JPS6181799A - Method of measuring transminase activity - Google Patents

Method of measuring transminase activity

Info

Publication number
JPS6181799A
JPS6181799A JP59197988A JP19798884A JPS6181799A JP S6181799 A JPS6181799 A JP S6181799A JP 59197988 A JP59197988 A JP 59197988A JP 19798884 A JP19798884 A JP 19798884A JP S6181799 A JPS6181799 A JP S6181799A
Authority
JP
Japan
Prior art keywords
activity
gpt
solution
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59197988A
Other languages
Japanese (ja)
Inventor
Kunio Kihara
木原 圀男
Shigeki Yasukawa
栄起 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
MSD KK
Original Assignee
Mitsubishi Petrochemical Co Ltd
Banyu Phamaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, Banyu Phamaceutical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59197988A priority Critical patent/JPS6181799A/en
Publication of JPS6181799A publication Critical patent/JPS6181799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure the titled activity rapidly and precisely, by feeding a test specimen solution, a substrate solution for measuring GOT, etc. to a cell provided with an enzyme electrode having an immobilized oxygen membrane of L-glutamate oxidase, and measuring electrode output. CONSTITUTION:The cell 3 is equipped with the enzyme electrode 5 provided with the immobilized enzyme membrane 4 obtained by immobilizing L-glutamate oxidase on a porous high polymer carrier. The cell 3 is charged with the buffer solution 15, the test specimen solution 1, and the substrate solution for measuring glutamic-oxaloacetic transminase (GOT) or glutamic-pyruvic transaminase (GPT) 14 to carry out a reaction. Then, formed L-glutamic acid is reacted with L- glutamate oxidase, evolved hydrogen peroxide or reduced enzyme is detected by the electrode 5, recorded by the recorder 7, so that GOT activity or GPT activity in the test specimen solution 1 is measured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、生体試料中のトランスアミナーゼ(グルタミ
ン酸オキザロ酢酸トランスアミナーゼ:GOTと略記す
る及びグルタミン酸ピルビン酸トランスアミナーゼ: 
GPTと略記する)の活性を測定する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the use of transaminases (glutamate oxaloacetate transaminase (abbreviated as GOT) and glutamate pyruvate transaminase (abbreviated as GOT)) in biological samples.
The present invention relates to a method for measuring the activity of GPT (abbreviated as GPT).

本発明の方法を用いれば、1つの酵素電極で試料中のG
OTまたはGPTの測定を迅速に精度よく行なうことが
できる。また同一反応セル中で同−X料中のGOT及び
GPTを試料を入れ替ることなく測定することもできる
為、試料の測定をさらに迅速に精度よく行うことができ
る。
By using the method of the present invention, G in a sample can be detected using one enzyme electrode.
OT or GPT measurements can be performed quickly and accurately. Furthermore, since GOT and GPT in the same -X material can be measured in the same reaction cell without replacing the sample, the sample can be measured more quickly and with high precision.

、トランスアミナーゼは、アミノ酸のアミノ基転移を触
媒する酵素で、その内GOTは心筋、肝、骨格筋、腎に
多量に含まれ、GPTは肝、腎に多量に含まれている。
Transaminase is an enzyme that catalyzes the transamination of amino acids, and among these, GOT is contained in large amounts in cardiac muscle, liver, skeletal muscle, and kidney, and GPT is contained in large amount in liver and kidney.

従ってGOT、GPTの測定は急性ウィルス性肝炎、慢
性肝炎、肝硬変、肝腫瘍、急性アルコール性肝炎等の肝
疾患、胆のう、胆管炎、胆石症等の肝外閉塞ドを黄痘、
心筋硬塞、進行性筋ジストロフィー、感染性疾患等の診
断に有用な役割を果しており、GOTl GPTを簡便
に精度よく迅速に測定することは臨床的に意義が大きい
Therefore, GOT and GPT measurements can be used to detect liver diseases such as acute viral hepatitis, chronic hepatitis, cirrhosis, liver tumors, acute alcoholic hepatitis, and extrahepatic obstruction such as gallbladder, cholangitis, and cholelithiasis.
It plays a useful role in diagnosing myocardial infarction, progressive muscular dystrophy, infectious diseases, etc., and it is of great clinical significance to easily, accurately, and quickly measure GOTl GPT.

