JPH0573484B2 - - Google Patents

Info

Publication number
JPH0573484B2
JPH0573484B2 JP59203792A JP20379284A JPH0573484B2 JP H0573484 B2 JPH0573484 B2 JP H0573484B2 JP 59203792 A JP59203792 A JP 59203792A JP 20379284 A JP20379284 A JP 20379284A JP H0573484 B2 JPH0573484 B2 JP H0573484B2
Authority
JP
Japan
Prior art keywords
stand
tension
torque
rolling
torque arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59203792A
Other languages
Japanese (ja)
Other versions
JPS6182911A (en
Inventor
Hiroshi Imabayashi
Shinichiro Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP59203792A priority Critical patent/JPS6182911A/en
Publication of JPS6182911A publication Critical patent/JPS6182911A/en
Publication of JPH0573484B2 publication Critical patent/JPH0573484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は連続圧延機の張力制御に関し特にそ
のうちのトルクアームの演算による方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to tension control in a continuous rolling mill, and particularly to a method based on torque arm calculation.

(従来の技術) 連続圧延においてスタンド間に生じる張力(含
圧縮力)はできるだけ軽減しなければならない。
このため、スタンド間張力を検出しフイードバツ
クの張力制御が通常行なわれるが、形鋼圧延のよ
うな一般の張力検出器が使えない場合、張力検出
に特別の工夫をこらしている。
(Prior Art) The tension (including compressive force) generated between stands during continuous rolling must be reduced as much as possible.
For this reason, feedback tension control is normally performed by detecting the tension between the stands, but in cases where a general tension detector cannot be used, such as when rolling a section steel, special measures are taken to detect the tension.

すなわち、連続圧延において、張力と圧延荷
重、圧延トルクとの間には G=2lP+R(Tb−Tf) ……(1) G:圧延トルク、l:トルクアーム、P:圧延
荷重 R:ロール半径、Tb:後方張力、Tf:前方張
力 の関係式が成立し、この式を用いて、張力を算出
し制御することが行われている。すなわち、鋼材
が最上流圧延スタンドにかみ込まれた無張力時に
おいて圧延トルク、圧延荷重を検出し、これら検
出値よりトルクアームを求め、鋼材の次段圧延ス
タンドにかき込まれたときの圧延トルク、荷重の
変化を、先に求めたトルクアームに基づきスタン
ド間張力として算出し、更に、実測で得られた圧
延トルク、圧延荷重より次段圧延スタンドのトル
クアームを求めるもので、以下このトルクアーム
を基にスタンド間張力、次段圧延スタンドのトル
クアームと、下流圧延スタンドへかみ込んでいく
につれ各下流圧延スタンドのトルクアームを順次
演算していく。
That is, in continuous rolling, the relationship between tension, rolling load, and rolling torque is G = 2lP + R (Tb - Tf) ... (1) G: rolling torque, l: torque arm, P: rolling load, R: roll radius, A relational expression exists between Tb: rear tension and Tf: front tension, and this expression is used to calculate and control the tension. In other words, the rolling torque and rolling load are detected when there is no tension when the steel material is caught in the most upstream rolling stand, the torque arm is determined from these detected values, and the rolling torque when the steel material is drawn into the next rolling stand is determined. , the change in load is calculated as the tension between the stands based on the previously determined torque arm, and then the torque arm of the next rolling stand is determined from the rolling torque and rolling load obtained through actual measurements. Based on this, the tension between the stands, the torque arm of the next rolling stand, and the torque arm of each downstream rolling stand are calculated sequentially as the rolling stand is inserted into the downstream rolling stand.

(発明が解決しようとする問題点) 従来の方法は鋼材の圧延スタンドにかき込んだ
際荷重とトルクよりトルクアームを求めるもの
で、先に説明したように、トルクアームを求める
スタンドの直前上流スタンドとの間の張力は必ら
ず零でなければならない。
(Problem to be solved by the invention) In the conventional method, the torque arm is determined from the load and torque when the steel material is rolled into a rolling stand. The tension between the two must be zero.

