JPS59109170A - Apparatus for determination of transaminase activity - Google Patents

Apparatus for determination of transaminase activity

Info

Publication number
JPS59109170A
JPS59109170A JP57218036A JP21803682A JPS59109170A JP S59109170 A JPS59109170 A JP S59109170A JP 57218036 A JP57218036 A JP 57218036A JP 21803682 A JP21803682 A JP 21803682A JP S59109170 A JPS59109170 A JP S59109170A
Authority
JP
Japan
Prior art keywords
activity
acid
determination
electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57218036A
Other languages
Japanese (ja)
Inventor
Kunio Kihara
木原 圀男
Hideoki Yasukawa
安川 英起
Mitsuhiro Hayashi
光洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP57218036A priority Critical patent/JPS59109170A/en
Publication of JPS59109170A publication Critical patent/JPS59109170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To enable the rapid and accurate determination of transaminase activity with a simple method, by attaching an easily washable immobilized enzyme membrane having high and stable enzymatic activity and high diffusibility into substrate to an electrode for the determination of oxidation potential, and using the electrode as the enzyme sensor. CONSTITUTION:The determination of GOT activity is carried out as follows. The specimen is injected into the determination cell 3 by the injector 1 or the sampler 2, and the substrate solution 12 containing at least aspartic acid and alpha-ketoglutaric acid and the buffer solution for the determination of pyruvic acid 14 are injected into the cell with the pumps 9 and 10. The oxaloacetic acid produced by the reaction is converted to pyruvic acid by the immobilized enzyme membrane 4, and then reacted with the pyruvic acid oxidase in the membrane. The amount of produced hydrogen peroxide or decreased oxygen is determined by a hydrogen peroxide electrode or an oxygen electrode 5, and recorded by the recorder 7, etc. The activity of GPT can be prepared in the same manner provided that the substrate solution is changed to a solution 13 containing at least alanine and alpha-ketoglutaric acid. A trace of GOT or GPT in a biospecimen can be determined easily, rapidly, in high accuracy by this process.

Description

【発明の詳細な説明】 本発明け、生体試料中のグルタミン酸オキザロ酢酸トラ
ンス了ミナーゼ(GOTと略記する)又はグルタミン酸
ピルビン酸トランスアミナーゼ(GPTと略記する)の
活性を測定する分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analytical device for measuring the activity of glutamate oxaloacetate transaminase (abbreviated as GOT) or glutamate pyruvate transaminase (abbreviated as GPT) in a biological sample.

本発明を用いれば、1つのセル中でGOT又はQP’l
”を測定することができる為、試料の測定を迅速に、精
度よく行うことがで点る。
With the present invention, GOT or QP'l in one cell
”, it is possible to measure samples quickly and accurately.

トランスアミナーゼは、アミノ酸のアミン基転移を触媒
する酵素で、その内GOTは心筋、肝、骨格筋、腎に多
量に含着れ、G P Tは肝、腎に多量に含まれている
。従ってGO’l’、GPTの測定は急性ウィルス性肝
炎、慢性肝炎、肝硬変、肝腫瘍、急性アルコール性肝炎
等の肝疾患、胆のう、胆管炎、胆石症等の肝外閉塞性黄
痘、心筋硬塞、進行性筋ジストロフィー、感染性疾患等
の診断に有用な役割を果しており、G OT 、、G 
P ’]、”を簡便に精度よく迅速に測定することは臨
床的に意義が大きい。
Transaminase is an enzyme that catalyzes transamidation of amino acids, and among them, GOT is contained in large amounts in cardiac muscle, liver, skeletal muscle, and kidney, and GPT is contained in large amount in liver and kidney. Therefore, measurements of GO'l' and GPT are recommended for acute viral hepatitis, chronic hepatitis, liver cirrhosis, liver tumors, liver diseases such as acute alcoholic hepatitis, extrahepatic obstructive jaundice such as gallbladder disease, cholangitis, and cholelithiasis, and myocardial stiffness. It plays a useful role in the diagnosis of muscular dystrophy, progressive muscular dystrophy, infectious diseases, etc.
It is of great clinical significance to easily, accurately, and quickly measure P′],”.

