JP3545541B2 - Meandering control method in plate rolling - Google Patents

Meandering control method in plate rolling Download PDF

Info

Publication number
JP3545541B2
JP3545541B2 JP19439696A JP19439696A JP3545541B2 JP 3545541 B2 JP3545541 B2 JP 3545541B2 JP 19439696 A JP19439696 A JP 19439696A JP 19439696 A JP19439696 A JP 19439696A JP 3545541 B2 JP3545541 B2 JP 3545541B2
Authority
JP
Japan
Prior art keywords
tension
rolled material
rolling
roll
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19439696A
Other languages
Japanese (ja)
Other versions
JPH1034220A (en
Inventor
健二 山田
茂 小川
篤 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19439696A priority Critical patent/JP3545541B2/en
Publication of JPH1034220A publication Critical patent/JPH1034220A/en
Application granted granted Critical
Publication of JP3545541B2 publication Critical patent/JP3545541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属板のタンデム圧延操業において、圧延時の圧延材料の安定した通板性を確保するための蛇行制御方法に関する。
【0002】
【従来の技術】
板材のタンデム圧延は、高精度な薄板を大量生産できるプロセスであり、タンデム圧延機列を構成する各圧延機間で圧延材に張力を作用させることができるため、非常に安定した圧延操業が可能である。圧延材に張力を作用させた場合、例えば、作業側と駆動側の圧下装置の設定値の差(以下では圧下レベリングと略称する)にある程度の最適値からの偏差が存在しても、それがそのまま左右の伸び率差になるのではなく、張力の再配分によって伸び率の左右差が抑制されるため、通板事故に直結することは少ない。しかしながら、圧延材の先端および後端については、前方あるいは後方張力を作用させることができないので、張力による上記安定化作用が半減し、通板事故を生じやすくなる。特に、後端通過時には尻絞りという通板事故が発生することが多く、蛇行制御あるいは尻絞り制御と呼ばれる圧下制御方法が従来から実施されている。
【0003】
なお、以下の説明では多くの場合作業側、駆動側の事を「左、右」という表現で簡略表現する。したがって、例えば「圧下設定値の左右差」とは圧下設定値の作業側と駆動側間の差を意味する。また、本発明では圧延材がミルセンターから幅方向にずれて通過することを「蛇行」と呼ぶものとする。
【0004】
尻絞りは、圧延材後端近傍における作業側と駆動側の伸び差率に起因する材料の蛇行が主原因と考えられており、尻絞りの現象が現れ始める時点、すなわち圧延材の後端が直前の圧延機から出た時点から、当該圧延機の圧下設定値の左右差の制御すなわちレベリング制御を実施するというのが従来の蛇行制御方法である。このときの検出端としては、当該圧延機の圧延荷重の左右差や蛇行センサーによる板のオフセンター量の検出信号などが用いられる。
【0005】
例えば、特開昭59−191510号公報には、圧延機入側の蛇行検出器によって圧延材の蛇行量を検出してレベリング制御を実施する技術が開示されている。この技術の場合も、蛇行量を検出してレベリング制御を実施する技術が開示されている。この技術の場合も、蛇行量そのものは、タンデム圧延中には、上述したように圧延材に作用する張力によって大きな変化を示すことがほとんどないため、実際に有意な圧下レベリング制御を実施できるのは、圧延材後端が直前の圧延機を出た時点以降になる。なお、圧延材の蛇行を検出する手段としては、上記特開昭59−191510号公報に開示されているような蛇行センサー(幅方向通板位置測定装置)や当該圧延機の圧延荷重の左右差等が用いられる。
【0006】
【発明が解決しようとする課題】
上記のような従来の蛇行制御方法は、圧延材後端が直前の圧延機から出た時点から制御が開始されるため、実質的な制御の動作時間が短く、尻絞り防止に間に合わない場合がある。また、当該圧延機の圧下レベリングに最適値からの偏差があった場合には、圧延材の後端が直前の圧延機を出た時点で、それまで作用していた後方張力がなくなり、張力の左右差による補償効果がなくなるため急激な蛇行が始まることになり、その現象が現れてから圧下レベリング制御を始めたのでは手遅れになる場合が多い。
【0007】
本発明では、圧延材後端が直前の圧延機を出た時点から制御を開始するのではなく、圧延材後端に達する前の定常圧延状態で、タンデム圧延機列の各圧延機の圧下レベリングを最適な状態にしておく方法を提示する。
【0008】
【課題を解決するための手段】
本発明の要旨は、2台以上の圧延機と、各圧延機間のうち少なくとも一箇所の圧延機間に、該圧延機のロール軸線に平行なロール軸を有し圧延材と接触して回動自在に支持された張力測定用ロールを配設し、圧延材に作用する圧延方向張力によって前記張力測定用ロールに負荷される鉛直方向の力を作業側・駆動側それぞれ独立に検出することができ、さらに、前記張力測定用ロールに圧延材から作用するロール軸方向の力を検出できる構造の測定装置と、圧延材の幅方向通板位置測定装置とが配備されたタンデム板圧延機の蛇行制御法において、前記幅方向通板位置測定装置の出力より、前記圧延機間の張力測定用ロールの位置における圧延材の幅方向通板位置を直接検出または推定し、これと前記張力測定用ロールに負荷される鉛直方向の力の作業側と駆動側の検出値および前記張力測定用ロールに圧延材から作用するロール軸方向の力の検出値とから、前記張力測定用ロールの位置において圧延材に真に作用している張力の作業側と駆動側の差を演算し、該張力差が予め定められた許容範囲に入ることと、併せて前記張力測定用ロールに負荷されるロール軸方向の力が予め定められた許容範囲に入ることを目標として、各圧延機の作業側と駆動側の圧下設定値の差を制御することを特徴とする板圧延における蛇行制御方法である。