このことは、全スタンド間に亘つての無張力制
御であれば、最上流スタンド入側は必ず無張力で
あり問題とはならないが、スタンドの途中から無
張力制御を行う場合、トルクアームを求めるに
は、直前上流スタンド間張力を零としなければな
らず、従来の方法では不可能であつた。
This does not pose a problem if tension-free control is performed between all stands, as there is always tension-free at the entrance of the most upstream stand, but if tension-free control is performed from the middle of the stand, it is difficult to determine the torque arm. For this purpose, the tension between the stands immediately before and upstream had to be reduced to zero, which was impossible with conventional methods.

(問題点を解決するための手段) この発明は、スタンドの途中から無張力制御を
行うに際し、直前上流スタンドに鋼材先端がかみ
込んだときの電流を記憶しておき、続いての下流
スタンドにかみ込んだときの上記直前上流スタン
ドの電流変化を検出し、これを零とするよう下流
スタンド速度を制御して、直前上流スタンドとの
間の張力を零とする、所謂電流ロツク方式による
張力零の制御を、張力制御を必要とする複数スタ
ンドの先端スタンドと、直前の上流スタンドとの
間で行い、以後のスタンド間では従来の鋼材かみ
込み時におけるトルクアームを求める方法を適用
したことを特徴とする。
(Means for Solving the Problems) This invention stores the current when the tip of the steel material gets caught in the immediately upstream stand when performing tensionless control from the middle of the stand, and then applies it to the subsequent downstream stand. The tension is reduced to zero using the so-called current lock method, which detects the current change in the above-mentioned immediately upstream stand when it is jammed, and controls the speed of the downstream stand so as to reduce this to zero, thereby making the tension between it and the immediately preceding upstream stand zero. control is performed between the tip stand of multiple stands that require tension control and the immediately preceding upstream stand, and the conventional method of determining the torque arm when steel material is bitten is applied between subsequent stands. shall be.

第1図にスタンド途中の3スタンドを無張力制
御する場合を実施例とし示す。圧延スタンド間張
力、圧延荷重、圧延トルクとの間には、先の(1)式
が成立するが、これを実施例のスタンドに適用
し、各スタンドに対応するサブスクリプトをつけ
て書直すと、 G3=2l3P3+R3(T34−T23) ……(2) G2=2l2P2+R2(T23−T12) ……(3) G1=2l1P1+R1・T12 ……(4) G:圧延トルク、P:圧延荷重、T:張力 l:トルクアーム、R:ロール半径 となる。従つて、いま#3、#2、#1の3スタ
ンド間に従来のかみ込み時のトルクアームを求め
張力演算する方法を行おうとすれば、直前の上流
スタンド#4との間の張力は零でなければならな
い。すなわち、鋼材の#3スタンドにかき込んだ
際、#4スタンドとの張力T34を零とすれば、
#2スタンドへはまだかみ込んでおらず張力T23
は生じていないので、トルクアームl3は、 2l3=[G3/P33 ……(5) 次に#2スタンドにかみ込んだとき、トルクア
ームl3を用いて張力T23はI/R3・〔P32(2l3−[G3
/P32 )、トルクアームl2は 2l2=[G2/P22+R2/R3[P3/P22([G3/P32
−2l3) ……(6) 更に#1スタンドにかみ込んだときは、上記ト
ルクアームl3、l2を用い張力T12が I/R2・[P21(2l2−[G2/P21)+T23と求めら
れ、ト ルクアームl1は 2l1=[G1/P11+R1/R2[P2/P11([G2/P2
1+2l2)+R1/R3[P3/P11([G3/P31+2l3
………(7) とそれぞれ演算できる。なお〔 〕iのi=
3.2.1はそれぞれ#3、#2、#1にかみ込んだ
ときの検出値を示す。
FIG. 1 shows an example in which three stands in the middle of the stands are controlled without tension. Equation (1) above holds true between the tension between the rolling stands, the rolling load, and the rolling torque, but if we apply this to the stand in the example and rewrite it by adding a subscript corresponding to each stand, we get , G 3 = 2l 3 P 3 + R 3 (T 34 − T 23 ) ……(2) G 2 = 2l 2 P 2 + R 2 (T 23 − T 12 ) ……(3) G 1 = 2l 1 P 1 +R 1・T 12 ...(4) G: Rolling torque, P: Rolling load, T: Tension l: Torque arm, R: Roll radius. Therefore, if we now try to use the conventional method of calculating the tension by calculating the torque arm during biting between the three stands #3, #2, and #1, the tension between it and the immediately preceding upstream stand #4 will be zero. Must. In other words, when the steel material is pushed into #3 stand, if the tension T 34 between it and #4 stand is zero,
It has not yet entered the #2 stand and the tension is T 23.
has not occurred, so the torque arm l 3 is 2l 3 = [G 3 /P 3 ] 3 ...(5) Next, when it bites into the #2 stand, the tension T 23 is calculated using the torque arm l 3 . I/R 3・[P 3 ] 2 (2l 3 − [G 3
/P 3 ] 2 ), torque arm l 2 is 2l 2 = [G 2 /P 2 ] 2 +R 2 /R 3 [P 3 /P 2 ] 2 ([G 3 /P 3 ] 2
−2l 3 ) ...(6) When the #1 stand is further bitten, the tension T 12 is reduced to I/R 2 [P 2 ] 1 (2l 2 −[G 2 /P 2 ] 1 ) + T 23 , and the torque arm l 1 is calculated as 2l 1 = [G 1 /P 1 ] 1 +R 1 /R 2 [P 2 /P 1 ] 1 ([G 2 /P 2
] 1 +2l 2 ) +R 1 /R 3 [P 3 /P 1 ] 1 ([G 3 /P 3 ] 1 +2l 3 )
......(7) can be calculated respectively. Note that i=
3.2.1 shows the detected values when biting into #3, #2, and #1, respectively.

