JPS6182913A - Method for computing torque-arm in hot continuous rolling - Google Patents

Method for computing torque-arm in hot continuous rolling

Info

Publication number
JPS6182913A
JPS6182913A JP59204554A JP20455484A JPS6182913A JP S6182913 A JPS6182913 A JP S6182913A JP 59204554 A JP59204554 A JP 59204554A JP 20455484 A JP20455484 A JP 20455484A JP S6182913 A JPS6182913 A JP S6182913A
Authority
JP
Japan
Prior art keywords
rolling
torque
torque arm
tension
stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59204554A
Other languages
Japanese (ja)
Other versions
JPH0573485B2 (en
Inventor
Hiroshi Imabayashi
今林 弘資
Shinichiro Endo
遠藤 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP59204554A priority Critical patent/JPS6182913A/en
Publication of JPS6182913A publication Critical patent/JPS6182913A/en
Publication of JPH0573485B2 publication Critical patent/JPH0573485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/10Motor power; motor current
    • B21B2275/12Roll torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain an excellent tension control and to improve the quality of a steel stock rolling, by correcting a torque arm in consideration of the influence of the temperature difference between the front and rear ends of a steel stock. CONSTITUTION:Respective differences DELTAl3, DELTAl2, DELTAl1 between respective torque arms ls3, ls2, ls1 of stands 3, 2, 1 obtained from rolling loads and torques at the time when the front end of a steel stock is bitten, and respective torque arms le3, le2, le1 obtained at the time when the rear end of stock runs out of rolls, are assumed that said differences depend on the temperature difference between the front and rear ends of stock. And the torque arm used for computing the tension of stock at the next pass is corrected in consideration of said temperature difference. In this correction, a linear or curvilinear interpolation, etc. is used for the difference.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は熱間連続圧延においてトルクアームの算出方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for calculating a torque arm in continuous hot rolling.

(従来の技術) 連続圧延においてスタンド間に生じる張力(含圧縮力)
はできるだけ軽減しなければならない。
(Conventional technology) Tension (including compressive force) generated between stands during continuous rolling
must be reduced as much as possible.

このため、スタンド間張力を検出しフィードバック制御
することが普通行われるが、形鋼圧延のような一般の張
力検出器が使えない場合は、張力検出に特別の工夫をこ
らしている。
For this reason, it is common practice to detect the tension between the stands and perform feedback control, but in cases where a general tension detector cannot be used, such as when rolling shaped steel, special measures are taken to detect the tension.

すなわち、連続圧延において、スタンド間張力、圧延荷
重、圧延トルクとの間には、 G = 2 gP + R(Tb −Tf )    
・・−−・−(11G:圧延トルク、e:トルクアーム
、P:圧延荷重、R:ロール半径、Tb:後方張力、T
f:前方張力 の関係式が成立し、この式を用いて張力を算出する。
That is, in continuous rolling, the relationship between the tension between stands, rolling load, and rolling torque is as follows: G = 2 gP + R (Tb - Tf)
・・・・−(11G: Rolling torque, e: Torque arm, P: Rolling load, R: Roll radius, Tb: Back tension, T
f: A relational expression for front tension is established, and the tension is calculated using this expression.

銅材が最上流圧延スタンドにかみ込んだ無張力時の圧延
荷重、トルクを検出し、これら検出値より最上流圧延ス
タンドのトルクアームを求める。
The rolling load and torque in the absence of tension when the copper material is caught in the most upstream rolling stand are detected, and the torque arm of the most upstream rolling stand is determined from these detected values.

このトルクアームを基に、:1iil材の次段圧延スタ
ンドにかみ込んだときの最上流圧延スタンドの圧延トル
ク、圧延荷重の変化を、スタンド間張力とみなし算出す
る。このスタンド間張力と、次段圧延スタンドにおける
圧延荷重、トルクにより、この次段圧延スタンドのトル
クアームを求める。以下、鋼材の下流スタンドにかみ込
んでいくに従い、次々段スタンド間張乃、次々段スタン
ドトルクアーム・・・・ と、順次下流スタンドのトル
クアームを求めていく。
Based on this torque arm, changes in the rolling torque and rolling load of the most upstream rolling stand when the :1III material is bitten into the next stage rolling stand are calculated as the inter-stand tension. The torque arm of this next-stage rolling stand is determined from this inter-stand tension, rolling load and torque at the next-stage rolling stand. Hereafter, as the downstream stands of the steel material are involved, the torque arms of the downstream stands are determined one after another, the torque arms of the stands of the next stage, and so on.