【0009】
【発明の実施の形態】
圧延材後端が直前の圧延機を出たことによって起きる最も大きな変化は、言うまでもなく後方張力がなくなることである。したがって、この時から急激な蛇行が始まるのであれば、それは当該圧延機の圧下レベリング最適値からずれていて、これを後方張力の左右差で補償していたものと推定される。このことから、圧延材後端に達する前の定常圧延状態の間に、各圧延機の入側および出側の圧延材に作用する張力の左右差をできるだけ零に近づけておくのが、尻絞り事故防止の決め手になるものと考えられる。このためには、各圧延機の入側および出側の圧延材に作用する張力の左右差を検出し、これを零に近づける操作を行えばよい。
【0010】
図1には、本発明の蛇行制御方法の好ましい実施例のアルゴリズムを示している。図1のアルゴリズムは、例えば図2に示すように、スタンド間に張力測定用ロール2a〜2cと幅方向通板位置測定装置3a〜3cが配備されたようなタンデム圧延機設備列を対象とした蛇行制御法である。スタンド間に配備された幅方向通板位置測定装置3a〜3cの出力より、同じくスタンド間に配備された張力測定用ロール2a〜2cの位置における圧延材4の幅方向通板位置を直接検出または推定する。該張力測定用ロールは、左右独立な張力、ロール軸方向の力(以下スラスト力と称す)の測定が可能となるように構成されている。この左右の張力、スラスト力の測定値と上記圧延材の幅方向通板位置とから、圧延材に真に作用している張力の左右差を演算算出する。
【0011】
今、任意のNo.i圧延機とNo.i+1圧延機の間を考慮の対象とし、図4に示すようなルーパ方式張力測定装置を例としてさらに詳しく説明する。圧延材張力測定装置のロードセル荷重をルーパ角度を考慮して鉛直方向の荷重に換算して作業側と駆動側の差を抽出した値をRdfi とするとき、Rdfi には圧延材に作用する張力差σdfi のみならず、張力測定用ロールに作用するスラスト力S(駆動側から作業側に向かって圧延材から張力測定用ロールに作用した場合を正)、および圧延材の幅方向通板位置すなわち材料オフセンター量xciの影響も含まれ、次式のような関係式が成立する。
dfi =[{b/(6aLi)}σdfi +(2/aLi)σbxci
×(sinθfi+sinθb(i+1))h+(2/aLi)rLi
(1)
ここで、bは圧延材の板幅、aLiは張力測定用ロール支点間距離、σは圧延材の単位断面積あたりの張力(以下ではユニット張力と称する)、θfiおよびθb(i+1)は張力測定用ロールを境にして第i圧延機出側および第i+1圧延機入側の板面が水平面となす角度(図3参照)、hは第i圧延機出側の板厚、rLiは張力測定用ロール半径である。
【0012】
式(1)より、Rdfi が測定されたとしても、張力測定用ロールに作用するスラスト力Sおよびルーパ位置における材料オフセンター量xciが未知な場合、正確に圧延材に作用している張力を求めることは不可能なことがわかる。
【0013】
一般に、xciは零となることを目標として圧延操業を実施するが、現実には10〜20mm程度の誤差は存在し、これが圧延材に作用している張力σdfi の推定精度に無視できない影響をおよぼす。また、図4は上流側圧延機のロール軸芯位置6と下流側圧延機のロール軸芯位置7との間に存在する圧延中の圧延材4の幅方向位置を見た平面図の模式図であるが、図に示すように、例えば、スタンド間の圧延材の幅方向通板位置が上流側と下流側とで逆方向にずれている場合、張力測定用ロールには圧延材からスラスト力が作用する。これは、圧延材4の速度ベクトル13が、ロール軸に垂直な方向の成分の他に、僅かではあるがロール軸に平行な成分15を有する一方、張力測定用ロールの周速ベクトル14は常にロール軸に垂直な成分のみであるため、張力測定用ロールとの間に圧延材のロール軸方向速度成分15に相当するすべり速度を生じ、すべり方向に発生する摩擦力として張力測定用ロールには圧延材からスラスト力が作用することになる。
【0014】
例えば、xci=10mm、aLi=2000mm、b=1000mmの場合、式(1)右辺の[]内の項の評価より、xciの影響を無視したままで張力差σdfi を推定した場合、ユニット張力σの12%の誤差を生じることになる。また、張力測定用ロールに作用するスラスト力Sは、張力測定用ロールに作用する鉛直方向の合力に一般にスラスト係数といわれる定数を乗じた下式で評価されると考えられる。
=γσbh(sinθfi+sinθb(i+1)) (2)
ここで、γはスラスト係数である。式(2)を式(1)に代入、評価すると、上記条件に加え張力測定用ロール半径rLiを150mmとした場合、スラスト係数が0.05としても、スラスト力Sを無視するとユニット張力σの9%の誤差を生じることになる。
【0015】
圧延材に作用する張力の左右差σdfi を零にするために圧下レベリング制御を実施した場合、材料オフセンター量xciおよびスラスト力Sも変化するの普通であるが、この変化を一切検出することなく制御を実施したとすれば、上記の例に従う場合、この制御には目標値σdfi に対して約±0.1σの本質的な誤差を含むことになり、尻絞り事故を撤廃できるような十分な蛇行制御を実施することは不可能である。通板事故を防止するために重要なのはRdfi =0とすることではなくて、σdfi =0とすべきことは明らかであるからである。
【0016】
以上説明してきたように、σdfi を正確に検出し、σdfi =0とするための制御を実施するためには、作業側・駆動側それぞれ独立に張力検出器を有する圧延材張力測定装置で該張力測定装置に負荷される荷重の左右差を検出するとともに、該張力測定装置の位置における圧延材の幅方向通板位置を直接検出または推定し、かつ該張力測定装置に作用するスラスト力をも検出することが必須要件となることが明らかである。
【0017】
以上のようにして、圧延材に作用する張力の左右差が算出された後、この張力差が所定値になることを目標として、各圧延機の圧下レベリング制御を実施する。このときの所定の目標値としては、一般的には左右差零を目標とするが、操業実績の学習結果によって、零近傍の所定の目標値を設定して差し支えない。また、このような制御を実施しても、完全に目標値に一致することは稀であるので、目標値近傍に張力の左右差の許容範囲を設け、この許容値を超えた場合に圧下レベリング制御を実施するというのが現実的である。