トルクアームが求まればスタンオ間張力は(2)、
(3)、(4)の各式より、l3、l2、l1をパラメータとし
て T34=G3/R3+2P3・l3/R3+T23 ……(8) T23=G2/R2+2P2・l2/R2+T12 ……(9) T12=G1/R1+2P1・l1/R1 ……(10) と表すことができる。すなわち、トルクアーム
l3、l2、l1が既知であれば、(8)、(9)、(10)の各式よ
りスタンド間張力を演算できフイードバツクの無
張力制御を実現できる。
If the torque arm is determined, the tension between the stands is (2),
From equations (3) and (4), using l 3 , l 2 , and l 1 as parameters, T 34 = G 3 /R 3 +2P 3・l 3 /R 3 +T 23 ...(8) T 23 = G It can be expressed as 2 /R 2 +2P 2・l 2 /R 2 +T 12 ...(9) T 12 =G 1 /R 1 +2P 1・l 1 /R 1 ...(10). i.e. torque arm
If l 3 , l 2 , and l 1 are known, the tension between the stands can be calculated from equations (8), (9), and (10), and tension-free feedback control can be realized.

この発明は、上記する鋼材の圧延スタンドへの
かみ込み時におけるトルクアーム演算方式、にあ
つて、直前上流スタンドとの間の張力、実施例で
はT34、を零とするべく電流ロツク方式を適用し
たものである。以下、図面により作用を説明す
る。
In the above-mentioned torque arm calculation method when the steel material is bitten into the rolling stand, the present invention applies a current lock method to make the tension between the steel material and the immediately upstream stand, which is T 34 in the embodiment, zero. This is what I did. The operation will be explained below with reference to the drawings.

(作用) 第1図において、スタンド途中の#3、#2、
#1スタンド間を張力制御するには、直前上流の
#4スタンドとの間の張力を零にする必要があ
る。すなわち、鋼材が#4スタンドへかみ込み一
定時間経過後に(これはインパクトドロツプなど
の過渡現象を避けるため)、#4スタンドの電動
機の電流を検出し記憶する。続いて鋼材が#3ス
タンドにかみ込みかつ上記と同様安定するまでの
一定時間経過後に、先の#4スタンドの電動機電
流を検出し、記憶の電流値と比較、偏差を求め
る。
(Function) In Figure 1, #3, #2, in the middle of the stand,
In order to control the tension between the #1 stands, it is necessary to reduce the tension to zero between the #4 stand immediately upstream. That is, after a certain period of time has elapsed since the steel material was bitten into the #4 stand (this is to avoid transient phenomena such as impact drops), the current of the motor of the #4 stand is detected and stored. Subsequently, after a certain period of time has elapsed until the steel material is caught in the #3 stand and stabilized as described above, the motor current of the previous #4 stand is detected, compared with the memorized current value, and the deviation is determined.