(発明が111r決しようとする問題点)従来の方法は
、ルIA4の圧延スタンドへかみ込んだときの61f重
、トルクよりトルクアームを算出するもので、熱間圧延
の場合、鋼材の先端部と後端部の温度差は41) ’に
〜70゛Cもあると言われており、この間開−のトルク
アーム値を用いて張力演算することはH,l当程度の誤
差をかむと考えられ、鋼材圧延に悪影響を及ぼすことは
必至である。
(Problems to be solved by the invention) In the conventional method, the torque arm is calculated from the 61f weight and torque when the steel is bitten into the rolling stand.In the case of hot rolling, the tip of the steel It is said that the temperature difference between 41)' and the rear end is ~70°C, and calculating tension using the open torque arm value during this period would result in an error equivalent to H, l. This will inevitably have a negative impact on steel rolling.

(問題を解決するための手段) この発明は鋼材の先、後端部間の温度差の影響を考慮し
てトルクアームの補正を行うようにしたことである。す
なわち、温材先端の圧延スタンドへのかみ込み時に求め
たトルクアームと鋼材後端の圧延スタンドからしり抜け
するときに求めたトルクアームとを用いる。この2種類
のトルクアーム値を比較し、これら値に差を生じる場合
、その差を鋼材の温度差によるものと推定し、次パスに
おける張力演算に用いるトルクアームを上記温度差に応
じて補正する。補正方法には、この差を直線補間する方
法、曲線補間する方法、あるいは鋼材の先端から後端ま
でのtiA度分布が計測されていれはこれをテーブルに
して補間する方法、などがある。
(Means for Solving the Problem) The present invention corrects the torque arm by taking into consideration the influence of the temperature difference between the leading and trailing ends of the steel material. That is, the torque arm obtained when the leading end of the hot material is bitten into the rolling stand and the torque arm obtained when the trailing end of the steel material passes through the rolling stand are used. Compare these two types of torque arm values, and if there is a difference between these values, it is assumed that the difference is due to a temperature difference between the steel materials, and the torque arm used for tension calculation in the next pass is corrected according to the temperature difference. . Correction methods include linear interpolation of this difference, curve interpolation, or, if the tiA degree distribution from the tip to the rear end of the steel material is measured, a table is used for interpolation.

第1図に最終4スタンドの実施例を示す。以下、これに
より鋼材のかみ込み時におけるトルクアームの算出と、
しり抜けしたときのトルクアームの算出と、これら2種
類のトルクアーム値の鋼材先後端部温度差に基づく補正
の様子、を説明する。
FIG. 1 shows an example of the final four stands. Below, we will use this to calculate the torque arm when the steel material is biting,
Calculation of the torque arm when the vehicle breaks through and how these two types of torque arm values are corrected based on the temperature difference between the front and rear ends of the steel material will be explained.

かみ込み時の荷重、トルクを検出しトルクアームを算出
する方法を説明する。スタンド間張力、圧延荷重、圧延
トルクとの間には先の(1)式が成立するが、これを4
スタンドに適用し、各スタンドに対応するサブスクリプ
トをつけて、1シ直すと、G3 = 21:+ P3 
+ R3(T:14−Tza )  −−−−−−−(
2)G2 = 2gz P2 +R2(T23−T12
 )  −−・−・= −−(3)G+ = 211X
l+ P+ + RIT+2   ・−・・・・・  
・ ・ ・・・(4)G:圧延トルク、P:圧延荷重、
T、張力、e:トルクアーム、R:ロール半閉となる。
The method of detecting the load and torque at the time of biting and calculating the torque arm will be explained. Equation (1) above holds true between the inter-stand tension, rolling load, and rolling torque, but this can be expressed as 4
If you apply it to the stands, add subscripts that correspond to each stand, and modify the script, G3 = 21: + P3
+ R3(T:14-Tza) --------(
2) G2 = 2gz P2 +R2 (T23-T12
) −−・−・= −−(3) G+ = 211X
l+ P+ + RIT+2 ・-・・・・・
・ ・ ... (4) G: Rolling torque, P: Rolling load,
T: Tension, e: Torque arm, R: Roll semi-closed.

