JPH0575483B2 - - Google Patents

Info

Publication number
JPH0575483B2
JPH0575483B2 JP59203793A JP20379384A JPH0575483B2 JP H0575483 B2 JPH0575483 B2 JP H0575483B2 JP 59203793 A JP59203793 A JP 59203793A JP 20379384 A JP20379384 A JP 20379384A JP H0575483 B2 JPH0575483 B2 JP H0575483B2
Authority
JP
Japan
Prior art keywords
tension
rolling
stand
torque
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59203793A
Other languages
Japanese (ja)
Other versions
JPS6224810A (en
Inventor
Hiroshi Imabayashi
Shinichiro Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP59203793A priority Critical patent/JPS6224810A/en
Publication of JPS6224810A publication Critical patent/JPS6224810A/en
Publication of JPH0575483B2 publication Critical patent/JPH0575483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は連続圧延機の張力制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a tension control method for a continuous rolling mill.

(従来の技術) 連続圧延においてスタンド間に生じる張力(含
圧縮力)はできるだけ軽減しなければならない。
このためスタンド間張力を検出してフイードバツ
ク制御することが一般に行われるが、形鋼圧延等
従来の張力検出器が使えない連続圧延の場合、張
力検出に特別の工夫をこらしている。すなわち、
張力と圧延荷重、圧延トルクとの間に、 G=2lP+R(Tb−Tf) ……(1) G:圧延トルク、l:トルクアーム、R:ロール
半径、P:圧延荷重、Tb:後方張力、Tf:前方
張力 の関係式が成立し、この式を用いて張力を演算し
制御することが行われている。すなわち、鋼材の
圧延スタンドにかみ込んだ無張力時の圧延荷重、
圧延トルクを測定し、トルクアームを求め、この
トルクアームを基に次段圧延スタンドにかみ込ん
だときの圧延トルクの変化をスタンド間張力とし
て求め、かつ、実際に検出の圧延荷重、圧延トル
クより次段圧延スタンドのトルクアームを算出す
るという、前方上流スタンドトルクアームと、ス
タンドかみ込み時の荷重、トルクよりトルクアー
ムを求め、張力を演算する方法が一般的である。
(Prior Art) The tension (including compressive force) generated between stands during continuous rolling must be reduced as much as possible.
For this reason, feedback control is generally performed by detecting the tension between the stands, but in the case of continuous rolling, such as shape steel rolling, where conventional tension detectors cannot be used, special measures are taken to detect the tension. That is,
Between tension, rolling load, and rolling torque, G = 2lP + R (Tb - Tf) ... (1) G: rolling torque, l: torque arm, R: roll radius, P: rolling load, Tb: rear tension, A relational expression for Tf: forward tension is established, and this expression is used to calculate and control the tension. In other words, the rolling load when there is no tension applied to the steel rolling stand,
The rolling torque is measured, the torque arm is determined, and based on this torque arm, the change in rolling torque when biting into the next rolling stand is determined as the tension between the stands, and from the actually detected rolling load and rolling torque. A common method is to calculate the torque arm of the next stage rolling stand, by determining the torque arm from the front upstream stand torque arm, the load and torque when the stand is caught, and then calculating the tension.

(発明が解決しようとする問題点) 従来の方法は、 A トルクアームを求めるスタンドの上流スタン
ドとの間の張力は零でなければならない B 他のスタンド間の張力演算を行いながらトル
クアームの演算も行わなければならず特に圧延
速度の早いとき高速の演算器を必要とする の2つの問題を有する。Aの点は、全スタンド間
について張力制御を行う場合、最上流の入口スタ
ンドの張力は必らず零となり問題とならないが、
スタンドの途中から、すなわち、下流の数スタン
ド間を張力制御する場合は大きな問題となつてく
る。
(Problems to be Solved by the Invention) The conventional method is: A. The tension between the stand for which the torque arm is sought and the upstream stand must be zero. B. Calculate the torque arm while calculating the tension between other stands. There are two problems: especially when the rolling speed is high, a high-speed computing unit is required. Regarding point A, if tension control is performed between all stands, the tension at the most upstream entrance stand will always be zero and will not be a problem, but
A big problem arises when tension is to be controlled from the middle of the stand, that is, between several stands downstream.

