clay, calcined talc, and kaolin, are not composed of pure AIyOs + SiO -120), alkali metal oxides (such as Na20.l(2(')), and alkaline earth oxides (CaO), as well as oxidized and (
It contains impurities such as Fe203, which can be converted using the chemical equation. These H2O, Na20, Fe
Impurities such as 2O3 have the harmful effect of increasing the coefficient of thermal expansion, but
On the other hand, even a small amount of it has the effect of lowering the sintering temperature. In the present invention, the weight ratio of these impurities is 3
A-120s +, which is the main component, is kept within the range of ~12 pieces.
The raw materials are mixed so that the blending ratio of b + O□, Δ・1go becomes cordierite.

こうすることによって、低い焼f戊温度での焼結を可能
とし、あわせて熱膨張率の低いセラミノ7り基板を得る
ものである。
By doing so, it is possible to perform sintering at a low sintering temperature, and at the same time obtain a ceramino substrate with a low coefficient of thermal expansion.

参考までに、通常用いられる窯業原料の三寸重:てつき
、その主成分たる At 2u、 、5in2.〜sgoの重量百分率を示
す。
For reference, the three dimensions of commonly used ceramic raw materials are: Tetsuki, its main component At 2u, , 5in2. - indicates the weight percentage of sgo.

残部が、上記した不純物に相当する。The remainder corresponds to the above-mentioned impurities.

上記の表からすると、主成分をコーディエライト組成に
近づけるには、各原料の比率を適当に定め、不足がちの
MgOを別途添加することが考えられる。
According to the above table, in order to bring the main component closer to the cordierite composition, it is possible to appropriately determine the ratio of each raw material and separately add MgO, which tends to be insufficient.

これら原料の粉体を繊維質とともに水中で凝集、抄紙し
、シート化する。このシートは、そのままあるいは必要
なら各種の形状を作って酸化雰囲気の電気瀘に入れて焼
成する。焼成は400部程度で、有機物質を焼失気化さ
せるために1時間保持し、その後800部程度で焼成す
る。このようにして低膨張基板ができる。
Powders of these raw materials are aggregated together with fibers in water, and paper is made into sheets. This sheet is fired as it is, or after being made into various shapes if necessary, it is placed in an electric filter in an oxidizing atmosphere. Firing is performed at approximately 400 parts, held for 1 hour to burn out and vaporize the organic substance, and then fired at approximately 800 parts. In this way, a low expansion substrate is produced.

以下に本発明の具体的な実施例に基いて説明する。なお
組成はすべて重量比である。
The present invention will be explained below based on specific examples. All compositions are weight ratios.

〈実施例1〉 (A+  試料の調整 r原蛙目木占土          1088部1  
尭 タ ル り                  
              !3 4@+(13)、
凝集剤 先づ、1)程度のアルミボールミルて原背目粘土108
8部、暁タルク784部、カオリン136部。
〈Example 1〉 (A+ Preparation of sample r Hara-meki-sando 1088 part 1
Takataru Ri
! 3 4@+(13),
Flocculant first, 1) Aluminum ball mill with raw clay 108
8 parts, Akatsuki talc 784 parts, kaolin 136 parts.

と酸化マグネシウム530部を入れて、8時間粉砕。and 530 parts of magnesium oxide were added and pulverized for 8 hours.

混合する。粉砕後、21程度の容器に水1,000部と
アスベスト162部を入れた中へ、粉砕した粉末を加え
て2分はど攪拌し、水圧スラリーを作る。
Mix. After pulverization, the pulverized powder is added to a 21-sized container containing 1,000 parts of water and 162 parts of asbestos, and stirred for 2 minutes to form a hydraulic slurry.

この水I生スラリーにあらかじめ作ってオ6いた匝酸バ
ンド60部を加えて攪拌し、P l−1試験71′桟で
、P tlが3〜4になったのを確かめて、ここへ、ニ
れもあらかじめ作っておいたポリアクリルアミド糸筒分
子凝集剤120部を加えて5o秒はど攪拌して凝集させ
る。以上のようにして、凝集した試料は、抄造機で抄紙
し、300朋角で15〜22龍厚の/−トを作る。この
シート状物をそのまま、あるいは使用する目的に合わせ
た形状に折り曲げ入れ、常温から2”C/minで40
0°Cまで加熱し、有機物質を焼失気化させるために、
400℃で1時間保持する。その後、800°Cまで4
℃/ m i nで昇温し、800℃で1時間保持して
、セラミックスの焼結を行なわせる。
Add 60 parts of sulfuric acid band prepared in advance to this water I raw slurry, stir it, and confirm that P tl is 3 to 4 on the P l-1 test 71' crosspiece, and then add it here. Add 120 parts of a polyacrylamide thread molecular flocculant previously prepared and stir for 50 seconds to flocculate. The agglomerated sample as described above is made into paper using a paper making machine to form a sheet of 300 mm square and 15 to 22 mm thick. This sheet-like material can be used as it is or folded into a shape that suits the purpose of use, and heated at 40°C at 2"C/min from room temperature.
Heating to 0°C to burn off and vaporize organic substances.
Hold at 400°C for 1 hour. Then, up to 800°C 4
The temperature was raised at 800° C./min and held at 800° C. for 1 hour to sinter the ceramic.

・1戸 ・焼成後、常温までY内放冷を行って、低膨張基へ戸 板を電気yから取り出す。・1 unit ・After firing, let it cool in the Y to room temperature, and then open the door to the low expansion group. Remove the board from the electric y.