直前上流スタンドのを4スタンド間張力を零とし各スタ
ンドのトルクアームを算出するのであり、鋼材の拵3ス
タンドへかみ込んだ、隼2スタンドはいまたがみ込んで
いなく張力T23は生していない状態で(2)式よりト
ルクアーム +3は、 に】 2111!3=[石13  − ・ −・ ・・  (
5)続いての参2スタンドへかみ込んたときトルクアー
ム eJを用いて(2)、(3)式よりトルクアーム 
+2は2e・=叫1゜十桐[丹12([卵2−2e・)
・・・・・・・・・・・(6)同じく≠3スタンドへか
み込んだとき、トルクアーム +3、+2を用いて、(
2)、(3)、(4)式よりトルクアーム elは +侶[勝11([賛J1−H3)・・・・・・・・ ・
・・(7)とそれぞれ演算できる。なお、Olのi=3
.2,1はそれぞれ+3、≠2 、+1の各スタンドへ
かみ込んだときの検出値を示す。
The torque arm of each stand is calculated by setting the tension between the 4 stands of the immediately upstream stand to zero, and the steel Koshirae 3 stand and the Hayabusa 2 stand are not wedged and the tension T23 is not present. According to equation (2), torque arm +3 is 2111!3=[stone 13 − ・ −・ ・・ (
5) When the torque arm is inserted into the next 2nd stand, the torque arm is determined from equations (2) and (3) using eJ.
+2 is 2e・= shout 1゜Togiri [tan 12 ([egg 2-2e・)
・・・・・・・・・・・・(6) Similarly, when it is inserted into the ≠3 stand, using torque arms +3 and +2, (
From formulas 2), (3), and (4), torque arm el is +
...(7) can be calculated respectively. In addition, i=3 of Ol
.. 2 and 1 indicate the detected values when biting into each stand of +3, ≠2, and +1, respectively.

トルクアームが求まればスタンド間張力は(2) 、(
3)、(4)の各式より、R3、+2、elをパラメー
タとしてT34=ω+2P3信十T 23.、、 、、
、 、、、 、、、 、、、、−1−− 、= −、=
 (8)G2    (Jz T23 =7;+2P2T27+TI2  ・・・・・
・・・・・・・・・・・・・・・(9)T12 =”−
+ 2P+ i  ・・ ・・ ・・・・・・・・・・
・・・・・・・・・(10)RI    Rl と表すことができる。すなわち、トルクアームe3、+
2、eIが既知であれば、(8) 、(9)、(10)
の各式よりスタンド間張力を演算できる。
Once the torque arm is determined, the tension between the stands is (2), (
3) and (4), using R3, +2, and el as parameters, T34=ω+2P3 ShinjuT 23. ,, ,,
, , , , , , , , , -1-- , = -, =
(8) G2 (Jz T23 = 7; +2P2T27+TI2...
・・・・・・・・・・・・・・・(9) T12 =”−
+ 2P+ i ・・・ ・・・・・・・・・・・・
......(10) It can be expressed as RI Rl. That is, torque arm e3, +
2. If eI is known, (8), (9), (10)
The tension between the stands can be calculated from each formula.

次に鋼材のスタンドをしり抜けしたときのトルファーム
の算出方法を述べる。スタンド間張力、圧延荷i1j 
、圧延トルクとの間には先の(2)、(3)、(4)の
各式が「】克立する。口の方法は、J(材のスタンドか
らのしり抜は時の荷重、トルクよりトルクアームを求め
るもので、張力TI2の生じないを2スタンドを抜はを
1スタンドにかんでいるときに(4)式よりトルクアー
ムe1が 2e+ = 1丹j1 ・・・・・・・・・・・・・−
・・・・・・・・・・・・・・・・・・・・・(11)
また鰐3スタンドを抜はを2.11  スタンドにかん
でいる状態でトルクアームelを用いて(3) 、(4
)の各式よりトルクアームe2が、 更に紫4スタンドを抜け≠3、和、會lスタンド【二力
)んでいる状態でトルクアームelX(12を用いて(
2)、(3)、(4)の各式よりトルクアームe、3は
、とそれぞれ演算できる。なお、Oiのi = 1.2
.3はそれぞれ$2、1、#、4の各スタンドをしり抜
けした記憶データを示す。
Next, we will explain how to calculate the Torufirm when passing through a steel stand. Tension between stands, rolling load i1j
The equations (2), (3), and (4) above are established between the rolling torque and the rolling torque. The torque arm is determined from the torque, and when two stands are removed and one stand is set without tension TI2, from equation (4), the torque arm e1 is 2e+ = 1 j1...・・・・・・−
・・・・・・・・・・・・・・・・・・・・・(11)
Also, remove the crocodile 3 stand by using the torque arm el while the crocodile is on the stand (3), (4
) From each equation, torque arm e2 passes through the purple 4 stand ≠ 3, sum, kai 1 stand [two forces], and using torque arm elX (12), (
From each formula (2), (3), and (4), the torque arms e and 3 can be calculated as follows. In addition, i of Oi = 1.2
.. 3 indicates stored data that passed through each stand of $2, 1, #, and 4, respectively.