従来、G OT (7)測定方法と1−てば・隻質のア
スパラギン酸とα−ケトグルタル酸に試料を加え、生成
したオキザロ酢酸を、リンゴ酸脱水素酵素と補酵素N 
A D I−Tの存在下で共役させ、このときのNA、
 J) i−(の340m+の吸光度の減少を初速度広
で測定するカルメン法と、上記の様に生成1−7たオギ
リ゛口酢酸&2.4−ジニ)・ロフェニルヒドラジント
反応させヒドラゾンを生成させ、こね5をアルカリ性に
してキノイドを作り発色させるライトマン−フランケル
法がある。しかし、カルメン法では使用する試薬が不安
定で、1だ恒温セルを付属させた特殊な分光5’e度計
が必要である等の間頑がある。
Conventionally, GOT (7) Measurement Method: A sample was added to aspartic acid and α-ketoglutaric acid, and the resulting oxaloacetate was combined with malate dehydrogenase and coenzyme N.
Conjugated in the presence of ADI-T, at this time NA,
J) The Carmen method, which measures the decrease in the absorbance at 340 m+ of i-(at a wide initial velocity), and the hydrazone obtained by reacting the generated 1-7 oglymeroacetic acid & 2,4-dini)-lophenylhydrazine as described above. There is a Reitman-Frankel method in which the kneading material 5 is made alkaline to produce quinoids and develop color. However, the Carmen method has certain limitations, such as the instability of the reagents used and the need for a special spectrometer 5'e thermometer equipped with a constant temperature cell.

一方、ライトマン−フランケル法でけ基質のα−ケトグ
ルタル酸も発色1−で生成物の発色を妨害するだめに基
質量を極変に減じる必要があり、倹1−゛線が変曲する
ことや測定可能範囲が狭い等の欠点がある。
On the other hand, in the Reitman-Frankel method, the substrate amount of α-ketoglutaric acid must be drastically reduced in order to prevent the color development of the product due to the color development 1-, and the 1-' line is inflected. There are drawbacks such as a narrow measurable range.

1九〇 P ’I”の測定方法には、基質のアラニンと
α−ケトグルタル酸に試料を加え、生成1.たピルビン
酸を乳酸脱水素酵素と前記N A ]’) Hの存在下
で共役さす該N A l) I(の減少を測定するカル
メン法と、上記の様に生成1.たピルビン酸に2.4−
ジニトロフェニルヒドラジンを作用させて発色させるラ
イトマン−フランケル法がある。1.かしとれβ、の方
法にも上記G O’[”の4111定方法と同様の欠点
プバある。
190 To measure P'I'', a sample is added to the substrates alanine and α-ketoglutaric acid, and the generated pyruvate is conjugated with lactate dehydrogenase in the presence of the above N A ]') H. The Carmen method, which measures the decrease in N A l) I, and the 2.4-
There is a Reitman-Frankel method in which color is developed by the action of dinitrophenylhydrazine. 1. The method of Kashitore β also has the same drawbacks as the 4111 fixed method of G O'['' described above.

こハらの欠点を解決する目的で最近、ピルビン酸オキシ
ダーゼ(POPと略記する)を利用してG PT、 G
 OTを分析する方法が開発されている。
Recently, in order to solve these drawbacks, pyruvate oxidase (abbreviated as POP) was used to generate GPT, G
Methods have been developed to analyze OT.

たとえばGPTの測定方法と1〜では、基質のアラニン
とα−ケトグルタル酸に試料を1J[1えピルビン酸を
生成する反応と、生成したピルビン酸をPOPと所要基
質の存在下に酸化するピルビン酸酸化反応とを共役させ
、ピルビン酸酸化反応に伴う過酸化水素の発生量を発色
剤を用いて比色定量するものがある。
For example, in GPT measurement method 1~, the sample is mixed with the substrates alanine and α-ketoglutaric acid at 1 J [1], and the reaction that generates pyruvate is performed, and the generated pyruvate is oxidized to pyruvic acid in the presence of POP and the required substrate. There is a method in which the amount of hydrogen peroxide generated in the pyruvic acid oxidation reaction is determined colorimetrically using a coloring agent.

寸だG O’I’の測定方法としては、基質のアスパラ
ギン酸とα−ケトグルタル酸に試料を加えオキザロ酢酸
を生成する反応と、生成1〜だオキザロ酢酸をオキザロ
酢酸デカルボキシラーゼ(OACと略記する)の存在下
にピルビン酸を生成する反応とを共役させピルビン酸を
生成させる。次にこの生成1−だピルビン酸をPOPと
所要基質の存在下にピルビン酸酸化反応を行わせ、ピル
ビン酸酸化反応に伴う過酸化水素の発生量を発色剤を用
いて比色定量する。しか1−ながら上記POPを利用す
る測定法は、高価な酵素の使い捨て、測定時間が長いこ
と、P OP自身が溶液中では不安定であるため測定時
の再現性が悪い等の問題点がある。
The method for measuring Sunda G O'I' involves a reaction in which a sample is added to the substrates aspartic acid and α-ketoglutarate to produce oxaloacetate, and the produced oxaloacetate is processed using oxaloacetate decarboxylase (abbreviated as OAC). ) in the presence of pyruvic acid to produce pyruvic acid. Next, the produced 1-dipyruvate is subjected to a pyruvate oxidation reaction in the presence of POP and a required substrate, and the amount of hydrogen peroxide generated due to the pyruvate oxidation reaction is determined colorimetrically using a coloring agent. However, the measurement method using POP described above has problems such as the expensive and disposable enzyme, long measurement time, and poor reproducibility during measurement because POP itself is unstable in solution. .