公知技術 従来、GOTの測定方法としては基質のアスパラギン酸
とα−ケトグルタル酸に試料を加え、生成したオキザロ
酢酸とグルタミン酸のうちオキザロ酢酸を、リンゴ酸脱
水素酵素と補酵素NADHの存在下で共役させ、このと
きのNADHの340順の吸光度の減少を初速変法で測
定するカルメン法と、上記の様に生成したオキザロ酢酸
を2.4−ジニトロフェニルヒドラジンと反応させヒド
ラゾンを生成させ、これをアルカリ性にしてキノイドを
作り発色させるライトマン−フランケル法がある。しか
し、カルメン法では使用する試薬が不安定で、また恒温
セルを付属させた特殊な分光光度計が必要である等の問
題がある。一方、ライトマン−フランケル法では基質の
α−ケトグルタル酸も発色゛して生成物の発色を妨害す
るために基質量を極度に減じる必要があり、検量線が変
曲することや測定可能範囲が狭い等の欠点がある。
PRIOR ART Conventionally, a method for measuring GOT involves adding a sample to the substrates aspartic acid and α-ketoglutaric acid, and conjugating the oxaloacetic acid of the generated oxaloacetic acid and glutamic acid in the presence of malate dehydrogenase and coenzyme NADH. The Carmen method is used to measure the decrease in the absorbance of NADH in the order of 340 using a modified initial velocity method, and the oxaloacetic acid produced as above is reacted with 2,4-dinitrophenylhydrazine to produce hydrazone. There is the Reitman-Frankel method, which creates quinoids by making them alkaline and develops color. However, the Carmen method has problems such as the instability of the reagents used and the need for a special spectrophotometer equipped with a thermostatic cell. On the other hand, in the Reitman-Frankel method, the substrate amount of α-ketoglutaric acid also develops color and interferes with the color development of the product, so the amount of substrate must be extremely reduced, which may cause the calibration curve to be distorted or the measurable range to be limited. It has drawbacks such as being narrow.

またGPTの測定方法には、基質のアラニンとα−ケト
グルタル酸に試料を加え、生成したピルビン酸とグルタ
ミン酸のうちピルビン酸を乳酸脱水素酵素と前記NAD
Hの存在下で共役させ該NADHの減少を測定するカル
メン法と、上記の様“ K74Jしたピルビン酸に2,
4−ジニトロフェニルヒドラジンを作用させて発色させ
るライトマン−フランケル法がある。しかしこれらの方
法にも上記GOTの測定方法と同様の欠点がある。
In addition, to measure GPT, a sample is added to the substrates alanine and α-ketoglutaric acid, and of the generated pyruvate and glutamic acid, pyruvate is combined with lactate dehydrogenase and the NAD
The Carmen method, in which the decrease in NADH is measured by conjugation in the presence of H, and the method in which 2,
There is a Reitman-Frankel method in which color is developed by the action of 4-dinitrophenylhydrazine. However, these methods also have the same drawbacks as the GOT measurement method described above.

一方、ピルビン酸オキシダーゼ(POPと略記する)を
利用してGPTXGOTを分析する方法が開発されてい
る。しかしながらPOPを利用する測定法は、高価な酵
素の使い捨て、測定時間が長いこと、PoP自身が溶液
中では不安定であるため測定時の再現性が悪い等の問題
点がある。
On the other hand, a method for analyzing GPTXGOT using pyruvate oxidase (abbreviated as POP) has been developed. However, the measurement method using POP has problems such as disposable use of expensive enzymes, long measurement time, and poor reproducibility during measurement because PoP itself is unstable in solution.

そこで上記の欠点を解決する目的でPOPを固定化し、
これをL:2比定位測定用電極に装着した酵ホ腎玉を使
用してGPT、GOTを測定しようとする研究も盛んに
行なわれている。(特開昭55−111786号、同5
6−124396号各公報、Analytica ch
imica Acta、  11旦(1980)65−
71等参照) しかし、これら上記の固定化法では、固定化POPの活
性ならびに安定1生は十分とはいえず、またPOPのみ
の固定化ではGOT測定特定時キザロ酢酸デカルボキシ
ラーゼ(OAC)酵素を添加しなければならない欠点が
ある。
Therefore, in order to solve the above drawbacks, POP was fixed,
Many studies are being conducted to measure GPT and GOT using a fermented kidney ball attached to an L:2 ratio stereotaxic electrode. (Unexamined Japanese Patent Publication No. 55-111786, 5
6-124396 publications, Analytica ch
imica Acta, 11th (1980) 65-
However, with these immobilization methods described above, the activity and stability of immobilized POP are not sufficient, and immobilization of POP alone does not allow the enzyme xaloacetate decarboxylase (OAC) to be activated during GOT measurement. There are drawbacks that must be added.

さらに同一セル内で試料の交換をせずに同−試料中のG
OTおよびGPT活神を同時に測定することは極めて困
錐である。
Furthermore, without exchanging samples within the same cell, the G in the same sample
It is extremely difficult to measure OT and GPT activity simultaneously.

従って、これらの従来法の欠点を改良するG。Therefore, G. improves the shortcomings of these conventional methods.