このように、鋼材のスタンドしり抜は時のGlPを記憶
し、全スタンドをしり抜けして後、上記(11)、(1
2)、(13)の各式に基づき華1、≠2、を3の各ス
タンドのトルクアームlx、12、I3を演算する。な
お、このトルクアームは次バスの鋼材の張力演算に使用
されるのであり張力演算式は先に求めた(8)、(9)
、(10)の各式が用いられる。
In this way, when steel stands are penetrated, the GlP of the time is memorized, and after passing through all the stands, the above (11) and (1)
2) Calculate the torque arms lx, 12, and I3 of each stand with flower 1, ≠ 2, and 3 based on the equations (13). Note that this torque arm will be used to calculate the tension of the steel material for the next bus, and the tension calculation formula was obtained previously (8) and (9).
, (10) are used.

この発明は、銅材先端のかみ込み時に求めた(5)、(
6) 、(7)の各式で示す稲、を2、参1の各スタン
ドのトルクアームと、鋼材後端のしり抜は時に求めた(
13)、(12)、(11)の各式で示すを3、華2、
を1各スタンドトルクアーム、との差異を、鋼材の先後
端温度差の影響と推定し、次バス鋼材の張力演算に使用
するトルクアームを上記温度差を考慮した補正を行うよ
うにしたこと、である。
In this invention, (5), (
6) The values shown by the formulas in (7) are 2, and the torque arm of each stand in Reference 1 and the cutout of the rear end of the steel material are calculated as follows:
13), (12), and (11) are 3, Hana 2,
1. The difference between each stand torque arm is estimated to be the effect of the temperature difference between the front and rear ends of the steel material, and the torque arm used for calculating the tension of the next bus steel material is corrected in consideration of the temperature difference, It is.

(作用) 補正方法としては先に述べた直線補間、曲線捕間など多
くの方法が考えられるが、ここでは直線補間による方法
を一例として説明する。
(Function) As a correction method, there are many methods such as the linear interpolation and curve interpolation mentioned above, but here, a method using linear interpolation will be explained as an example.

すなわち、M441本分の#3からlスタンドまでの間
の、圧延時間をA1前回バスで求めたトルクアームの差
を八e1、鋼材の≠3スタンドにかんでからの経過時間
をt % (5)、(6)、(7)式で示される鋼材先
端のかみ込み時に求めた各スタンドトルクアームをek
lとすれば、h11正後トルクアームeiは1i=4h
i十伍0− t −t< −−−−=・=−−=−・−
(14)i = 3.2.1、K : hlt正係数と
表すことができる。
In other words, the rolling time for 1 M44 from stand #3 to stand L is the difference in the torque arm calculated on the A1 previous bus, and 8e1 is the rolling time, and the elapsed time from the time when the steel material is placed on the ≠3 stand is t % (5 ), (6), and (7), each stand torque arm obtained when the tip of the steel material is bitten is
If h11 front torque arm ei is 1i = 4h
i100− t −t< −−−−=・=−−=−・−
(14) i = 3.2.1, K: can be expressed as hlt positive coefficient.

この(14)式は第1図のグラフブロック図で示すが、
しり抜は時の記1、ハテータより求めたトルクアームを
dpi(i=1s2.3)とし、△41は(5ci −
ekl)で表わす。
This equation (14) is shown in the graph block diagram in Figure 1, but
For Shiri-Nuki, the torque arm obtained from Time Record 1 is dpi (i = 1s2.3), and △41 is (5ci -
ekl).

(発明の効果) このように、温度補正されたトルクアームe3、(12
、Qsを用い次パス銅材の張力演算を、先の(8)、(
9)、(10)各式に基づいて行うもので、より正確な
張力を算出でき張力制御を良好ならしめル1材圧延の品
質向上に寄与するところ大である。
(Effect of the invention) In this way, the temperature-compensated torque arm e3, (12
, Qs is used to calculate the tension of the copper material in the next pass as described in (8), (
9) and (10) are carried out based on each formula, which allows for more accurate tension calculation and better tension control, which greatly contributes to improving the quality of rolling of 1-ru material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼材の圧延スタンドかみ込み時としり抜は時の
トルクアームを算出、比較し、補正を行う場合のシーケ
ンス/ブロック図でアル。
Figure 1 is a sequence/block diagram for calculating, comparing, and correcting the torque arm when the steel material is caught in the rolling stand and when it is punched out.