そこでPOPを固定化し、これを酸化電位測定用電極に
装着l、だ酵素電極を使用してG P T 。
Therefore, POP was immobilized and attached to an electrode for measuring oxidation potential, and GPT was measured using an enzyme electrode.

GOTを測定I7ようとする研究も盛んに行なわれてい
る、(特開昭55−111786号、同56−1243
96号各公報、Analytica chirnica
A、cta、+ts (19so)65−71等参照)
しかL、とれら上記の固定化法では、固定化POPの活
性ならびに安定性は十分とは1.A先ず、またPOPの
みの固定化ではGOT測定特定時AC酵素を添加1〜な
ければならない欠点があるだめ、(i (F T又はG
PT測定用の高活性で安定性の優れ−−−5−一 るPOPおよびOAC固定化酵素を用いるGOT又はG
PT測定装置置装提供が切望されていた。
Research to measure GOT I7 is also actively conducted (Japanese Patent Application Laid-open Nos. 55-111786 and 56-1243).
No. 96 publications, Analytica chirnica
A, cta, +ts (19so) 65-71 etc.)
However, in the above immobilization method, the activity and stability of immobilized POP are insufficient.1. A: First of all, immobilization of POP only has the disadvantage that AC enzyme must be added at the specific time of GOT measurement.
High activity and excellent stability for PT measurement---5-GOT or G using POP and OAC immobilized enzymes
There has been a great need for a PT measuring device.

本発明者らは、この要望に応えるべく鋭意検討を行った
結果、POP及びOACの酵素活性及びその安定性に優
れ、基質拡散性がよく、洗浄しゃすい固定化酵素膜を酸
化電位測定用の電極に装着して酵素センサーとして利用
することにより、従来の測定方法の欠点を解消し、生体
試料中の微量のトランスアミナーゼを簡便な方法で、迅
速に精度良く、定量範囲も広く測定し祷ることを見出し
本発明を完成した。
As a result of intensive studies to meet this demand, the present inventors have developed an immobilized enzyme membrane that has excellent POP and OAC enzyme activity and stability, has good substrate diffusivity, and is easy to wash. By attaching it to an electrode and using it as an enzyme sensor, we can eliminate the shortcomings of conventional measurement methods and measure trace amounts of transaminases in biological samples in a simple manner, quickly, accurately, and over a wide quantitative range. They found this and completed the present invention.

即ち、本発明は、ピルビン酸オキシダーゼ(POP)お
よびオキザロ酢酸デカルボキシラーゼ(OAC)を担体
上に固定化した固定化酵素膜を装着した酵素センサー電
極を有するセルに、ピルビン酸測定用緩衝液供給部、少
なくともアスパラギン酸とα−ケトグルタル酸を含有す
る基質溶液〔I〕供給部及び/又は少なくともアラニン
とα−ケトグルタル酸を含有する基質溶液(U)供給部
、試4−1液供給部をそれぞれ連結1−1該セルに土 
6− 記緩価液、基質浴液(1)又は(n)、試料液を供給し
、該酵素七/サー電極の出力によりグルタミン酸”オキ
ザロ酢酸l・ランスアミナーゼCGOT )活性又はグ
ルタミン酸ピルビン酸トランスアミナーゼ(GPT)活
性を測定するトランスアミナーゼ活性分析装置を提供す
るものである。
That is, the present invention provides a cell having an enzyme sensor electrode equipped with an immobilized enzyme membrane in which pyruvate oxidase (POP) and oxaloacetate decarboxylase (OAC) are immobilized on a carrier. , the substrate solution [I] supply section containing at least aspartic acid and α-ketoglutaric acid and/or the substrate solution (U) supply section containing at least alanine and α-ketoglutaric acid, and the sample 4-1 solution supply section are connected, respectively. 1-1 Soil in the cell
6- Supply the low-temperature solution, substrate bath solution (1) or (n), and sample solution, and determine the activity of glutamate "oxaloacetate l-transaminase CGOT" or glutamate pyruvate transaminase by the output of the enzyme electrode. The present invention provides a transaminase activity analyzer for measuring (GPT) activity.