【0018】
次に、張力測定用ロールに作用するスラスト力を検出して、この軸方向力が所定の値になるように各圧延機の圧下レベリング制御を実施する。
スラスト力が生じる図4のような状態では、スタンド間の圧延材に作用する張力の主軸12は、図に示すようにスタンド間の圧延材に対して斜め方向になるため、図4に示すように、張力測定用ロール位置における圧延材の張力分布11が均一であっても、上流側圧延機位置の張力分布9および下流側圧延機位置の張力分布10が図に示す方向に不均一となる。このような張力のアンバランスは、前記した張力測定用ロール2に負荷される鉛直方向荷重の測定からは検出不可能であり、張力測定用ロールに作用するスラスト力を検出して、これを零にするような圧下レベリング制御を同時に実施する本発明の方法によって初めて検出・制御可能となる。
【0019】
ところで、張力測定用ロールに作用するスラスト力の目標値は基本的には零であるが、張力測定用ロール軸芯と圧延機のロール軸芯との平行度の誤差によっては、零近傍の所定の値を目標としたほうが安定する場合がある。また、このような制御を実施しても、完全に目標値に一致することは稀であるので、目標値近傍にスラスト力の許容範囲を設け、この許容値を超えた場合に圧下レベリング制御を実施するという方式を採用するのが好ましい。
【0020】
また、図1のアルゴリズムでは、圧延材に作用する張力の左右差を所定値にする制御ループの外側に、張力測定用ロールに作用するスラスト力を所定値にするための制御ループを位置づけているが、制御方式としては、この逆でもよく、また、張力の左右差とスラスト力を同時に零にするような圧下レベリング操作を一気に実施してもよい。
【0021】
【実施例】
図5に示すような7スタンドタンデムミルで、すべてのスタンド1a〜1g間に作業側・駆動側それぞれ独立に張力検出器を有し鉛直方向荷重とロール軸方向荷重を検出することができる張力測定用ロール2a〜2fを有し、最下流圧延機より連続して4スタンド1d〜1gの圧延機前面のスタンド間には、圧延材の幅方向通板位置を測定できる検出装置3a〜3dが配備されているタンデム圧延機群を用いて蛇行制御を実施した。
【0022】
当初、張力測定用ロール鉛直方向荷重の測定値のみを用いて、材料オフセンター量を常に零と仮定して、圧延材に作用する張力差σdfi を推定し、σdfi =0を目標として圧下レベリング制御を実施したが、圧延材後端の通板状況は完全に安定するまでには至らなかった。
【0023】
そこで、圧延材の幅方向通板位置測定装置3a〜3dの出力によって、張力測定用ロールの位置における材料オフセンター量の推算値を算出し、この値と張力測定用ロール鉛直方向および軸方向荷重から式(1)を用いて圧延材に作用する張力差σdfi を推定し、σdfi =0を目標として各圧延機の圧下レベリング制御を実施した。さらに、上記張力測定用ロールに作用するロール軸方向荷重の測定値が零になることを目標として同時に圧下レベリング制御を実施した結果、下流側圧延機を含めて圧延材後端の通板をほぼ完全に安定させることができた。
【0024】
【発明の効果】
本発明の蛇行制御方法を用いることにより、定常圧延中にタンデム圧延機列の各圧延機の圧下レベリングを最適化することができ、その結果、圧延材後端圧延時を含めて通板時の事故はほとんど皆無の状態となり、作業率および歩留を大きく向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の蛇行制御方法のアルゴリズムを示す図である。
【図2】本発明の前提となるタンデム板圧延機設備列の例を示す模式図である。
【図3】圧延機間の圧延材が水平面となす角を示すための側面図である。
【図4】任意のスタンド間において張力測定用ロールにロール軸方向荷重が発生するメカニズムを説明する平面図である。
【図5】本発明の実施例としたタンデム板圧延機設備列を示す模式図である。
【符号の説明】
1a〜1g 圧延機
2a〜2f 圧延材張力測定装置
3a〜3d 幅方向通板位置測定装置
4 圧延材
5 圧延方向
6 任意の圧延機間の上流側圧延機のロール軸芯位置
7 任意の圧延機間の下流側圧延機のロール軸芯位置
8 任意の圧延機間の張力測定用ロールの軸芯位置
9 上流側圧延機位置の張力分布
10 下流側圧延機位置の張力分布
11 張力測定用ロール位置における張力分布
12 圧延機間の圧延材に作用する張力の主軸
13 張力測定用ロール位置における圧延材の速度ベクトル
14 張力測定用ロールの周速ベクトル
15 圧延材のロール軸方向速度成分
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a meandering control method for securing a stable threading property of a rolled material during rolling in a tandem rolling operation of a metal plate.
[0002]
[Prior art]
Tandem rolling of plate material is a process that can mass-produce high-precision thin plates.Tension can be applied to the rolled material between the rolling mills that constitute the tandem rolling mill row, enabling extremely stable rolling operation It is. When tension is applied to the rolled material, for example, even if there is a deviation from the optimum value to some extent in the difference between the set values of the pressing device on the working side and the driving side (hereinafter abbreviated as “rolling leveling”), it does