T活性およびGPT活性の簡便な測定手法、さらに同−
試料中のGOT活はおよびGPT活池を短時間に測定す
る方法の提供が切望されていた。
A simple method for measuring T activity and GPT activity, and
It has been desired to provide a method for measuring GOT activity and GPT activity in a sample in a short time.

発明の概要 本発明者らは、この要望に志えるべく鋭意検討を行った
結果、最近開発されたL−グルタミン酸オキシダーゼ(
特開昭57−43685号公報参照)を用いた固定化酵
素膜を利用することにより上記欠点が解決されることを
見い出し本発明を完成した。
Summary of the Invention As a result of intensive studies to meet this demand, the present inventors discovered the recently developed L-glutamate oxidase (
The present invention has been completed based on the discovery that the above-mentioned drawbacks can be solved by utilizing an immobilized enzyme membrane using the enzyme membrane (see Japanese Patent Application Laid-Open No. 57-43685).

即ち、本発明は、L−グルタミン酸オキシダーゼを多孔
性高分子担体上に固定化した固定化酵素膜を装着した酵
素電極を有するセルに、緩衝溶液、試料液及び、グルタ
ミン酸オキザロ酢酸トランスアミナーゼ(GOT)測定
用基質溶液又はグルタミン酸ピルビン酸トランスアばナ
ーゼ(GPT)測定用基質溶液を供給し、該酵素電極の
出力によりGOT活眺又i’j G P T活性を測定
するトランスアミナーゼ活性の測定法を提供するもので
あるう発明の効果 本発明の方法によれば、生体試料中のGPT活性、GO
T活性を簡便に短時間で測定可能であり、また同−試料
中のGPT活注とGOT活;生を簡1更に短時囚で連続
的に測定することができる。
That is, the present invention provides a cell having an enzyme electrode equipped with an immobilized enzyme membrane in which L-glutamate oxidase is immobilized on a porous polymer carrier, a buffer solution, a sample solution, and glutamate oxaloacetate transaminase (GOT) measurement. Provided is a method for measuring transaminase activity in which a substrate solution for measuring glutamate pyruvate transavanase (GPT) is supplied, and GOT activity is measured by the output of the enzyme electrode. According to the method of the present invention, GPT activity in biological samples, GO
T activity can be easily measured in a short time, and GPT activity and GOT activity in the same sample can be measured easily and continuously in a short period of time.

また公知のPOPの固定化Fイ素を用いる場合は、池に
オキザロ・酢酸デカルボキシラーゼ(OAC)、フラビ
ンアデニンジヌクレオチド(FAD )、チアミンピロ
ホスフェ−1−(TPP )などの酵素、補l¥!l:
宋を併用する必要があるが、末法てよるとL−グルタミ
ン酸オキシダーゼ固定化酵素の他に、他の酵素、補酵素
を用いる繁雑さはない。
In addition, when using a known immobilized F of POP, enzymes such as oxaloacetate decarboxylase (OAC), flavin adenine dinucleotide (FAD), and thiamine pyrophosphate-1-(TPP), ¥! l:
Although it is necessary to use Sung in combination, according to the final method, there is no need to use other enzymes or coenzymes in addition to the L-glutamate oxidase immobilized enzyme.

更に、L−グルタミン酸オキシダーゼの固定化酵素を用
いる末法は、時用安定性が良好で、長期間にわたってG
PTX GOT活性を安定に測定することができる。
Furthermore, the powder method using an immobilized enzyme of L-glutamate oxidase has good stability during use and maintains G for a long period of time.
PTX GOT activity can be stably measured.

発明の詳細な説明 本発明に用いられる固定化酵素膜は、多孔性高分子担体
を用いて壕造できる。多孔性高分子担体としては、公知
の塩化ビニル樹脂担体、アセチルセルロース、ポリカー
ボネート、ナイロン、ボIJ フロピレン、ポリエチレ
ン、テフロン等を用いろことができる。この中でも;規
化ビニル樹脂担体が荷に好ましく用いられ、該担体は、
特開昭55−39719号公報記載のものを用いること
ができる。
DETAILED DESCRIPTION OF THE INVENTION The immobilized enzyme membrane used in the present invention can be constructed using a porous polymer carrier. As the porous polymer carrier, known vinyl chloride resin carriers, acetyl cellulose, polycarbonate, nylon, polyethylene, polyethylene, Teflon, etc. can be used. Among these, a standardized vinyl resin carrier is preferably used for the load, and the carrier is
The material described in JP-A-55-39719 can be used.