本発明に用いられる固定化酵素膜は、多孔性高分子膜担
体を用いて製造できる。多孔性高分子担体としては、公
知の塩化ビニル樹11iT 、ff’f3一体、アセチ
ルセルロース、ポリカーボネート、ナイロン、ポリプロ
ピレン、ポリエチレン、テフロン等ヲ用いることができ
る。この中でも塩化ビニル樹脂担体が特に好1しく用い
られ、該担体は、特開昭55−39719号公報記載の
ものを用いることができる。
The immobilized enzyme membrane used in the present invention can be manufactured using a porous polymer membrane carrier. As the porous polymer carrier, known materials such as vinyl chloride resin 11iT, ff'f3 monolith, acetyl cellulose, polycarbonate, nylon, polypropylene, polyethylene, and Teflon can be used. Among these, a vinyl chloride resin carrier is particularly preferably used, and as the carrier, those described in JP-A-55-39719 can be used.

特に好ましくは、塩化ビニル樹脂相体は以下の様にして
製造される。
Particularly preferably, the vinyl chloride resin phase is produced as follows.

先ず塩化ビニル樹脂をジメチルホルムアミドなどの溶媒
(A)に溶解し、これを所望の担体形状に形成した後溶
媒(R)への浸漬処理を行なう。
First, a vinyl chloride resin is dissolved in a solvent (A) such as dimethylformamide, and this is formed into a desired carrier shape, and then immersed in a solvent (R).

本発明の上記塩化ビニル樹脂(PVR)としては、ボI
J y=化ビニル(PVC)、塩化ビニル共重合体、こ
れらと他の樹脂とのブレンド物があり、塩化ビニル共重
合体と17ては、例えば、塩化ビニルと酢酸ビニル、塩
化ビニリデン、エチレン、アクリル酸、アクリロニトリ
ルなどとの二元または土兄以上の共重合体がある。
As the vinyl chloride resin (PVR) of the present invention, BoI
J y = Vinyl chloride (PVC), vinyl chloride copolymer, and blends of these and other resins, such as vinyl chloride and vinyl acetate, vinylidene chloride, ethylene, There are binary or monovalent copolymers with acrylic acid, acrylonitrile, etc.

溶媒(A)は、P V Rを俗解できる溶剤であって、
ジメチルホルムアミド(D IVF R) 、ジメチル
アセトアミド(DMA )、n−メチルピロリドン(1
1−MP)、ヘキサメチルホスフォアミド(I−IMP
A)、テI・ラヒドロフラン(T HF) 、アセトン
とベンゼンの混合溶媒などがある。P V R溶液の濃
度としては1〜30重翔%のものが用いられる。酵素等
の固定膜が優れた吸着活性を発揮して機能するためには
PVRのポ合度か約1000におい″′C6〜12重掛
%が好ましい。
The solvent (A) is a solvent that can be understood as PVR,
Dimethylformamide (DIVFR), dimethylacetamide (DMA), n-methylpyrrolidone (1
1-MP), hexamethylphosphoramide (I-IMP)
A), THF, a mixed solvent of acetone and benzene, etc. The concentration of the PVR solution used is 1 to 30%. In order for the enzyme-immobilized membrane to exhibit excellent adsorption activity and function, it is preferable that the PVR concentration is approximately 1,000 and the weight ratio is 6 to 12%.

次に、かくして得たP V R浴液を所望の担体形状に
形成した後、P V Rの貧溶媒であり且つ溶媒囚の良
溶媒となる溶媒03)と接触させて担体層全形成する。
Next, the thus obtained P VR bath solution is formed into a desired carrier shape, and then brought into contact with solvent 03) which is a poor solvent for P VR and a good solvent for solvent traps to form the entire carrier layer.

この際、溶媒(I3)との接触はI) V R溶液層が
白化する前に行なうことが好ましい。ここで白化する前
とは、PVRと溶媒(4)の溶液が目視できる白濁を生
じて不透明となる壕での期間である。
At this time, the contact with the solvent (I3) is preferably carried out before the I) VR solution layer becomes white. Here, the term "before whitening" refers to the period in the trench where the solution of PVR and solvent (4) becomes opaque with visible cloudiness.

溶媒の)としては水、アルコール系溶媒、エーテル系溶
媒などがある。
Examples of solvents include water, alcohol solvents, and ether solvents.