Claims (1)

【特許請求の範囲】 1、圧延トルク、圧延荷重および張力の間に成立する、 G=2lP+R(Tb−Tf) G:圧延トルク、l:トルクアーム、P:圧延荷重、R
:ロール半径 Tb:後方張力、Tf:前方張力 の関係式を用いて、張力を算出/制御する連続圧延機の
張力制御において、鋼材先端の圧延スタンドかみ込み時
の荷重、トルクより求めたトルクアームと、鋼材後端の
上記圧延スタンドからしり抜けするときの荷重、トルク
を記憶しこれら記憶値を基に最終段圧延スタンドしり抜
け時に算出したトルクアーム、とを比較して、その差異
を鋼材先後端温度差によるものと推定し、次パス鋼材圧
延におけるトルクアームの算出を、上記温度差に基づき
補正することを特徴とする熱間連続圧延におけるトルク
アーム算出方法。
[Claims] 1. G=2lP+R(Tb-Tf) established between rolling torque, rolling load, and tension, G: rolling torque, l: torque arm, P: rolling load, R
: Roll radius Tb: rear tension, Tf: front tension Calculate/control tension using the relational expression. In tension control of a continuous rolling mill, the torque arm is calculated from the load and torque when the tip of the steel material is bitten by the rolling stand. The load and torque when the rear end of the steel material passes through the rolling stand are memorized, and the torque arm calculated when the rear end of the steel material passes through the final rolling stand is compared. A method for calculating a torque arm in continuous hot rolling, characterized in that the torque arm is estimated to be due to a difference in end temperature, and the calculation of the torque arm in the next pass steel rolling is corrected based on the temperature difference.
JP59204554A 1984-09-28 1984-09-28 Method for computing torque-arm in hot continuous rolling Granted JPS6182913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59204554A JPS6182913A (en) 1984-09-28 1984-09-28 Method for computing torque-arm in hot continuous rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204554A JPS6182913A (en) 1984-09-28 1984-09-28 Method for computing torque-arm in hot continuous rolling

Publications (2)

Publication Number Publication Date
JPS6182913A true JPS6182913A (en) 1986-04-26
JPH0573485B2 JPH0573485B2 (en) 1993-10-14

Family

ID=16492408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204554A Granted JPS6182913A (en) 1984-09-28 1984-09-28 Method for computing torque-arm in hot continuous rolling

Country Status (1)

Country Link
JP (1) JPS6182913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352612A1 (en) * 2013-02-04 2015-12-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving control device for rolling line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352612A1 (en) * 2013-02-04 2015-12-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving control device for rolling line
US10464112B2 (en) * 2013-02-04 2019-11-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energy-saving control device for rolling line

Also Published As

Publication number Publication date
JPH0573485B2 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
EP2045026B1 (en) Method and device for controlling sizing mill of pipe or tube
JPS6182913A (en) Method for computing torque-arm in hot continuous rolling
JP5239728B2 (en) Rolling method and rolling apparatus for metal sheet
US6161405A (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
JP3235870B2 (en) Method and apparatus for narrowing tolerances of shape accuracy and dimensional accuracy of rolled product rolled into steel wire row and / or steel bar row
JP2001269706A (en) Method for controlling shape at continuous cold rolling
EP1322433B1 (en) Sheet width control method in hot rolling
JP3048185B2 (en) Adaptive correction method for tandem rolling mill
JPH09155420A (en) Method for learning setup model of rolling mill
JPH01210109A (en) Controller for flatness of rolled stock
JPS6224810A (en) Method for controlling tension in continuous rolling mill
JP3309819B2 (en) Cluster rolling mill and plate shape control method using the same
JP3445199B2 (en) Thickness control method in rolling mill
JPH059166B2 (en)
JP2002059202A (en) Method for manufacturing lp steel plate
JP4052462B2 (en) Plate crown estimation method and crown estimation computer
JPH08267117A (en) Method for preventing diaphragming of rolling stock to be rolled in continuous hot rolling
JPH105840A (en) Method for controlling meandering in plate rolling
JPH08192210A (en) Method for controlling width in rolling mill
JP3269209B2 (en) Strip width control method in hot finish rolling
JPS61189808A (en) Setting method of roll gap in finish rolling
JP3664151B2 (en) Sheet width control method, cold rolled metal sheet manufacturing method, and cold rolling apparatus
JPH08238509A (en) Method for controlling edge drop at time of cold rolling
JPH0573484B2 (en)
JPS60162514A (en) Method for learning control of rolling load in cold tandem rolling