またB点は、小規模な連続圧延システムに適用
する場合、マイコンレベルの低価格でシステムを
実現することが要求され、演算時間の増大は高速
演算器の導入を必要としコスト面から支障を来た
すことになる。
In addition, point B is that when applied to a small-scale continuous rolling system, it is required to realize the system at a low cost at the level of a microcomputer, and the increase in calculation time requires the introduction of a high-speed calculation unit, which poses a cost problem. It turns out.

(問題点を解決するための手段) この発明の基本的な考え方は鋼材の後端が各ス
タンドからしり抜けするときの各圧延荷重、圧延
トルクを記憶しておき、その鋼材が最終スタンド
を抜けたとき、各スタンドのトルクアームを演算
し、これを次の鋼材の張力制御に使用しようとす
るものである。このことは、各スタンドのトルク
アームは圧延する鋼材が同じで、圧延条件が一定
であればほぼ等しいという経験的事実に基づいて
いる。
(Means for Solving Problems) The basic idea of this invention is to memorize each rolling load and rolling torque when the rear end of the steel material passes through each stand, and to make the steel material pass through the final stand. At this time, the torque arm of each stand is calculated and used to control the tension of the next steel material. This is based on the empirical fact that the torque arms of each stand roll the same steel material and are approximately equal if the rolling conditions are constant.

従つて、鋼材が変つた場合とか、圧延条件が大
きく変化した例えばキヤリバー変えや、ロールギ
ヤツプの変更等の場合、最初にトルクアームを求
める圧延を行う。すなわち、一般に電流ロツク方
式として知られる、鋼材が圧延スタンドにかみ込
んだときの電流を記憶しておき、次段の圧延スタ
ンドにかみ込んだときの始めの圧延スタンドの電
流変化を検出し、これを零とするべく次段圧延ス
タンドの速度を制御してスタンド間張力を零と
し、このときの圧延荷重、圧延トルクを検出しト
ルクアームを演算する。そして、このトルクアー
ムを用いて最初の鋼材圧延の張力を演算、無張力
制御を行い、かつこの鋼材後端の各スタンドから
しり抜けするときの各圧延荷重、圧延トルクによ
り、次の鋼材圧延のためのトルクアームを演算す
る。
Therefore, when the steel material changes, or when the rolling conditions change significantly, such as changing the caliber or roll gap, rolling is first performed to determine the torque arm. In other words, in what is generally known as the current lock method, the current when the steel material is caught in a rolling stand is memorized, and the change in current in the first rolling stand when the steel material is caught in the next rolling stand is detected. In order to make the tension zero, the speed of the next rolling stand is controlled to make the tension between the stands zero, and the rolling load and rolling torque at this time are detected and the torque arm is calculated. Then, this torque arm is used to calculate the tension for the first rolling of the steel material and performs tensionless control, and the rolling load and rolling torque when the steel material passes through each stand at the rear end are used to calculate the tension for the next rolling of the steel material. Calculate the torque arm for.

第1,2図に最終4スタンドの実施例を示す。
以下、これによりトルクアームの算出と、前パス
で演算されたトルクアームを用いて無張力制御を
行う様子を説明する。
Figures 1 and 2 show examples of the final four stands.
Hereinafter, the manner in which the torque arm is calculated and the tensionless control is performed using the torque arm calculated in the previous pass will be explained.