アルコール系溶媒としては、メチルアルコール、エチル
アルコール、n−プロピルアルコール、1so−7’ロ
ビルアルコール、n−ブチルアルコール、5ec−ブチ
ルアルコール、tert −ブチルアルコールなどの一
価アルコール類、エチレングリコール、ジエチレングリ
コール、グリセリンなどの多価アルコール類、エチレン
グリコールモノメチルエーテル、エチレンクリコールモ
ノエチルエーテルなどのグリコールモノエーテル類など
か用いられる。浸漬する溶媒としてはこれらアルコール
系溶媒単独またはアルコール系溶媒を50重針%以上含
崩して塩化ビニル樹脂不溶の混合溶媒であってもよい。
Examples of alcoholic solvents include monohydric alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, 1so-7′ lobil alcohol, n-butyl alcohol, 5ec-butyl alcohol, and tert-butyl alcohol, ethylene glycol, and diethylene glycol. , polyhydric alcohols such as glycerin, and glycol monoethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether. The solvent to be immersed may be one of these alcoholic solvents alone or a mixed solvent containing 50% or more of alcoholic solvents in which the vinyl chloride resin is insoluble.

殊ニ、メチルアルコール、エチルアルコールを 9− 用いた場合には、固定化酵素活性の大きい固定化物が得
られ好ましい。
In particular, when methyl alcohol or ethyl alcohol is used, an immobilized product with high immobilized enzyme activity can be obtained, which is preferable.

なお、P V Rと溶媒(A)の溶液には、担体の膨潤
の度合の調整すなわち担体の含水率の調節、孔径の調整
等のために、ポリエチレングリコール等のPVRに対し
非溶媒性の化合物を推力(1することができる。
The solution of PVR and solvent (A) contains a compound that is a non-solvent for PVR, such as polyethylene glycol, in order to adjust the degree of swelling of the carrier, that is, to adjust the water content of the carrier, adjust the pore size, etc. can be thrust (1).

担体形状としては膜状、管状、試験管状、ビーズ状等種
々の形状をとることかできる。酵素電極等の用途には特
に膜状が好ま17い3、膜状担体はPVIR溶液を流延
し、その後浴m (B)に浸漬して形成する。
The carrier can take various shapes such as a membrane, a tube, a test tube, and a bead. Membrane-like carriers are particularly preferred for applications such as enzyme electrodes17,3 and are formed by casting a PVIR solution and then immersing the carrier in bath m (B).

この際、担体の強度を向上させる為不織布等の補強材を
用いてもよい。
At this time, a reinforcing material such as a nonwoven fabric may be used to improve the strength of the carrier.

なお担体の形成後、担体を水中に浸漬し−(溶媒G)を
水と置換することが好ましい。
Note that after forming the carrier, it is preferable to immerse the carrier in water to replace -(solvent G) with water.

次に上記担体を酵素POP及びOACを含有する溶液と
接触させる。この時好壕しくけこれらの酵素と共に補酵
素フラビンアデニンジヌクレオチド(FADと略mlす
る)、補酵素チアミンピロホー1 (1−一 スフニー)(TPPと略記する)およびMg2+イオン
及び/又はMnz+イオンを含む溶液に浸漬して本発明
に用いられる固定化酵素を得る。
The carrier is then brought into contact with a solution containing the enzymes POP and OAC. At this time, along with these enzymes, coenzyme flavin adenine dinucleotide (abbreviated as FAD), coenzyme thiamine pyropho-1 (abbreviated as TPP), and Mg2+ ion and/or Mnz+ ion are added. The immobilized enzyme used in the present invention is obtained by immersing it in a solution containing the following.

この場合、上記酵素を含む溶液は、POPとOACの合
計の濃度は100〜1000■/d7!、好ましくは2
00〜800■/d7!であり、popとOACとの重
量組成比が50150〜99/1、好ましくは70 /
 30〜98/2、特に好壕しくは85/15〜97/
3の間にあり、かつ該浴液のpHが6〜8.5、好捷し
くけ6.5〜7.0の範囲にある緩衝溶液である。
In this case, the solution containing the enzyme has a total concentration of POP and OAC of 100 to 1000/d7! , preferably 2
00~800■/d7! and the weight composition ratio of pop and OAC is 50150 to 99/1, preferably 70/1.
30-98/2, especially preferably 85/15-97/
3, and the pH of the bath solution is in the range of 6 to 8.5, preferably 6.5 to 7.0.