取り出したものについて、熱1膨張係数を調べると”l
 3 X i Oi /Cで、曲げ強度180kl;l
Δとなっている。
When we examine the coefficient of thermal expansion of the extracted material, it is "l"
3 X i Oi /C, bending strength 180kl;l
It is Δ.

く実施例2〉 (、〜)試投1のFJ!3整 (B)  凝集剤 以上のような組成(A) 、 (l()を用いて、以上
は実施例1と同様にして、焼成すると、低膨張基板がで
きた。この際の熱膨張係数はi 5Xi O’ 1./
’Cであり、曲げ強度は160に9/cyrEであった
Example 2> (, ~) FJ of trial pitch 1! A low expansion substrate was obtained by firing in the same manner as in Example 1 using the above-mentioned composition (A) and (l ()) as a coagulant (B). is i 5Xi O' 1./
'C, and the bending strength was 160 to 9/cyrE.

(発明の効果) このようにして得られた低ノ膨張基板は、家庭用の耐熱
板、バーベキュ一層成、あるいは医療2食品、化学前の
産業用の分野で、耐熱性基板とじて使用するのに適して
いる。
(Effects of the invention) The low expansion substrate thus obtained can be used as a heat-resistant substrate for household heat-resistant plates, barbecue single-layer, or in the medical, food, and chemical industrial fields. suitable for

本発明によれば、薄型で、加工性が良くて任意の形状に
成型でき、軽量で、強度があり、熱衝撃:・て強いとい
う長所を持つセラミックス基板である。
According to the present invention, the ceramic substrate has the advantages of being thin, having good workability, being able to be molded into any shape, being lightweight, having strength, and being resistant to thermal shock.

また、従来に比べて、工程が簡単で、焼成温度も低いた
めに、省エネに役立ち、安価に供給できることが特徴で
ある。
In addition, compared to conventional methods, the process is simpler and the firing temperature is lower, so it is useful for energy saving and can be supplied at low cost.

Claims (1)

【特許請求の範囲】[Claims] (1)粘土、焼タルク、カオリン等の窯業原料と酸化マ
グネシウムの粉体を、コージェライト組成に近似するよ
うに調合し、これに繊維質を混合して水性スラリーとし
、凝集、抄造して得たシート状物を700〜900℃で
焼成することを特徴とする低膨張基板の製造方法。
(1) Ceramic raw materials such as clay, calcined talc, and kaolin and magnesium oxide powder are mixed to approximate the composition of cordierite, and fibers are mixed with this to form an aqueous slurry, which is then coagulated and made into paper. A method for manufacturing a low-expansion substrate, which comprises firing a sheet-like product at a temperature of 700 to 900°C.
JP59203269A 1984-09-28 1984-09-28 Manufacture of low expansion substrate Pending JPS6183675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203269A JPS6183675A (en) 1984-09-28 1984-09-28 Manufacture of low expansion substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203269A JPS6183675A (en) 1984-09-28 1984-09-28 Manufacture of low expansion substrate

Publications (1)

Publication Number Publication Date
JPS6183675A true JPS6183675A (en) 1986-04-28

Family

ID=16471243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203269A Pending JPS6183675A (en) 1984-09-28 1984-09-28 Manufacture of low expansion substrate

Country Status (1)

Country Link
JP (1) JPS6183675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265857A (en) * 1987-04-24 1988-11-02 Toppan Printing Co Ltd Production of low expansion substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139706A (en) * 1974-09-30 1976-04-02 Tdk Electronics Co Ltd
JPS56150506A (en) * 1980-04-23 1981-11-21 Toppan Printing Co Ltd Manufacture of ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139706A (en) * 1974-09-30 1976-04-02 Tdk Electronics Co Ltd
JPS56150506A (en) * 1980-04-23 1981-11-21 Toppan Printing Co Ltd Manufacture of ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265857A (en) * 1987-04-24 1988-11-02 Toppan Printing Co Ltd Production of low expansion substrate

Similar Documents

Publication Publication Date Title
Yalçın et al. Utilization of bauxite waste in ceramic glazes
US2776896A (en) Ceramic composition having thermal shock resistance
US4142879A (en) Method for producing low expansion ceramics
JP2009114063A (en) Aluminum magnesium titanate sintered product
JPWO2005105704A1 (en) Aluminum magnesium titanate crystal structure and manufacturing method thereof
CN101519304A (en) Method for preparing dichroite-porzite complex phase material by in-situ reaction calcination
JPS6212661A (en) Spinel base ceramic sintered body and manufacture
JPS6156184B2 (en)
JPS6183675A (en) Manufacture of low expansion substrate
JP2659508B2 (en) Method for producing additive-containing magnesium hydroxide and method for producing additive-containing magnesium oxide using the same
US1658334A (en) Resistance material
US2434451A (en) Refractories
CN112142485A (en) Ceramic fiber material and preparation method thereof
JPS5879869A (en) Cordierite ceramics and manufacture
JPH06316467A (en) Production of incombustible molding
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS61197460A (en) Manufacture of low expansion substrate
JPS62265164A (en) Calcia magnesia base clinker and manufacture
JPH0455368A (en) Production of sintered body of oxide of rare earth element
Albuquerque et al. Thermal transformations of tile clay before and after kaolin addition
RU2422405C1 (en) Crude mixture and method of producing high-strength refractory ceramic based on said mixture
JP3017829B2 (en) Calcium silicate sintered body and method for producing the same
Mukhopadhyay et al. Effect of synthetic mullite aggregate on clay-based sol-bonded castable
JPH04349177A (en) Heat insulator
JPS6144751A (en) Manufacture of low temperature burnt ceramic sheet