圧延スタンド間張力、圧延荷重、圧延トルクと
の間には先に示した(1)式が成立するが、これを4
スタンドに適用し、各スタンドに対応するサブス
ククリプトをつけて書直すと、 G3=2l3P3+R3(T34−T23) ……(2) G2=2l2P2+R2(T23−T12) ……(3) G1=2l1P1+R1・T12 ……(4) G1、G2、G3:各スタンド圧延トルク P1、P2、P3:各スタンド圧延荷重 T12、T23、T34:各スタンド間張力 l1、l2、l3:各スタンドトルクアーム R1、R2、R3:各スタンドロール半径 と表すことができる。従つて、いま#2スタンド
をしり抜けし#1スタンドにかんでいるとすれ
ば、張力T12は生じていなくトルクアームl1は、 2l1=[G1/P11 ……(5) また#3スタンドをしり抜けし#2、#1にか
んでいれば、トルクアームl1を用いてT12が演算
できかつT23は生じていなくトルクアームl2は(2)、
(3)式より 2l2=[G2/P22+R2/R1[P1/P22([G1/P12−2l
1)……(6) 更に#4スタンドをしり抜けし#3、#2、
#1にかんでいるならば、トルクアームl1、l2
用いてT23、T12が算出でき、T34は生じていない
ので、トルクアームl3は、(2)、(3)、(4)の各式よ
り、 2l3=[G3/P33+R3/R2[P2/P33([G2/P23
2l2) +R3/R1[P1/P33([G1/P13−2l1) ……(7) とそれぞれ演算できる。なお、〔 〕iのi=1、
2、3はそれぞれ#2、#3、#4の各スタンド
をしり抜けしたときの記憶データを示す。
Equation (1) shown earlier holds true between the tension between rolling stands, the rolling load, and the rolling torque.
When applied to the stands and rewritten with the subscript corresponding to each stand, G 3 = 2l 3 P 3 + R 3 (T 34 − T 23 ) ……(2) G 2 = 2l 2 P 2 + R 2 ( T 23 −T 12 ) ……(3) G 1 = 2l 1 P 1 + R 1・T 12 ……(4) G 1 , G 2 , G 3 : Each stand rolling torque P 1 , P 2 , P 3 : Each stand rolling load T 12 , T 23 , T 34 : Each stand tension l 1 , l 2 , l 3 : Each stand torque arm R 1 , R 2 , R 3 : Each stand can be expressed as a roll radius. Therefore, if we now pass through the #2 stand and bite into the #1 stand, the tension T 12 is not generated and the torque arm l 1 is 2l 1 = [G 1 /P 1 ] 1 ... (5 ) Also, if you pass through #3 stand and consider #2 and #1, you can calculate T 12 using torque arm l 1 and T 23 does not occur, and torque arm l 2 is (2),
From formula (3), 2l 2 = [G 2 /P 2 ] 2 + R 2 /R 1 [P 1 /P 2 ] 2 ([G 1 /P 12 −2l
1 )……(6) Further pass through the #4 stand and #3, #2,
If #1 is concerned, T 23 and T 12 can be calculated using torque arms l 1 and l 2 , and since T 34 has not occurred, torque arm l 3 is calculated as (2), (3), From each formula (4), 2l 3 = [G 3 /P 3 ] 3 +R 3 /R 2 [P 2 /P 3 ] 3 ([G 2 /P 2 ] 3
2l 2 ) +R 3 /R 1 [P 1 /P 3 ] 3 ([G 1 /P 1 ] 3 −2l 1 ) ...(7) can be calculated respectively. Note that i=1 in [ ]i,
2 and 3 indicate stored data when passing through stands #2, #3, and #4, respectively.

一方スタンド間張力は(2)、(3)、(4)式より、トル
クアームl3、l2、l1をパラメータとして T34=G3/R3+2P3l3/R3+T23 ……(8) T23=G2/R2+2P2l2/R2+T12 ……(9) T12=G1/R1+2P1l1/R1 ……(10) の演算式で表わすことができる。
On the other hand, the tension between the stands is calculated from equations (2), (3), and (4), using the torque arms l 3 , l 2 , and l 1 as parameters: T 34 = G 3 /R 3 +2P 3 l 3 /R 3 +T 23 ... …(8) T 23 =G 2 /R 2 +2P 2 l 2 /R 2 +T 12 …(9) T 12 =G 1 /R 1 +2P 1 l 1 /R 1 …(10) can be expressed.