not matter. The difference between the right and left elongation rates is not changed as is, but the right and left elongation differences are suppressed by the redistribution of the tension. However, since the forward and backward tensions cannot be applied to the leading and trailing ends of the rolled material, the stabilizing action due to the tension is reduced by half, and a passing-through accident is likely to occur. In particular, when the vehicle passes the rear end, a pass-through accident called butt squeezing often occurs, and a rolling-down control method called meandering control or squeezing squeeze control has been conventionally implemented.
[0003]
In the following description, the working side and the driving side are often simply represented by “left, right” in many cases. Therefore, for example, the "left-right difference of the rolling reduction value" means the difference between the working side and the driving side of the rolling reduction value. In the present invention, the passage of the rolled material shifted from the mill center in the width direction is referred to as “meandering”.
[0004]
Butt drawing is considered to be caused mainly by meandering of the material due to the difference in elongation between the working side and the drive side in the vicinity of the rear end of the rolled material. It is a conventional meandering control method to execute the control of the left-right difference of the rolling reduction value of the rolling mill, that is, the leveling control, from the time when the rolling machine comes out of the immediately preceding rolling mill. As the detection end at this time, a detection signal of the off-center amount of the plate by the meandering sensor or the left-right difference in the rolling load of the rolling mill is used.
[0005]
For example, Japanese Patent Application Laid-Open No. 59-191510 discloses a technique in which a meandering detector on the entry side of a rolling mill detects a meandering amount of a rolled material and performs leveling control. Also in the case of this technique, a technique of detecting a meandering amount and performing leveling control is disclosed. Also in the case of this technology, the meandering amount itself hardly shows a large change due to the tension acting on the rolled material during the tandem rolling as described above, so that it is possible to actually perform a significant rolling leveling control. , After the time when the rear end of the rolled material exits the immediately preceding rolling mill. As means for detecting the meandering of the rolled material, a meandering sensor (width direction passing position measuring device) as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 59-191510 or a difference in the rolling load of the rolling mill can be used. Are used.