本発明に使用する上記緩衝溶液は、Qood  ら(B
iochemistry、 5.467(1966) 
)による公知の緩衝剤を用いることができる。たとえば
N置換型双極性アミノ酸としては、N−(2−アセトア
ミド)−2−アミノエタンスルホンm、N−(2−アセ
トアミド9イミノジ酢酸、N、N−ビス(2−ヒドロキ
シエチル)−2−アミノエタンスルホン酸、N、N−ビ
ス(2−ヒドロキシエチル) f リシン、N−(2−
ヒドロキシエチル)ピペラジン−N’ −2−エタンス
ルホン酸、2−(N−モルホリノ)エタンスルホン酸、
3−(N−モルホリノ)プロパンスルホン酸、ヒペラジ
ンーN、N’−ビス(2−エタンスルホン酸)、N−)
IJス(ヒドロキシメチル)メチル−3−アミノプロパ
ンスルホン酸、N−)リス(ヒドロキシメチル)メチル
−2−アミノエタンスルホン酸、N−トリス(ヒドロキ
シメチル)メチルグリシン等がある。また脂肪族アミン
としては、2,2−ビス(ヒドロキシメチル) −2,
2’、2“−ニトリロトリエタノール、1,3−ビス〔
トリス(ヒドロキシメチル)メチルアミン〕プロパン、
グリシンアミド等がある。またトリス(ヒドロキシメチ
ル)アミノメタン等を用いることができる。
The above buffer solution used in the present invention is described by Qood et al.
iochemistry, 5.467 (1966)
) can be used. For example, N-substituted dipolar amino acids include N-(2-acetamido)-2-aminoethanesulfone m, N-(2-acetamido9iminodiacetic acid, N,N-bis(2-hydroxyethyl)-2-amino Ethanesulfonic acid, N, N-bis(2-hydroxyethyl) f Lysine, N-(2-
hydroxyethyl)piperazine-N'-2-ethanesulfonic acid, 2-(N-morpholino)ethanesulfonic acid,
3-(N-morpholino)propanesulfonic acid, hyperazine-N, N'-bis(2-ethanesulfonic acid), N-)
Examples include IJs(hydroxymethyl)methyl-3-aminopropanesulfonic acid, N-)lis(hydroxymethyl)methyl-2-aminoethanesulfonic acid, and N-tris(hydroxymethyl)methylglycine. In addition, as aliphatic amines, 2,2-bis(hydroxymethyl)-2,
2',2''-nitrilotriethanol, 1,3-bis[
Tris(hydroxymethyl)methylamine]propane,
Examples include glycinamide. Additionally, tris(hydroxymethyl)aminomethane and the like can be used.

また、M g 2+イオンおよびMn2+イオンはMg
Cl2およびMnC6zの形態で使用することが好まし
い。
Furthermore, Mg 2+ ions and Mn2+ ions are Mg
Preference is given to using it in the form of Cl2 and MnC6z.

本発明に用いられる固定化酵素は、昭和57年12月1
日出願の特許の明細書に記載した常温硬化性ブロックト
イソシアネート化合物の水溶液に接触させて該化合物で
被覆することもできる。
The immobilized enzyme used in the present invention was released on December 1, 1981.
It can also be coated with an aqueous solution of a room-temperature-curable blocked isocyanate compound described in the patent specification of the Japanese patent application.

上記の様にして得られた固定化酵素膜を公知の多孔性の
高分子膜、例えばアセチルセルロース膜、ポリカーボネ
ート膜、ナイロン膜、ポリプロピレン膜、ポリエチレン
膜、テフロン膜等と貼り合せ、固定化酵素膜が試料液に
接する様に公知の例えば過酸化水素電極等に装着し酵素
センサー電極を製作し、使用する。
The immobilized enzyme membrane obtained as described above is laminated with a known porous polymer membrane, such as an acetyl cellulose membrane, a polycarbonate membrane, a nylon membrane, a polypropylene membrane, a polyethylene membrane, a Teflon membrane, etc., to form an immobilized enzyme membrane. An enzyme sensor electrode is manufactured and used by attaching it to a known, for example, hydrogen peroxide electrode so that it is in contact with the sample solution.

第1図は、この酵素センサー電極を用いた本発明の一例
を示すトランスアミナーゼ活性分析装置の系統図である
FIG. 1 is a system diagram of a transaminase activity analyzer using this enzyme sensor electrode and showing an example of the present invention.

以下、第1図を用いて本発明のトランスアミナーゼ活性
分析装置を用いるGOT又はGPT測定方法を説明する
Hereinafter, a method for measuring GOT or GPT using the transaminase activity analyzer of the present invention will be explained using FIG.