特に好ましくは、頃化ビニル1ケ↑脂担体は以下の本p
にして製造される。
Particularly preferably, one vinyl coated fat carrier is
Manufactured by

先ず塩化ビニル樹脂をジメチルホルムアミドなどの溶媒
囚に溶解し、これを所望の担体形状に形成した後溶媒(
B)への浸漬処理を行なう。
First, vinyl chloride resin is dissolved in a solvent such as dimethylformamide, this is formed into a desired carrier shape, and then the solvent (
Perform the immersion treatment in B).

本発明の上記塩化ビニル樹脂(PVR)としては、ポリ
塩化ビニル(PVC)、’a、化ビニル共正合体、これ
らと他の樹脂とのブレンド物があり、塩化ビニル共重合
体としては、列えば、im化ビニルと酢酸ビニル、塩化
ビニリデン、エチレン、アクリル酸、アクリロニトリル
などとの二元または三元以上の共重合体がある。
The vinyl chloride resin (PVR) of the present invention includes polyvinyl chloride (PVC), 'a, vinyl copolymer, and blends of these and other resins. For example, there are binary, ternary or more copolymers of imized vinyl and vinyl acetate, vinylidene chloride, ethylene, acrylic acid, acrylonitrile, and the like.

溶4(A)は、PvRを溶解できる溶剤であって、ジメ
チルホルムアミド(DMR)、ジメチルアセトアミド(
DMA)、n−メチルピロリドン(n−MP)、ヘキサ
メチルホス7オアミド(HMPA)、テトラヒドロフラ
ン(THF)、アセトンとベンゼンのイ昆合7容り震な
どがある。PVR溶液のの度としては1〜30重耽%の
ものが用いられる。
Solvent 4 (A) is a solvent that can dissolve PvR, and contains dimethylformamide (DMR), dimethylacetamide (
DMA), n-methylpyrrolidone (n-MP), hexamethylphosamide (HMPA), tetrahydrofuran (THF), and a combination of acetone and benzene. The PVR solution used has a concentration of 1 to 30%.

酵素等の固定膜が優れた吸着活性を発揮して9能するだ
めには、P V Rの重合度が約1000において6〜
12重1%が好ましい。
In order for an enzyme-immobilized membrane to exhibit excellent adsorption activity and function, the degree of polymerization of PVR must be 6 to 6 at about 1000.
1% by weight is preferred.

次に、かくして得られたPVR溶液を所望の担体形状に
形成した後、PVRの貧溶媒であり且つ溶媒(Nの良溶
媒となる溶媒(B)と接触させて担体層を形成する。こ
の際、溶媒(功との接触はPVR溶液層が白化する前に
行なうことが好ましい。ここで白化する1貞とは、Pv
Rとl容I某(5)の溶液が目視できる白濁を生じて不
透明となるまでの期間である。
Next, the PVR solution obtained in this way is formed into a desired carrier shape, and then brought into contact with a solvent (B) that is a poor solvent for PVR and a good solvent for solvent (N) to form a carrier layer. It is preferable to contact the solvent (contact) before the PVR solution layer whitens.
R and volume I This is the period until a certain solution (5) becomes cloudy and becomes opaque.

@1%(EJとしては水、アルコール系溶媒、エーテル
系溶媒などがある。
@1% (EJ includes water, alcohol solvents, ether solvents, etc.

アルコール系溶媒としては、メチルアルコール、エチル
アルコール、n−プロピルアルコール、1qo−7”ロ
ビルアルコール、n−ブチルアルコール、5eC−ブチ
ルアルコール、tert−ブチルアルコールナトの一1
i■アルコール魚、エチレンクリコール、ジエチレング
リコール、グリセリンなどの多価アルコール類、エチレ
ングリコールモノメチルエーテル、エチレンクリコール
モノエチルエーテルなどのグリコールモノエーテル償な
どが用いられる。浸漬する溶媒としてはこれらアルコー
ル系@媒単独またはアルコール系溶媒を50重量70以
上含有して塩化ビニル樹脂不溶の混合溶媒であってもよ
い。
Examples of alcoholic solvents include methyl alcohol, ethyl alcohol, n-propyl alcohol, 1qo-7'' lobil alcohol, n-butyl alcohol, 5eC-butyl alcohol, and tert-butyl alcohol.
i) Alcohol, polyhydric alcohols such as ethylene glycol, diethylene glycol, and glycerin, and glycol monoethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether are used. The solvent for dipping may be one of these alcohol-based solvents alone or a mixed solvent containing 50% by weight or more of alcoholic solvents in which the vinyl chloride resin is insoluble.

殊ニ、メチルアルコール、エチルアルコールを用いた場
合には、固定化酵素活性の大きい固定化物が得られ好ま
しい。 − なお、PVRと溶媒囚の@液には、担体の膨潤の度合の
調整すなわち担体の含水率の調節、孔径の調整等のため
に、ポリエチレングリコール等のPVRに対し非溶媒性
の化合物を添加することができる。
In particular, when methyl alcohol or ethyl alcohol is used, an immobilized product with high immobilized enzyme activity can be obtained, which is preferable. - In addition, a non-solvent compound for PVR such as polyethylene glycol is added to the PVR and solvent solution in order to adjust the degree of swelling of the carrier, that is, to adjust the water content of the carrier, adjust the pore size, etc. can do.

担体形状としては膜状、管状、試験管状、ビーメ状等種
々の形状をとることができる。酵素電極等の用途には特
に膜状が好ましい。膜状担体はPVR,を液を流延し、
その後溶媒a3)に浸漬して形成する。
The carrier can take various shapes such as a membrane, a tube, a test tube, and a beam. Membrane-like materials are particularly preferred for applications such as enzyme electrodes. The membrane carrier is made by casting a PVR solution,
Thereafter, it is formed by immersing it in solvent a3).

この際 担体の強度を向上させる為不織布等の補強材を
用いてもよい。
At this time, a reinforcing material such as nonwoven fabric may be used to improve the strength of the carrier.

なお担体の形成後、担体を水中に浸漬して溶媒の)を水
と置換することが好ましい。
Note that after forming the carrier, it is preferable to immerse the carrier in water to replace the solvent () with water.

次に上記担体を酵素L−グルタミン酸オキシダーゼを含
有するf8液と接触させて本発明に用いられる固定化酵
素を得る。
Next, the above carrier is brought into contact with an f8 solution containing the enzyme L-glutamate oxidase to obtain the immobilized enzyme used in the present invention.

この場合、上記酵素を含む溶液は、L−グルタミン袈オ
キシダーゼのm% Kが50〜xooorM!/a1好
ましく#1100〜50011FJ/dtであり、かつ
該溶液の7)Hが4〜7、好ましくは5〜6の範囲にあ
る緩衝溶液である。この際用いられる緩衝溶液はリン酸
系、クエン酸系、酢酸系およびQoodら(Bioch
emistry 、 5.467(1966))による
公知の緩衝剤を用いることができる。
In this case, the solution containing the enzyme has a m% K of L-glutamine oxidase of 50 to xooorM! /a1 is preferably #1100 to 50011 FJ/dt, and 7)H of the solution is in the range of 4 to 7, preferably 5 to 6. The buffer solutions used at this time are phosphoric acid-based, citric acid-based, acetic acid-based, and Qood et al.
The buffering agent known by Emistry, 5.467 (1966) can be used.

本発明に用いられる固定化酵素は、特開昭59−102
393号公報に記載された常1品硬化性ブロックドイツ
シアネート化合物の水溶11K K接触させて該化合物
で被J゛1)、することもできる。
The immobilized enzyme used in the present invention is
It is also possible to use a water-soluble 11K curable block German cyanate compound described in Japanese Patent Application No. 393.

上記の様にして得られた固定化酵素膜を公知の多孔性の
高分子膜、例えばアセチルセルロース膜、ポリカーボネ
ート膜、ナイロン膜、ポリプロピレン膜、ポリエチレン
膜、テフロン膜等と粘り合せ、固定化酵素膜が試料液に
接する様に公知の例えば過酸化水素電極等に装着し酵素
電極を製作し、使用する。
The immobilized enzyme membrane obtained as described above is bonded with a known porous polymer membrane, such as an acetyl cellulose membrane, a polycarbonate membrane, a nylon membrane, a polypropylene membrane, a polyethylene membrane, a Teflon membrane, etc., to form an immobilized enzyme membrane. An enzyme electrode is manufactured and used by attaching it to a known, for example, hydrogen peroxide electrode so that it is in contact with the sample solution.

第1図は、この酵素電極を用いた本発明の一例を示すト
ランスアミナーゼ活性分析装置の系統図である。
FIG. 1 is a system diagram of a transaminase activity analyzer using this enzyme electrode and showing an example of the present invention.

以下、第1図を用いて本発明のトランスアミナーゼ活性
を測定する方法によるGOT及びGPT測定方法を説明
する。
Hereinafter, a method for measuring GOT and GPT using the method for measuring transaminase activity of the present invention will be explained using FIG.

(GOT活性の測定) 第1図に於いて測定セル3に緩衝溶液15とGOT測定
用基質溶液(少なくともアスパラギン酸とα−ケトグル
タル酸を含む)14を各々ポンプ1019にて注入する
。次に試料を注射器1またはサンプラー2により測定セ
ル3に注入する。セル3中にてアスパラギン酸、α−ケ
トグルタル酸および生体試料中のGOTとの反応により
生成したし一グルタミン酸は、上述の固定化酵素4中の
し一グルタミン酸オキシダーゼと反応する。この際、発
生する過酸化水素量または減少する酸素量を過酸化水素
電極またFiWl素電極5にて検出し記録計7またはデ
ジタルマルチメータ8により読み取る。この様にして既
知のGOT活性値を有する試料を用いて測定した結果を
第2図に示す。第2図から明らかな様にGOT活性値と
電流値変化速度との間には良好な直線関係が認められた
(Measurement of GOT Activity) In FIG. 1, a buffer solution 15 and a substrate solution for GOT measurement (containing at least aspartic acid and α-ketoglutaric acid) 14 are respectively injected into the measurement cell 3 using a pump 1019. Next, a sample is injected into the measurement cell 3 using the syringe 1 or the sampler 2. Monoglutamic acid produced in the cell 3 by the reaction with aspartic acid, α-ketoglutaric acid, and GOT in the biological sample reacts with the monoglutamic acid oxidase in the immobilized enzyme 4 described above. At this time, the amount of hydrogen peroxide generated or the amount of oxygen that decreases is detected by the hydrogen peroxide electrode or the FiWl element electrode 5 and read by the recorder 7 or the digital multimeter 8. FIG. 2 shows the results measured using samples having known GOT activity values. As is clear from FIG. 2, a good linear relationship was observed between the GOT activity value and the rate of change in current value.

(GPT活性の測定) 第1図に於いてGOT測定用基質溶液(少なくともアス
パラギン酸とα−ケトグルタル酸を含む)14を、GP
T測定用基質溶液(少なくともアラニンとα−ケトグル
タル酸を含む)に変えることにより前記同様に測定する
ことができる。測定の結果を第2図に示す。第2図よシ
明らかな様にGPT活性値と電流値変化速度との間には
良好な直線関係が認められた。
(Measurement of GPT activity) In Fig. 1, GOT measurement substrate solution (containing at least aspartic acid and α-ketoglutaric acid) 14 was
By changing to the substrate solution for T measurement (containing at least alanine and α-ketoglutaric acid), measurement can be performed in the same manner as described above. The measurement results are shown in Figure 2. As is clear from FIG. 2, a good linear relationship was observed between the GPT activity value and the rate of change in current value.

(GOTおよびGPT活性の連続測定)第1図に於て先
にGOT活性を測定し、次にGOT及びGPTの合計活
性を測定する場合は、測定セル3に緩衝溶液15とGO
T測定用基質溶液(少なくともアスパラギン酸とα−ケ
トグルタル酸を含む)14を各々ポンプ10.9にて注
入する。次に試料を注射器1またはサンプラー2により
測定セル3に注入する。セル3中にてアスパラギン酸、
α−ケトグルタル酸および生体試料中のGOTとの反応
により生成したL−グルタミン酸は上述の固定化酵素4
中のL−グルタミン酸オキシダーゼと反応する。この際
発生する過酸化水素量または減少する酸素量を、過酸化
水上電極または酸素電極5にて検出し、記斥計7または
デジタルマルチメータ8により読み取る。
(Continuous measurement of GOT and GPT activities) When first measuring GOT activity and then measuring the total activity of GOT and GPT in Figure 1, add buffer solution 15 and GO to measurement cell 3.
A substrate solution for T measurement (containing at least aspartic acid and α-ketoglutaric acid) 14 is injected using each pump 10.9. Next, a sample is injected into the measurement cell 3 using the syringe 1 or the sampler 2. Aspartic acid in cell 3,
L-glutamic acid produced by the reaction with α-ketoglutaric acid and GOT in a biological sample is the immobilized enzyme 4 described above.
reacts with L-glutamate oxidase in At this time, the amount of hydrogen peroxide generated or the amount of oxygen that decreases is detected by an electrode on peroxide water or an oxygen electrode 5, and read by a recorder 7 or a digital multimeter 8.

引き続きGPT測定用基質溶液(少なくともアラニンと
α−ケトグルタル酸を含む)1Gを、ポンプ11にて測
定セル3に注入する。この際発生する過酸化水素量また
は減少する酸素量は、前記GOTの反応より生成するL
−グルタミン酸と新たにアラニンとα−ケトグルタル酸
を注入したことによるGPT反応より生成するL−グル
タミン酸が同時に固定化酵シ[・“N4中のL−グルタ
ミン酸オキシダーゼと反応して生じたものであり、上記
同様、発生する過酸化水素がまたは減少する酸素量・を
過酸化水■(電極または酸素電極5にて検出し、記録計
7またはデジタルマルチメータ8により読み取る。従っ
て最初にGOT反芯による出力のみを測定し、次にGO
T反応およびGPT反応の二成分の出力を測定し、先に
測定のGOT反応による出力を補正することによりGP
T反応による出力を求めることができる。測定終了後、
ポンプ13によりセル内のyfflは廃棄される。
Subsequently, 1 G of a substrate solution for GPT measurement (containing at least alanine and α-ketoglutaric acid) is injected into the measurement cell 3 using the pump 11. The amount of hydrogen peroxide generated or the amount of oxygen decreased at this time is the amount of L generated from the reaction of the GOT.
- Glutamic acid and L-glutamic acid produced by the GPT reaction caused by newly injecting alanine and α-ketoglutaric acid are simultaneously immobilized by fermentation [・"This is produced by reacting with L-glutamate oxidase in N4, Similarly to the above, the amount of hydrogen peroxide generated or the amount of oxygen decreased is detected with the electrode or oxygen electrode 5 and read with the recorder 7 or digital multimeter 8. Therefore, the output from the GOT anti-core is first only, then GO
By measuring the output of the two components of T reaction and GPT reaction and first correcting the output from the measured GOT reaction, GP
The output due to the T reaction can be determined. After the measurement is completed,
The pump 13 discards the yffl in the cell.

この様1(シて既知のGOT活性値およびGPT活性値
を有する試料を用いて測定すると43図に示す該酵素直
重出力の反応曲線が得られ、GOT活性値およびGPT
活性値と電流値変化速度との間には良好な直線関係が認
められた。
In this way, when measuring using a sample with known GOT activity value and GPT activity value, a reaction curve of the direct output of the enzyme shown in Figure 43 is obtained, and GOT activity value and GPT activity value
A good linear relationship was observed between the activity value and the current value change rate.

一方、GPT活性を最初に測定し、次に二成分活性を測
定する場合は、GOT測定用基質溶液(少なくともアス
パラギン酸とα−ケトグルタル酸を含む)14を、GP
T測定用基質溶液(少なくともアラニンとα−ケトグル
タル酸を含む)に変え、さらにGPT測定用JS′イ溶
y、16をGOT測定用基質溶液とすることにより前記
同様に判定することができる。
On the other hand, when GPT activity is measured first and then two-component activity is measured, GOT measurement substrate solution (containing at least aspartic acid and α-ketoglutaric acid) 14 is
The determination can be made in the same manner as described above by changing the substrate solution for T measurement (containing at least alanine and α-ketoglutaric acid) and further using JS' Isol y, 16 for GPT measurement as the substrate solution for GOT measurement.

以上詳述した通り、本発明のトランスアミナーゼ活性を
測定する方法を用いることによって、生体試料中の微倹
のGOTおよびGPTを簡便な方法で、迅速に精度良く
、定Q範囲も広く測定することができるう
As detailed above, by using the method for measuring transaminase activity of the present invention, it is possible to measure small quantities of GOT and GPT in biological samples in a simple manner, quickly, with high precision, and over a wide constant Q range. I can do it

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の測定方法を用いるトランスアミナー
ゼ活性分析装置の系統図の一例である。 第2図は、本発明の測定方法を用いて測定して得だGO
T活性値およびGPT活性噴と電流値変化速度との相関
図である。 第3図は、本発明の測定方法を用いて得られた酵素電極
の出力特性図である。 1・・・試料注入器、2・・・試料注入用テンプラ−1
3・・・反応及び検出セル、4・・・固定化酵素膜、5
・−・酸素電極または過漿化水素電極、6・・・増幅器
、7・・・レコーダー、8・・・デジタルマルチメータ
、9.10.11、12.13 ・・ポンプ、14.1
6・・・基質溶ノ夜槽、15・・・緩衝溶液個、17・
・・廃液槽。 特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 代理人 弁理士 長 谷 正 久 第1図 第2図 トランスアミナーゼ′活・圧(KU/mi)第3図 時wJ1(min)
FIG. 1 is an example of a system diagram of a transaminase activity analyzer using the measuring method of the present invention. Figure 2 shows the results obtained by measuring using the measuring method of the present invention.
FIG. 3 is a correlation diagram between T activity value, GPT activity jet, and current value change rate. FIG. 3 is an output characteristic diagram of an enzyme electrode obtained using the measurement method of the present invention. 1... Sample injector, 2... Templar for sample injection 1
3... Reaction and detection cell, 4... Immobilized enzyme membrane, 5
...Oxygen electrode or superhydrogen electrode, 6.. Amplifier, 7.. Recorder, 8.. Digital multimeter, 9.10.11, 12.13.. Pump, 14.1
6...Substrate lysis tank, 15...Buffer solutions, 17.
...Waste liquid tank. Patent applicant Mitsubishi Yuka Co., Ltd. Agent Patent attorney Hidetoshi Furukawa Agent Patent attorney Masahisa Hase Figure 1 Figure 2 Transaminase activity/pressure (KU/mi) Figure 3 Time wJ1 (min)