[0006]
[Problems to be solved by the invention]
In the conventional meandering control method as described above, since the control is started from the time when the rear end of the rolled material comes out of the immediately preceding rolling mill, the operation time of the substantial control is short, and there are cases where it is not possible to prevent the tail drawing. is there. Also, when there is a deviation from the optimum value in the rolling leveling of the rolling mill, when the rear end of the rolled material exits the immediately preceding rolling mill, the backward tension that has been applied up to that point is lost, and the tension of the tension is lost. Since the compensation effect due to the left-right difference disappears, sudden meandering starts, and it is often too late to start the rolling leveling control after the phenomenon appears.
[0007]
In the present invention, instead of starting the control from the time when the rear end of the rolled material exits the immediately preceding rolling mill, in a steady rolling state before reaching the rear end of the rolled material, the reduction leveling of each rolling mill in the tandem rolling mill row is performed. A method to keep the optimal state.
[0008]
[Means for Solving the Problems]
The gist of the present invention is that a roll having a roll axis parallel to a roll axis of a rolling mill is provided between two or more rolling mills and at least one of the rolling mills, and is rotated by contact with a rolled material. A movably supported tension measuring roll is provided, and the vertical force applied to the tension measuring roll by the rolling direction tension acting on the rolled material can be independently detected on the working side and the drive side. Meandering of a tandem plate rolling mill provided with a measuring device having a structure capable of detecting a force in the roll axis direction acting on the tension measuring roll from the rolled material and a device for measuring a width direction passing position of the rolled material. In the control method, from the output of the width direction threading position measurement device, the width direction threading position of the rolled material at the position of the tension measurement roll between the rolling mills is directly detected or estimated, and this and the tension measurement roll are used. In the vertical direction From the detected values of the working side and the drive side of the force and the detected value of the force in the roll axis direction acting on the tension measuring roll from the rolled material, the roller truly acts on the rolled material at the position of the tension measuring roll. The difference between the working side and the driving side of the tension is calculated, and the difference in the tension falls within a predetermined allowable range. In addition, the force in the roll axis direction applied to the tension measuring roll is a predetermined allowable range. A meandering control method in sheet rolling, characterized in that a difference between a set value of a rolling reduction on a working side and a set value of a reduction on a driving side of each rolling mill is controlled so as to fall within a range.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The biggest change caused by the trailing end of the rolled material leaving the immediately preceding rolling mill is, of course, the absence of back tension. Therefore, if a sudden meandering starts at this time, it is presumed that the meandering has deviated from the optimum rolling leveling value of the rolling mill, and this has been compensated for by the left-right difference in the back tension. For this reason, during steady rolling before reaching the rear end of the rolled material, it is necessary to make the left-right difference in the tension acting on the rolled material on the entrance side and the exit side of each rolling mill as close to zero as possible. It is considered to be a decisive factor in accident prevention. For this purpose, an operation may be performed in which the difference between the left and right tensions acting on the rolled material on the entrance side and the exit side of each rolling mill is detected, and the difference is reduced to near zero.
[0010]
FIG. 1 shows an algorithm of a preferred embodiment of the meandering control method of the present invention. The algorithm of FIG. 1 is intended for a tandem rolling mill equipment row in which, for example, as shown in FIG. 2, tension measuring rolls 2a to 2c and width direction threading position measuring devices 3a to 3c are provided between stands. This is a meandering control method. From the outputs of the width direction passing position measuring devices 3a to 3c provided between the stands, the width direction passing position of the rolled material 4 at the positions of the tension measuring rolls 2a to 2c also provided between the stands is directly detected or presume. The tension measuring roll is configured to be capable of measuring right and left independent tension and a force in a roll axis direction (hereinafter, referred to as a thrust force). From the measured values of the left and right tension and the thrust force and the widthwise position of the rolled material in the width direction, a left-right difference in the tension truly acting on the rolled material is calculated.
[0011]
Now, any No. i rolling mill and No. The looper type tension measuring device as shown in FIG. 4 will be described in more detail by taking into account the interval between the i + 1 rolling mills. When the value obtained by converting the load cell load of the rolled material tension measuring device into a load in the vertical direction in consideration of the looper angle and extracting the difference between the working side and the drive side is R dfi , R dfi acts on the rolled material. Not only the tension difference σ dfi, but also the thrust force S i acting on the tension measuring roll (positive when acting on the tension measuring roll from the rolled material toward the working side from the driving side), and the width direction of the rolled material The influence of the plate position, that is, the material off-center amount xci is also included, and the following relational expression is established.