すなわち、各スタンドのトルクアームl3、l2
l1が既知であれば、(8)、(9)、(10)の各式よりスタン
ド間張力を演算できフイードバツクの張力制御を
行い無張力制御を実現できる。以下、作用を図面
に即して具体的に説明する。
That is, the torque arms of each stand l 3 , l 2 ,
If l 1 is known, the tension between the stands can be calculated from equations (8), (9), and (10), and tension-free control can be achieved by performing feedback tension control. The operation will be specifically explained below with reference to the drawings.

(作用) 鋼材が#3スタンドにかんで後一定時間△T経
過してから、(8)式より#4、#3間張力T34を演
算し、この演算結果で#3スタンド速度を補正し
#4、#3間張力を零に制御する。以下同様に
して鋼材が#2スタンドにかんで一定時間△T後
に#4、#3間張力T34、#3、#2間張力T23
を(8)、(9)式により求め、これら演算結果に基づき
#3、#2スタンド速度を補正、張力零の無張力
制御を行い、更に#1スタンドにかんだ後も、
(8)、(9)、(10)の各式より張力を求めかつこれら張力
が零になるよう#3、#2、#1スタンドの各速
度の補正を行う。なおβ1、β2は影響係数であ
る。
(Function) After a certain period of time △T has passed after the steel material is caught in the #3 stand, calculate the tension T 34 between #4 and #3 from equation (8), and use this calculation result to correct the #3 stand speed. Control the tension between #4 and #3 to zero. Similarly, the steel material is held in the #2 stand, and after a certain period of time ΔT, the tension between #4 and #3 is T 34 and the tension between #3 and #2 is T 23.
are calculated using equations (8) and (9), and based on these calculation results, the #3 and #2 stand speeds are corrected, tensionless control is performed with zero tension, and even after biting into the #1 stand,
Obtain the tension from equations (8), (9), and (10), and correct the speeds of stands #3, #2, and #1 so that these tensions become zero. Note that β 1 and β 2 are influence coefficients.

次に、この鋼材の各スタンドをしり抜けしたと
きのトルクアームの算出について述べる。鋼材の
後端が#4スタンドを抜けたことを検知すると、
#3、#2、#1スタンドの速度をロツクし、
かつ一定時間経過後に各スタンドの圧延トルク、
圧延荷重G3、P3;G2、P2;G1、P1を各記憶する
。更に#3スタンドを抜けたときより一定時間
経過後に#2、#1スタンドのトルク、荷重G2
P2;G1、P1を記憶する。なお、#4スタンド
の抜けから#3スタンドの抜けに至るまでの時間
を計測し、これが一定値以上であるならば、被圧
延材条件が変化したものとみなし先のスタンド速
度ロツクを解除し、#2、#1スタンド間張力を
前パスで求めたトルクアームに基づき演算し、
#2、#1スタンドの速度補正をなし無張力制御
を行う。一方、この時間が一定値に達していな
ければ、ほぼ安定の無張力制御が行われているも
のとみなし、速度ロツクのままの運転を継続す
る。このようにして、圧延が継続されるが、続い
ての#2スタンドを抜け一定時間経過後、#1ス
タンドの圧延トルク、荷重G1、P1を記憶する。
Next, we will discuss the calculation of the torque arm when passing through each stand made of this steel material. When it is detected that the rear end of the steel material has passed through the #4 stand,
Lock the speed of #3, #2, #1 stands,
And after a certain period of time, the rolling torque of each stand,
The rolling loads G 3 , P 3 ; G 2 , P 2 ; G 1 , P 1 are each stored. Furthermore, after a certain period of time has passed since leaving the #3 stand, the torque and load G 2 of the #2 and #1 stands are increased.
P 2 ; Store G 1 and P 1 . In addition, the time from the #4 stand coming out to the #3 stand coming out is measured, and if this is above a certain value, it is assumed that the conditions of the rolled material have changed, and the speed lock of the previous stand is released. Calculate the tension between #2 and #1 stands based on the torque arm obtained in the previous pass,
Correct the speed of #2 and #1 stands and perform tension-free control. On the other hand, if this time has not reached a certain value, it is assumed that almost stable tension-free control is being performed, and operation continues with the speed locked. In this way, rolling continues, but after passing through the subsequent #2 stand and a certain period of time has elapsed, the rolling torque, loads G 1 and P 1 of the #1 stand are memorized.

斯くして鋼材が全スタンドを抜けたら、上記の
#4、#3、#2の各スタンド抜け時に記憶した
それぞれのスタンドの圧延トルク、荷重〔G3
P3;G2、P2;G1、P13、〔G2、P2;G1、P12
〔G1、P11に基づき、(5)、(6)、(7)の各式よりトル
クアームを算出する。なお、〔G、P〕iのi
=3、2、1は(5)、(6)、(7)式と同じ意味である。
After the steel material has passed through all the stands, the rolling torque and load of each stand [G 3 ,
P 3 ; G 2 , P 2 ; G 1 , P 1 ] 3 , [G 2 , P 2 ; G 1 , P 1 ] 2 ,
[G 1 , P 1 ] Based on 1 , calculate the torque arm from equations (5), (6), and (7). In addition, i of [G, P]i
=3, 2, 1 have the same meaning as equations (5), (6), and (7).

図面は、第1図が張力制御システムのブロツク
図、第2図が張力制御と、トルクアーム演算のシ
ーケンス図であり、第2図のシーケンス図に従つ
て張力が演算され、またトルクアームが求めら
れ、かつ算出された張力は、第1図ブロツク図よ
り明らかのように、目標値と比較、偏差がとられ
制御計算されて後に、後段スタンド電動機へ速度
補正指令として加えられる。
In the drawings, Fig. 1 is a block diagram of the tension control system, and Fig. 2 is a sequence diagram of tension control and torque arm calculation.According to the sequence diagram of Fig. 2, the tension is calculated and the torque arm is calculated. As is clear from the block diagram of FIG. 1, the calculated tension is compared with the target value, the deviation is taken, and the control calculation is performed, after which it is applied to the rear stand motor as a speed correction command.

(発明の効果) しり抜け時の圧延トルク、荷重を記憶しこれら
記憶値より各スタンドのトルクアームを演算し、
このトルクアームを次パス鋼材の張力算出に用い
たもので、下流の数スタンド間だけの張力制御を
容易に実現でき、またトルクアームの演算と、ス
タンド間の張力算出を別々に行うようにしたこと
は、高速の演算器を不要とし、マイコンレベルの
システムで十分実現可能となり、このことは、特
に小規模の連続圧延システムにあつてもコスト的
に引合い導入し得るという優れた効果を有する。
(Effect of the invention) The rolling torque and load at the time of breaking through are memorized, and the torque arm of each stand is calculated from these memorized values.
This torque arm was used to calculate the tension of the next pass steel material, making it easy to control the tension between just a few downstream stands. Also, the calculation of the torque arm and the calculation of the tension between the stands were performed separately. This eliminates the need for a high-speed arithmetic unit and can be fully realized with a microcomputer-level system, which has an excellent effect that it can be introduced particularly in a small-scale continuous rolling system in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、第1図が張力制御システムのブロツク
線図、第2図が張力制御システムのシーケンス図
である。
In the drawings, FIG. 1 is a block diagram of the tension control system, and FIG. 2 is a sequence diagram of the tension control system.

Claims (1)

【特許請求の範囲】 1 圧延トルク、圧延荷重および張力の間に成立
する、 G=2lP+R(Tb−Tf) G:圧延トルク、l:トルクアーム、P:圧延荷
重、R:ロール半径、Tb:後方張力、Tf:前方
張力 の関係式を用いて張力を算出、制御する連続圧延
機の張力制御において、鋼材後端が圧延スタンド
をしり抜けする時に前段の各圧延スタンド速度を
ロツクしこれら圧延スタンドの荷重、トルクを測
定、記憶するとともに、次段圧延スタンドをしり
抜けするまでの時間を測定しこの時間が予じめの
設定値を越えたならば前記ロツクを解除し、トル
クアームに基づき張力を演算、速度補正を行いか
つこのときの荷重、トルクを測定、記憶して、更
にこれら記憶値に基づき、最終段圧延スタンドを
しり抜けして後に、各圧延スタンドのトルクアー
ムを求め、これらトルクアームにより次パス鋼材
圧延の張力を算出し目標値との間で偏差を求めこ
れを零とするよう張力制御を行うことを特徴とす
る連続圧延機の張力制御方法。
[Claims] 1 G = 2lP + R (Tb - Tf) established between rolling torque, rolling load and tension, G: rolling torque, l: torque arm, P: rolling load, R: roll radius, Tb: In tension control of a continuous rolling mill, where the tension is calculated and controlled using the relational expression of rear tension, Tf: front tension, when the rear end of the steel passes through the rolling stands, the speed of each rolling stand in the previous stage is locked, and the speed of each rolling stand is locked. In addition to measuring and storing the load and torque of the rolling stand, the time required to pass through the next rolling stand is also measured. If this time exceeds a preset value, the lock is released and the tension is adjusted based on the torque arm. Calculate and correct the speed, measure and store the load and torque at this time, and based on these stored values, after passing through the final rolling stand, calculate the torque arm of each rolling stand, and calculate these torques. A method for controlling tension in a continuous rolling mill, characterized in that the tension in the next pass of steel rolling is calculated by an arm, the deviation from a target value is determined, and the tension is controlled so as to reduce the deviation to zero.
JP59203793A 1984-09-27 1984-09-27 Method for controlling tension in continuous rolling mill Granted JPS6224810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203793A JPS6224810A (en) 1984-09-27 1984-09-27 Method for controlling tension in continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203793A JPS6224810A (en) 1984-09-27 1984-09-27 Method for controlling tension in continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS6224810A JPS6224810A (en) 1987-02-02
JPH0575483B2 true JPH0575483B2 (en) 1993-10-20

Family

ID=16479839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203793A Granted JPS6224810A (en) 1984-09-27 1984-09-27 Method for controlling tension in continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS6224810A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107136B (en) * 2014-12-30 2019-05-07 首要金属科技德国有限责任公司 Utilize the tension change rolling in-process stock in the tail end of rolling in-process stock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130616A (en) * 1979-04-02 1980-10-09 Takeisa Ogura Magnetic mat
JPS591014A (en) * 1982-06-25 1984-01-06 Fuji Electric Co Ltd Controlling method of tension between stands in multi- stand continuous rolling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130616A (en) * 1979-04-02 1980-10-09 Takeisa Ogura Magnetic mat
JPS591014A (en) * 1982-06-25 1984-01-06 Fuji Electric Co Ltd Controlling method of tension between stands in multi- stand continuous rolling

Also Published As

Publication number Publication date
JPS6224810A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
WO1995007776A1 (en) Snaking control method and tandem plate rolling mill facility line
JPH0575483B2 (en)
US4003229A (en) Method for compensating tail end
JP3545541B2 (en) Meandering control method in plate rolling
JP3041124B2 (en) Control method of hot strip mill finishing mill
JP2738272B2 (en) Control method of tension between rolling stands
JPS6123512A (en) Method and device for controlling tension between rolling mill stands
JP2541311B2 (en) A method for learning the starting point of the pipe end control of a reduction rolling mill
JPS6032526B2 (en) Rolling mill control method
JP2839775B2 (en) Control device for continuous rolling mill
JPH0573484B2 (en)
JPH0573485B2 (en)
JPH08332507A (en) Method for controlling thickness of taper plate
JPS62137116A (en) Plate thickness control device for multistage rolling mill
JPS6323849B2 (en)
JPH0818058B2 (en) Automatic plate thickness control method for plate rolling
JPS6335328B2 (en)
JP3910264B2 (en) Rolling control device
JPH06269821A (en) Controller for flat shape of rolling mill
JPS6335327B2 (en)
JPH03216207A (en) Method for controlling meandering of rolled stock
JPS6018499B2 (en) How to correct meandering strips
JPS63174710A (en) Method for controlling shape
JPS6018253B2 (en) Tandem rolling mill control method
JPS58128210A (en) Controlling method tension between stands of cotinuous rolling mill