この電流偏差信号をPI増幅して後#3スタン
ド電動機の速度補正指令として用い、この電流偏
差を軽減するべく#3スタンド速度を増大あるい
は減少させる。この結果、電流偏差が減少し予じ
め定めた値より小さくなれば、速度ロツク指令を
出し#3スタンドの速度をロツクし、かつ#3ス
タンド・トルクアームの演算指令を出し、圧延ト
ルク、圧延荷重からトルクアームを算出する。以
下、#2、#1各スタンドのトルクアームは、鋼
材の#2、#1スタンドにかみ込みかつ一定時間
経過後の圧延トルク、圧延荷重を検出して求め
る。なお、図面中CPは電流偏差の一定値以下か
否かを判別する回路、シーケンス制御部は#2、
#1スタンドのトルクアームを算出するべく鋼材
の#2、#1スタンドのかみ込みタイミング信号
より#2、#1の各スタンドトルクアーム演算装
置へ演算指令を出力するものである。
This current deviation signal is PI amplified and used as a speed correction command for the #3 stand motor, and the #3 stand speed is increased or decreased in order to reduce this current deviation. As a result, if the current deviation decreases and becomes smaller than a predetermined value, a speed lock command is issued to lock the speed of #3 stand, and a calculation command for #3 stand/torque arm is issued, and the rolling torque and rolling Calculate the torque arm from the load. Hereinafter, the torque arm of each stand #2 and #1 engages the stand #2 and #1 of the steel material and detects and determines the rolling torque and rolling load after a certain period of time has elapsed. Note that CP in the drawing is a circuit that determines whether the current deviation is below a certain value, and #2 is the sequence control unit.
In order to calculate the torque arm of the #1 stand, a calculation command is output to the stand torque arm calculating device of each of #2 and #1 from the biting timing signal of the #2 and #1 stands of the steel material.

(発明の効果) この発明は、連続圧延にあつてかみ込み時の荷
重、トルクよりトルクアームを求め張力を算出す
る方法において、無張力制御を必要とするスタン
ド群の直前上流スタンド間との張力を電流ロツク
方式を適用して零に調整したことを特徴とし、か
み込み時のトルクアーム算出方式を、スタンド途
中の任意の箇所より使用でき、従来の、全圧延ス
タンドに亘り無張力制御を行い、荷重、トルクの
各検出器、トルクアーム算出の演算器等を全圧延
スタンドに設置しなければならないもの、に比較
し、設備品数量、演算処理時間等大幅に節減する
ことができ、コストダウンに寄与するところ大で
ある。
(Effects of the Invention) This invention provides a method for calculating tension by determining the torque arm from the load and torque at the time of biting during continuous rolling. is adjusted to zero by applying a current lock method, and the torque arm calculation method at the time of biting can be used from any point in the stand, and the conventional tension-free control over the entire rolling stand is performed. , load and torque detectors, torque arm calculation calculators, etc. must be installed on every rolling stand, the number of equipment items and calculation processing time can be significantly reduced, resulting in cost reductions. This is a major contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3スタンド間張力を制御する場合のシ
ーケンス及びブロツク図である。
FIG. 1 is a sequence and block diagram for controlling the tension between three stands.

Claims (1)

【特許請求の範囲】 1 圧延トルク、圧延荷重及び張力の間に成立す
る、 G=2lP+R(Tb−Tf) G:圧延トルク、l:トルクアーム、P:圧延
荷重、R:ロール半径 Tb:後方張力、Tf:前方張力 の関係式を用いて、張力を算出し制御する連続圧
延機の張力制御において、張力制御スタンド群の
直前上流スタンドに鋼材先端がかみ込んだときの
上記直前上流スタンドの電流を記憶しておき、上
記張力制御スタンド群の先端スタンドである続い
ての下流スタンドにかみ込んだとき上記直前上流
スタンドの電流変化を検出し、これを零とするよ
う下記下流スタンドの速度を制御し、鋼材先端が
上記下流スタンドへかみ込む前と後において上記
直前上流スタンドの電流を同一とすることにより
上記下流スタンドと上記直前上流スタンドとの間
の張力を零とするとともに、そのときの当該下流
スタンドの荷重とトルクを求めトルクアームを演
算し、以下このトルクアームを基に順次下流の張
力制御スタンド群の各スタンドトルクアームを求
め、これらトルクアームに基づき張力を算出し目
標値との間で偏差を求めこれを零とするよう張力
制御を行うことを特徴とする連続圧延機の張力制
御方法。
[Claims] 1. G = 2lP + R (Tb - Tf) established between rolling torque, rolling load and tension. G: rolling torque, l: torque arm, P: rolling load, R: roll radius Tb: backward Tension, Tf: In tension control of a continuous rolling mill where the tension is calculated and controlled using the relational expression of forward tension, the current in the stand immediately before the upstream stand when the tip of the steel material is bitten by the stand immediately before the upstream of the tension control stand group. is memorized, and when it bites into the next downstream stand, which is the tip stand of the tension control stand group, the current change in the immediately preceding upstream stand is detected, and the speed of the following downstream stand is controlled so as to reduce this to zero. By making the current in the immediately upstream stand the same before and after the tip of the steel material bites into the downstream stand, the tension between the downstream stand and the immediately upstream stand is made zero, and the current The load and torque of the downstream stand are determined and the torque arm is calculated. Based on this torque arm, each stand torque arm of the downstream tension control stand group is sequentially determined. Based on these torque arms, the tension is calculated and the difference between it and the target value is calculated. A tension control method for a continuous rolling mill, characterized in that the tension is controlled so that the deviation is determined and the deviation is made zero.
JP59203792A 1984-09-27 1984-09-27 Method for controlling tension of continuous rolling mill Granted JPS6182911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203792A JPS6182911A (en) 1984-09-27 1984-09-27 Method for controlling tension of continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203792A JPS6182911A (en) 1984-09-27 1984-09-27 Method for controlling tension of continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS6182911A JPS6182911A (en) 1986-04-26
JPH0573484B2 true JPH0573484B2 (en) 1993-10-14

Family

ID=16479824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203792A Granted JPS6182911A (en) 1984-09-27 1984-09-27 Method for controlling tension of continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS6182911A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649133B2 (en) * 2016-03-09 2020-02-19 コマツ産機株式会社 Roll feeder, press system, and hoop material conveying method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130316A (en) * 1979-03-30 1980-10-09 Mitsubishi Electric Corp Controlling method for tension
JPS591014A (en) * 1982-06-25 1984-01-06 Fuji Electric Co Ltd Controlling method of tension between stands in multi- stand continuous rolling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130316A (en) * 1979-03-30 1980-10-09 Mitsubishi Electric Corp Controlling method for tension
JPS591014A (en) * 1982-06-25 1984-01-06 Fuji Electric Co Ltd Controlling method of tension between stands in multi- stand continuous rolling

Also Published As

Publication number Publication date
JPS6182911A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
JPH0573484B2 (en)
JP2547850B2 (en) Plate thickness controller for cold tandem rolling mill
JPH07245975A (en) Speed compensation device for rolling mill
JP2541311B2 (en) A method for learning the starting point of the pipe end control of a reduction rolling mill
JPH09295020A (en) Flying thickness changing method of metal plate in continuous type tandem rolling mill
JPH0575483B2 (en)
JP3041124B2 (en) Control method of hot strip mill finishing mill
JP2706342B2 (en) Meandering control method for rolled material
JP2737310B2 (en) Rolling method of seamless steel pipe
JP3085501B2 (en) Rolling control method and apparatus
JPH0573485B2 (en)
JPH0741297B2 (en) Simultaneous control of strip width and strip thickness
JPH0635005B2 (en) Biting delay control method in strip rolling
JPS6232649Y2 (en)
JPH07155817A (en) Method for controlling tension of continuous rolling mill
JPH04361816A (en) Method for controlling plate thickness of rolled stock in rolling mill
JPH048124B2 (en)
JPH04157007A (en) Controller for continuous mill
JPH06170417A (en) Tension controller for mandrel bar
JPS6335328B2 (en)
JPH05220511A (en) Method for controlling thickness in continuous hot rolling mill
JPH06335719A (en) Method for controlling speed for continuous rolling mill
JPH02126B2 (en)
JPS61226109A (en) Method and apparatus for hot rolling
JPS57181716A (en) Automatic thickness controller of steel pipe rolling mill