R dfi = [{b 2 / (6a Li )} σ dfi + (2 / a Li ) σ i bx ci ]
× (sinθ fi + sinθ b ( i + 1)) h i + (2 / a Li) r Li S i
(1)
Here, b is the plate width of the rolled material, a Li is the distance between the roll fulcrums for tension measurement, σ i is the tension per unit cross-sectional area of the rolled material (hereinafter referred to as unit tension), θ fi and θ b (i + 1) ) reference angle (Fig. 3 forming the first i delivery side of the rolling mill and the i + 1 the plate surface of the entry side of the rolling mill is a horizontal plane as a boundary tension measuring roll), h i is the thickness of the side exits the i mill, r Li is the roll radius for tension measurement.
[0012]
From equation (1), even if the R dfi is measured, if the material off-center amount x ci in the thrust force S i and looper position acting on the tension measuring roll is unknown, acting exactly rolled material It turns out that it is impossible to determine the tension.
[0013]
Generally, the rolling operation is carried out with the aim of making xci zero, but in reality there is an error of about 10 to 20 mm, which has a considerable effect on the estimation accuracy of the tension σ dfi acting on the rolled material. Effect. FIG. 4 is a schematic plan view of the rolled material 4 during rolling existing between the roll axis position 6 of the upstream rolling mill and the roll axis position 7 of the downstream rolling mill as viewed in the width direction. However, as shown in the figure, for example, when the widthwise passing position of the rolled material between the stands is shifted in the opposite direction between the upstream side and the downstream side, the tension measuring roll applies the thrust force from the rolled material to the tension measuring roll. Acts. This means that while the velocity vector 13 of the rolled material 4 has a small but parallel component 15 to the roll axis in addition to the component in the direction perpendicular to the roll axis, the circumferential velocity vector 14 of the tension measuring roll is always Since there is only a component perpendicular to the roll axis, a slip speed corresponding to the roll axis direction speed component 15 of the rolled material is generated between the roll and the tension measurement roll, and a friction force generated in the slip direction is generated by the tension measurement roll. A thrust force acts from the rolled material.
[0014]
For example, when x ci = 10 mm, a Li = 2000 mm, and b = 1000 mm, the tension difference σ dfi is estimated while ignoring the influence of x ci from the evaluation of the term in [] on the right side of equation (1). , 12% of the unit tension σ i . Further, the thrust force S i which acts on tension measuring rolls is generally believed to be evaluated by the following formula obtained by multiplying the constants said thrust coefficient in the vertical direction of the resultant force acting on the tension measuring roll.
S i = γσ i bh i ( sinθ fi + sinθ b (i + 1)) (2)
Here, γ is a thrust coefficient. Substituting equation (2) into equation (1), when evaluated, when a 150mm tension measuring roll radius r Li addition to the above condition, even if the thrust coefficient of 0.05, the unit tension ignoring thrust force S i This results in an error of 9% of σ i .
[0015]
If the reduction leveling control was performed to null the laterality sigma dfi tension acting on the rolled material, it is common to change the material off-center amount x ci and thrust force S i, the change detection at all if executing the control without the case according to the above example, this control will contain the essential error of about ± 0.1σ i with respect to the target value sigma dfi, abolish butt aperture accident It is impossible to implement sufficient meandering control as much as possible. It is clear that it is not important to set R dfi = 0, but to set σ dfi = 0, in order to prevent the passing -through accident.
[0016]
As described above, in order to accurately detect σ dfi and perform control for setting σ dfi = 0, a rolled material tension measuring device having a tension detector independently for each of the working side and the driving side is used. Detecting the left-right difference of the load applied to the tension measuring device, directly detecting or estimating the widthwise passing position of the rolled material at the position of the tension measuring device, and detecting the thrust force acting on the tension measuring device. Obviously, it is essential to detect even
[0017]
After the left-right difference of the tension acting on the rolled material is calculated as described above, the rolling leveling control of each rolling mill is performed with the target that the difference in tension becomes a predetermined value. As the predetermined target value at this time, in general, the target is a right-left difference of zero, but a predetermined target value near zero may be set according to the learning result of the operation results. Even if such control is performed, it is rare that the target value is completely coincident with the target value. Therefore, an allowable range of the right-left difference in tension is provided near the target value, and when the allowable value is exceeded, the draft leveling is performed. It is realistic to perform the control.
[0018]
Next, the thrust force acting on the tension measuring roll is detected, and the rolling leveling control of each rolling mill is performed so that the axial force becomes a predetermined value.
In the state as shown in FIG. 4 in which a thrust force is generated, the main shaft 12 of the tension acting on the rolled material between the stands is oblique to the rolled material between the stands as shown in FIG. In addition, even if the tension distribution 11 of the rolled material at the tension measurement roll position is uniform, the tension distribution 9 at the upstream rolling mill position and the tension distribution 10 at the downstream rolling mill position become non-uniform in the direction shown in the drawing. . Such an unbalance of the tension cannot be detected from the measurement of the vertical load applied to the tension measuring roll 2 described above, and the thrust force acting on the tension measuring roll is detected, and this is detected as zero. The detection and control can be performed for the first time by the method of the present invention in which the rolling leveling control as described above is simultaneously performed.