第1図に於てGOT活性を測定する場合は注射器1又は
サンプラー2により試料を測定セル3に注入する。一方
、少なくともアスパラギン酸とα−ケトグルタル酸を含
有する基質溶液12とピA・ビン酸測定用緩衝液(FA
D、TPP及びMg ”及び/又はMn2+イオン等を
含む)14を各々ポンプ9.10にて測定セル3に注入
する。セル313− 中にてアスパラギン酸、α−ケトグルタル酸及び生体試
料中のGOTとの反応によ抄生成したオキザロ酢酸は、
上述の固定化酵素11Q4中のオキザロ酢酸デカルボキ
シラーゼによりピルビン酸となり、次いで固定化酵素膜
4中のピルビン酸オキシダーゼと反応する。この際、発
生する過酸化水素量又は減少する酸素量を過酸化水素電
極又は酸素電極5にて検出し記録計7またはデジタルマ
ルチメータ8により読み取る。測定終了後、ポンプ11
によりセル内の液は廃棄される。この様にして既知のG
OT活性値を有する試料を用いて測定すると、GOT活
性値と電流値変化速度との間には、第2図に示す良好な
直線関係が認められた。
When measuring GOT activity in FIG. 1, a sample is injected into a measurement cell 3 using a syringe 1 or a sampler 2. On the other hand, a substrate solution 12 containing at least aspartic acid and α-ketoglutaric acid and a buffer solution for measuring PIA-vic acid (FA
D, TPP, Mg'' and/or Mn2+ ions, etc.) are injected into the measuring cell 3 using pumps 9 and 10. In the cell 313-, aspartic acid, α-ketoglutaric acid and GOT in the biological sample Oxaloacetic acid produced by the reaction with
It becomes pyruvate by oxaloacetate decarboxylase in the immobilized enzyme 11Q4 mentioned above, and then reacts with pyruvate oxidase in the immobilized enzyme membrane 4. At this time, the amount of hydrogen peroxide generated or the amount of oxygen that decreases is detected by the hydrogen peroxide electrode or oxygen electrode 5 and read by the recorder 7 or digital multimeter 8. After measurement, pump 11
The liquid inside the cell is discarded. In this way, the known G
When measuring using a sample having an OT activity value, a good linear relationship as shown in FIG. 2 was observed between the GOT activity value and the rate of change in current value.

−万GPT活性を測定する場合は、基質液を少なくとも
アスパラギン酸とα−ケトグルタル酸を含有する溶液1
2から少なくともアラニンとα−ケトグルタル酸を含有
する溶液13に切替え、他はGOTの場合と同様に測定
することができる。GPT活性の測定に於てもGOT活
性測定の場合と同様な第3図に示すGPT活性値と電流
値変化速14− 度との間の良好な直線関係があった。
- When measuring 10,000 GPT activity, the substrate solution is at least 1 ml of a solution containing aspartic acid and α-ketoglutaric acid.
2 to solution 13 containing at least alanine and α-ketoglutaric acid, and the other measurements can be carried out in the same manner as in the case of GOT. In the measurement of GPT activity, there was a good linear relationship between the GPT activity value and the current value change rate of 14 degrees, as shown in FIG. 3, similar to that in the GOT activity measurement.

また本発明の装置を用いて、基質溶液を変えることによ
りGOT、GPT以外の生体試料中の例えば乳酸、ピル
ビン酸等の測定も可能である。
Furthermore, by using the apparatus of the present invention, it is also possible to measure, for example, lactic acid, pyruvic acid, etc. in biological samples other than GOT and GPT by changing the substrate solution.

以上詳述した通り、本発明のトランスアミナーゼ活性分
析装置を用いることによって、生体試料中の微開のGO
T又はGPTを簡便な方法で、迅速に精度良く、定量範
囲も広く測定することができる。
As described in detail above, by using the transaminase activity analyzer of the present invention, microscopic GO in biological samples can be detected.
T or GPT can be measured quickly, accurately, and over a wide quantitative range using a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一例を示すトランスアミナーゼ活性
分析装置の系統図である。 第2図は、本発明の装置を用いてそれぞれ測定して得た
GOT活性値と電流値変化速度との相関図、第3図はG
PT活性値と電流値変化速度との相関図である。 1・・・試料注入器、2・・・試料注入用サンプラー、
3・・・反応及び検出セル、4・・・固定化酵素膜、5
・・・酸素電極または過酸化水素電極、6・・・増幅器
、7・・レコーダー、8・・・デジタルマルチメーター
、9.10,11−・−ポンプ、12−GOT測定用基
質浴液槽、13−・・GPT測定用基質溶液槽、14・
・・ピルビン酸測定用緩衝液槽。 府許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 代理人 弁理士 長 谷 正 久 第1図 第2図 GOT活′活性1生値IU/1)
FIG. 1 is a system diagram of a transaminase activity analyzer showing an example of the present invention. Figure 2 is a correlation diagram between the GOT activity value and the rate of change in current value, each measured using the device of the present invention, and Figure 3 is a diagram of the correlation between
It is a correlation diagram between a PT activity value and a current value change rate. 1... Sample injector, 2... Sampler for sample injection,
3... Reaction and detection cell, 4... Immobilized enzyme membrane, 5
. . . Oxygen electrode or hydrogen peroxide electrode, 6. Amplifier, 7. Recorder, 8. Digital multimeter, 9. 10, 11-.- Pump, 12- Substrate bath for GOT measurement, 13-...Substrate solution tank for GPT measurement, 14-
...Buffer tank for pyruvate measurement. Applicant for prefectural approval Mitsubishi Yuka Co., Ltd. Agent: Patent attorney Hidetoshi Furukawa Agent: Hisashi Hase (Figure 1, Figure 2) GOT activity 1 raw value IU/1)

Claims (1)

【特許請求の範囲】 rl)  ピルビン酸オキシダーゼf POP )およ
びオキザロ酢酸デカルボキシラーゼ(OAC)を担体上
に固定化1−だ固定化酵素膜を装着1〜だ酵素センサー
電極を有するセルに、ピルビン酸測定用緩衝液供給部、
少なくともアスパラギン酸とα−ケトグルタル酸を含有
する基質溶液[13供給部及び/又は少なくともアラニ
ンとα−ケトグルタル酸を含有する基質溶液[11)供
給部、試料液供給部をそれぞれ連結1−1該セルに上記
緩衝液、基質溶液[1〕又は〔■〕、試料液を供給1〜
、該酵素センサー′醒極の出力によりグルタミン酸オキ
ザロ酢酸トランスアミナ・−ゼ(GOT)活性又はグル
タミン酸ピルビン酸トランスアミナーゼ(GPT)活性
を測定するトランスアミナーゼ活性分析装置。
[Claims] rl) Pyruvate oxidase (POP) and oxaloacetate decarboxylase (OAC) are immobilized on a carrier.1- An immobilized enzyme membrane is attached to a cell having an enzyme sensor electrode. Measurement buffer supply section,
A substrate solution containing at least aspartic acid and α-ketoglutaric acid [13 supply unit and/or a substrate solution containing at least alanine and α-ketoglutaric acid [11] A supply unit and a sample liquid supply unit are connected to each other 1-1 The cell Supply the above buffer solution, substrate solution [1] or [■], and sample solution to 1~
, a transaminase activity analyzer for measuring glutamate oxaloacetate transaminase (GOT) activity or glutamate pyruvate transaminase (GPT) activity by the output of the enzyme sensor's awakening electrode.
JP57218036A 1982-12-13 1982-12-13 Apparatus for determination of transaminase activity Pending JPS59109170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218036A JPS59109170A (en) 1982-12-13 1982-12-13 Apparatus for determination of transaminase activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218036A JPS59109170A (en) 1982-12-13 1982-12-13 Apparatus for determination of transaminase activity

Publications (1)

Publication Number Publication Date
JPS59109170A true JPS59109170A (en) 1984-06-23

Family

ID=16713632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218036A Pending JPS59109170A (en) 1982-12-13 1982-12-13 Apparatus for determination of transaminase activity

Country Status (1)

Country Link
JP (1) JPS59109170A (en)

Similar Documents

Publication Publication Date Title
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Tatsuma et al. Enzyme electrodes mediated by a thermoshrinking redox polymer
Kissinger Biomedical applications of liquid chromatography-electrochemistry
JP7398566B2 (en) Transition metal complexes, compounds used as electron transfer mediators, methods for producing transition metal complexes, devices containing transition metal complexes as electron transfer mediators, sensing membranes for electrochemical biosensors
Osborne et al. The liquid–liquid micro‐interface for the amperometric detection of urea
Kihara et al. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase
Mizutani et al. Flow injection analysis of L-lactic acid using an enzyme-polyion complex-coated electrode as the detector
US5306413A (en) Assay apparatus and assay method
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
Mizutani et al. Amperometric alcohol-sensing electrode based on a polyion complex membrane containing alcohol oxidase
CN104749122A (en) Serum monoamine oxidase detection kit
Girotti et al. Bioluminescent flow sensor for the determination of L-(+)-lactate
Li et al. An amperometric bienzyme biosensor for rapid measurement of alanine aminotransferase in whole blood
Hirose et al. Polyvinylhcloride membrane for a glucose sensor
JPS59109170A (en) Apparatus for determination of transaminase activity
JPS59216586A (en) Immobilized enzyme and production thereof
JPH0470558A (en) Ethanol sensor
JPS6095344A (en) Method for measuring activity of transaminase
JP2023502551A (en) Systems and methods for measuring liver enzyme levels in blood
JPS59109175A (en) Immobilized enzyme and its preparation
Huang et al. Determination of glutamine in mammalian cell cultures with a flow injection analysis/wall-jet electrode system
JPS6060550A (en) Measuring method of transaminase activity
JPS6181799A (en) Method of measuring transminase activity
Okuma et al. Biosensor system for continuous flow determination of enzyme activities. I. Determination of glucose oxidase and lactic dehydrogenase activities
JP2000262297A (en) Measurement of substance using enzyme-immobilized electrode