Claims (2)

【特許請求の範囲】[Claims] (1)L−グルタミン酸オキシダーゼを多孔性高分子担
体上に固定化した固定化酵素膜を装着した酵素電極を有
するセルに、緩衝溶液、試料液及び、グルタミン酸オキ
ザロ酢酸トランスアミナーゼ(GOT)測定用基質溶液
又はグルタミン酸ピルビン酸トランスアミナーゼ(GP
T)測定用基質溶液を供給し、該酵素電極の出力により
GOT活性又はGPT活性を測定するトランスアミナー
ゼ活性の測定法。
(1) A buffer solution, a sample solution, and a substrate solution for measuring glutamate oxaloacetate transaminase (GOT) are placed in a cell equipped with an enzyme electrode equipped with an immobilized enzyme membrane in which L-glutamate oxidase is immobilized on a porous polymer carrier. or glutamate pyruvate transaminase (GP
T) A method for measuring transaminase activity in which a substrate solution for measurement is supplied and GOT activity or GPT activity is measured by the output of the enzyme electrode.
(2)該セルに緩衝溶液、試料液及び、GOT測定用基
質溶液又はGPT測定用基質溶液を供給し、該酵素電極
の出力によりGOT活性又はGPT活性を測定し、次い
で該セルに上記測定に用いなかつたGPT測定用基質溶
液又はGOT測定用基質溶液を供給してGPT活性及び
GOT活性の合計活性を測定することを特徴とする特許
請求の範囲第1項記載のトランスアミナーゼ活性の測定
法。
(2) Supply a buffer solution, a sample solution, and a substrate solution for GOT measurement or a substrate solution for GPT measurement to the cell, measure GOT activity or GPT activity by the output of the enzyme electrode, and then apply the above measurement to the cell. The method for measuring transaminase activity according to claim 1, characterized in that the total activity of GPT activity and GOT activity is measured by supplying an unused substrate solution for GPT measurement or substrate solution for GOT measurement.
JP59197988A 1984-09-21 1984-09-21 Method of measuring transminase activity Pending JPS6181799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197988A JPS6181799A (en) 1984-09-21 1984-09-21 Method of measuring transminase activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197988A JPS6181799A (en) 1984-09-21 1984-09-21 Method of measuring transminase activity

Publications (1)

Publication Number Publication Date
JPS6181799A true JPS6181799A (en) 1986-04-25

Family

ID=16383639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197988A Pending JPS6181799A (en) 1984-09-21 1984-09-21 Method of measuring transminase activity

Country Status (1)

Country Link
JP (1) JPS6181799A (en)

Similar Documents

Publication Publication Date Title
Scheller et al. Enzyme electrodes and their application
Schubert et al. Enzyme electrodes with substrate and co-enzyme amplification
Ikeda et al. Amperometric fructose sensor based on direct bioelectrocatalysis
Palleschi et al. Amperometric tetrathiafulvalene-mediated lactate electrode using lactate oxidase absorbed on carbon foil
Chen et al. Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin
US3788950A (en) Enzyme gel and use therefor
Schubert et al. Enzyme electrodes for L-glutamate using chemical redox mediators and enzymatic substrate amplification
US7169273B2 (en) Enzyme electrode
CA2366565A1 (en) Method of determining substrate, and biosensor
Kihara et al. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase
Scheper et al. A fiber optic biosensor based on fluorometric detection using confined macromolecular nicotinamide adenine dinucleotide derivatives
Kihara et al. Sequential determination of glutamate-oxalacetate transaminase and glutamate-pyruvate transaminase activities in serum using an immobilized bienzyme-poly (vinyl chloride) membrane electrode
Mizutani et al. Flow injection analysis of L-lactic acid using an enzyme-polyion complex-coated electrode as the detector
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
JPS6181799A (en) Method of measuring transminase activity
Girotti et al. Bioluminescent flow sensor for the determination of L-(+)-lactate
JPS6095344A (en) Method for measuring activity of transaminase
JPS6060550A (en) Measuring method of transaminase activity
JPS59109170A (en) Apparatus for determination of transaminase activity
Burgner et al. Acceleration of the NAD-cyanide adduct reaction by lactate dehydrogenase: equilibrium binding effect as a measure of the activation of bound NAD
JPH0470558A (en) Ethanol sensor
JPS59216586A (en) Immobilized enzyme and production thereof
JPS59109175A (en) Immobilized enzyme and its preparation
JP4000708B2 (en) Method for measuring substances using enzyme-immobilized electrode
Okuma et al. Biosensor system for continuous flow determination of enzyme activities. I. Determination of glucose oxidase and lactic dehydrogenase activities