[0019]
By the way, the target value of the thrust force acting on the tension measuring roll is basically zero, but depending on the error of the parallelism between the tension measuring roll axis and the roll axis of the rolling mill, a predetermined value near zero is determined. It may be more stable to target the value of Even if such control is performed, it is rare that the target value is completely matched. Therefore, an allowable range of the thrust force is provided near the target value, and when the allowable value is exceeded, the rolling leveling control is performed. It is preferable to adopt a method of implementing.
[0020]
Further, in the algorithm of FIG. 1, a control loop for setting the thrust force acting on the tension measuring roll to a predetermined value is positioned outside the control loop for setting the left-right difference of the tension acting on the rolled material to a predetermined value. However, as a control method, the reverse may be performed, or a pressure leveling operation for simultaneously reducing the right-left difference in tension and the thrust force to zero may be performed at a stretch.
[0021]
【Example】
A 7-stand tandem mill as shown in FIG. 5, which has tension detectors independently between the working side and the driving side between all the stands 1a to 1g, and is capable of detecting a vertical load and a roll axial load. Detecting devices 3a to 3d which have the rolls 2a to 2f and which can measure the widthwise passing position of the rolled material between the four stands 1d to 1g in front of the rolling mill in a continuous manner from the most downstream rolling mill. The meandering control was carried out using the tandem rolling mill group that was used.
[0022]
Initially, the tension difference σ dfi acting on the rolled material is estimated by assuming that the material off-center amount is always zero, using only the measured value of the vertical load of the tension measuring roll, and rolling down the target with σ dfi = 0. Although leveling control was performed, the threading condition at the rear end of the rolled material did not reach complete stability.
[0023]
Therefore, an estimated value of the material off-center amount at the position of the tension measuring roll is calculated based on the output of the width direction passing-through position measuring devices 3a to 3d of the rolled material, and this value and the vertical and axial load of the tension measuring roll are calculated. From equation (1), the tension difference σ dfi acting on the rolled material was estimated using equation (1), and the rolling leveling control of each rolling mill was performed with σ dfi = 0 as a target. Furthermore, as a result of simultaneously executing the draft leveling control with the aim of reducing the measured value of the roll axial load acting on the tension measuring roll to zero, the passing of the rear end of the rolled material including the downstream rolling mill was substantially completed. It was completely stabilized.
[0024]
【The invention's effect】
By using the meandering control method of the present invention, it is possible to optimize the rolling leveling of each rolling mill in the tandem rolling mill row during the steady rolling, and as a result, at the time of threading, including at the time of rear end rolling of the rolled material. There are almost no accidents, and the working rate and yield can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an algorithm of a meandering control method according to the present invention.
FIG. 2 is a schematic view showing an example of a tandem plate rolling mill equipment row as a premise of the present invention.
FIG. 3 is a side view showing an angle between a rolling material between rolling mills and a horizontal plane.
FIG. 4 is a plan view illustrating a mechanism in which a roll axial load is applied to a tension measuring roll between arbitrary stands.
FIG. 5 is a schematic view showing a tandem plate rolling mill equipment row according to an embodiment of the present invention.
[Explanation of symbols]
1a to 1g Rolling mills 2a to 2f Rolled material tension measuring device 3a to 3d Width direction threading position measuring device 4 Rolled material 5 Rolling direction 6 Roll axis center position of upstream rolling mill between any rolling mills 7 Any rolling mill Roll axis position of downstream rolling mill between 8 Roll axis position of tension measuring roll between arbitrary rolling mills 9 Tension distribution of upstream rolling mill position 10 Tension distribution of downstream rolling mill position 11 Tension measuring roll position Tension distribution 12 in the rolling mill Main shaft 13 of the tension acting on the rolled material between the rolling mills 13 Speed vector 14 of the rolled material at the position of the roll for tension measurement Peripheral speed vector 15 of the roll for tension measurement Speed component in the roll axis direction of the rolled material

Claims (1)

2台以上の圧延機と、各圧延機間のうち少なくとも一箇所の圧延機間に、該圧延機のロール軸線に平行なロール軸を有し圧延材と接触して回動自在に支持された張力測定用ロールを配設し、圧延材に作用する圧延方向張力によって前記張力測定用ロールに負荷される鉛直方向の力を作業側・駆動側それぞれ独立に検出することができ、さらに、前記張力測定用ロールに圧延材から作用するロール軸方向の力を検出できる構造の測定装置と、圧延材の幅方向通板位置測定装置とが配備されたタンデム板圧延機の蛇行制御法において、前記幅方向通板位置測定装置の出力より、前記圧延機間の張力測定用ロールの位置における圧延材の幅方向通板位置を直接検出または推定し、これと前記張力測定用ロールに負荷される鉛直方向の力の作業側と駆動側の検出値および前記張力測定用ロールに圧延材から作用するロール軸方向の力の検出値とから、前記張力測定用ロールの位置において圧延材に真に作用している張力の作業側と駆動側の差を演算し、該張力差が予め定められた許容範囲に入ることと、併せて前記張力測定用ロールに負荷されるロール軸方向の力が予め定められた許容範囲に入ることを目標として、各圧延機の作業側と駆動側の圧下設定値の差を制御することを特徴とする板圧延における蛇行制御方法。Between two or more rolling mills and at least one of the rolling mills, the rolling mill has a roll axis parallel to the roll axis of the rolling mill, and is rotatably supported in contact with the rolled material. A tension measuring roll is provided, and a vertical force applied to the tension measuring roll by the rolling direction tension acting on the rolled material can be independently detected on the working side and the drive side, and further, the tension In a meandering control method of a tandem plate rolling mill provided with a measuring device having a structure capable of detecting a force in a roll axis direction acting on a measuring roll from a rolled material and a device for measuring a width direction threading position of a rolled material, From the output of the direction threading position measuring device, the width direction threading position of the rolled material at the position of the tension measuring roll between the rolling mills is directly detected or estimated, and this and the vertical direction loaded on the tension measuring roll. The working side of the power and the drive From the detected value of the side and the detected value of the force in the roll axis direction acting on the tension measuring roll from the rolled material, the working side and the drive of the tension truly acting on the rolled material at the position of the tension measuring roll The difference between the tensions is calculated so that the tension difference falls within a predetermined allowable range, and the force in the roll axis direction applied to the tension measuring roll also falls within a predetermined allowable range. A meandering control method in plate rolling, wherein a difference between a set value of a rolling reduction on a working side and a set value of a reduction on a driving side of each rolling mill is controlled.
JP19439696A 1996-07-24 1996-07-24 Meandering control method in plate rolling Expired - Fee Related JP3545541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19439696A JP3545541B2 (en) 1996-07-24 1996-07-24 Meandering control method in plate rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19439696A JP3545541B2 (en) 1996-07-24 1996-07-24 Meandering control method in plate rolling

Publications (2)

Publication Number Publication Date
JPH1034220A JPH1034220A (en) 1998-02-10
JP3545541B2 true JP3545541B2 (en) 2004-07-21

Family

ID=16323905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19439696A Expired - Fee Related JP3545541B2 (en) 1996-07-24 1996-07-24 Meandering control method in plate rolling

Country Status (1)

Country Link
JP (1) JP3545541B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ546900A0 (en) * 2000-02-07 2000-03-02 Bhp Steel (Jla) Pty Limited Rolling strip material
JP4712580B2 (en) * 2006-03-01 2011-06-29 株式会社神戸製鋼所 Meander control method in reverse rolling
JP5239728B2 (en) * 2008-02-06 2013-07-17 新日鐵住金株式会社 Rolling method and rolling apparatus for metal sheet
KR101345056B1 (en) 2010-12-24 2013-12-26 미쯔비시 히다찌 세이떼쯔 기까이 가부시끼가이샤 Hot rolling equipment and hot rolling method

Also Published As

Publication number Publication date
JPH1034220A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3545541B2 (en) Meandering control method in plate rolling
JP5239728B2 (en) Rolling method and rolling apparatus for metal sheet
WO1995007776A1 (en) Snaking control method and tandem plate rolling mill facility line
US4003229A (en) Method for compensating tail end
JPH08197125A (en) Control method for meandering and rolling mill equipment row for tandem plate
JP4306273B2 (en) Strip meander control device and meander control method for tandem rolling mill
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
JPS5916528B2 (en) Meandering correction device for rolling mill
JPH07214131A (en) Rolling controller
JP3297602B2 (en) Meandering control method in plate rolling
JPS63188415A (en) Meandering controller for rolling mill
JPH1133615A (en) Method for controlling meandering in tandem mill and device therefor
JP4256832B2 (en) Rolling method and rolling apparatus for metal sheet
JP3140552B2 (en) Strip width control method of material to be rolled in hot finishing rolling line
JPS62137114A (en) Plate width control method for thick plate
JPH11169935A (en) Device for controlling tensile force of strip and method therefor
JPS6011571B2 (en) Slip detection method and inter-stand tension control method and device using the same
JPS6380908A (en) Meandering and camber control method for rolled stock
JP2550896Y2 (en) Rolling control device for steel pipe
JPS6254511A (en) Method and apparatus for controlling camber of hot rolling mill
JPH10235404A (en) Method for controlling dimension of steel shape
JPS587365B2 (en) Rolled plate thickness control method
JPS6057405B2 (en) Tension control method and device for continuous rolling mill
JPH05146811A (en) Looperless rolling method for continuous hot finishing mill
JPH0289514A (en) Hot rolling method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees