JPH0470558A - Ethanol sensor - Google Patents
Ethanol sensorInfo
- Publication number
- JPH0470558A JPH0470558A JP2181583A JP18158390A JPH0470558A JP H0470558 A JPH0470558 A JP H0470558A JP 2181583 A JP2181583 A JP 2181583A JP 18158390 A JP18158390 A JP 18158390A JP H0470558 A JPH0470558 A JP H0470558A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electron acceptor
- enzyme
- ethanol
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims description 80
- 102000007698 Alcohol dehydrogenase Human genes 0.000 claims abstract description 17
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims abstract description 17
- 102000004190 Enzymes Human genes 0.000 claims abstract description 17
- 108090000790 Enzymes Proteins 0.000 claims abstract description 17
- 241000894006 Bacteria Species 0.000 claims abstract description 11
- 239000012528 membrane Substances 0.000 claims abstract description 11
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims abstract description 7
- 239000003093 cationic surfactant Substances 0.000 claims abstract description 5
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002280 amphoteric surfactant Substances 0.000 claims abstract description 4
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims abstract description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 27
- 239000007772 electrode material Substances 0.000 claims description 11
- -1 potassium ferricyanide Chemical group 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 239000007864 aqueous solution Substances 0.000 abstract description 6
- 239000010439 graphite Substances 0.000 abstract description 6
- 229910002804 graphite Inorganic materials 0.000 abstract description 6
- 230000035484 reaction time Effects 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 239000000370 acceptor Substances 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 16
- MMXZSJMASHPLLR-UHFFFAOYSA-N coenzyme pyrroloquinoline quinone Natural products C12=C(C(O)=O)C=C(C(O)=O)N=C2C(=O)C(=O)C2=C1NC(C(=O)O)=C2 MMXZSJMASHPLLR-UHFFFAOYSA-N 0.000 description 12
- 239000000523 sample Substances 0.000 description 9
- 210000000170 cell membrane Anatomy 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical class NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229950006238 nadide Drugs 0.000 description 5
- 238000011088 calibration curve Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RXGJTUSBYWCRBK-UHFFFAOYSA-M 5-methylphenazinium methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC=C2[N+](C)=C(C=CC=C3)C3=NC2=C1 RXGJTUSBYWCRBK-UHFFFAOYSA-M 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000004401 flow injection analysis Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 241000589220 Acetobacter Species 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 241000589236 Gluconobacter Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000012556 adjustment buffer Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000027721 electron transport chain Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011088 parchment paper Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- DCXPBOFGQPCWJY-UHFFFAOYSA-N trisodium;iron(3+);hexacyanide Chemical compound [Na+].[Na+].[Na+].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCXPBOFGQPCWJY-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、液体試料中のエタノール濃度を測定するエタ
ノールセンサーに関する。The present invention relates to an ethanol sensor for measuring ethanol concentration in a liquid sample.
浴液中のエタノールを測定するセンサーとしては、ガス
透過性チューブにキャリヤーガスを流し、チューブ内に
透過したエタノールをガスクロマトグラフ、赤外線ガス
検出器などで検知する装置が知られている。このものは
オンライン計測が可能であるが、装置が大型で複雑であ
るためエタノール測定を簡便に行えないという欠点を有
していた。
これに対して、小型のアルコールセンサーとしては、ア
ルコールに作用する種々の酵素を利用したものが開発さ
れている。これらは、構成が簡単であり比較的容易に作
成できることから実用に供されている。
これらのうち、アルコールオキシダーゼを使用したもの
は、この酵素の基質特異性が低く、メタノールにもエタ
ノールと同様に反応するという欠点を有している。
また、ニコチンアミドアデニンヌクレオチド(NAD)
依存のアルコール脱水素酵素を用いるセンサーは、メタ
ノールに反応しないという点で特異性には優れているが
、高価なNADを使用しなければならず、またNADH
からNADへの再生も困難であるため実用的でなかった
。
これらの欠点を克服するために、酢酸菌に存在する細胞
膜結合性アルコール脱水素酵素(ADH)ご利用したセ
ンサーが開発されている。この酵素は補酵素ピロロキノ
リンキノン(PQQ)関与で、エタノールに選択的に反
応する。PQQはADHと強く結合しているため特別に
固定化する必要がなく、NADを使用する必要もないと
いう優れた特徴を有している。
従来、酢酸菌に存在する膜結合型ADHを利用したセン
サーに関する公開特許としては、■特開昭61−265
560号、■特開昭61−281961号、■特開昭6
2−277548号、■特開平1−96552号、■特
開平1−97851号がある。
これらのうち■、■、■は測定系に電子受容体を使用し
ていない、従って、エタノールが酵素により酸化される
と同時に還元型へ変化したPQQを酸化型へ戻す系が弱
いため応答に時間がかかる。
■、■は測定液中に酸化型の電子受容体を溶解している
。従って、測定時には電子受容体が酵素反応と共役し、
PQQを酸化型へ復帰させ、自身は還元される。さらに
、これを電極で酸化する方法をとっているので短時間で
測定が可能である。As a sensor for measuring ethanol in a bath liquid, a device is known in which a carrier gas is passed through a gas permeable tube and the ethanol that has permeated into the tube is detected using a gas chromatograph, an infrared gas detector, or the like. Although this method allows on-line measurement, it has the disadvantage that ethanol measurement cannot be easily performed because the device is large and complicated. In contrast, small-sized alcohol sensors that utilize various enzymes that act on alcohol have been developed. These are in practical use because they have a simple configuration and can be produced relatively easily. Among these, those using alcohol oxidase have the disadvantage that the enzyme has low substrate specificity and reacts with methanol in the same way as ethanol. Also, nicotinamide adenine nucleotide (NAD)
Sensors using dependent alcohol dehydrogenase have excellent specificity in that they do not react with methanol, but they require the use of expensive NAD;
It was also difficult to regenerate NAD from NAD, which made it impractical. In order to overcome these shortcomings, a sensor utilizing cell membrane-bound alcohol dehydrogenase (ADH) present in acetic acid bacteria has been developed. This enzyme selectively reacts with ethanol through the involvement of the coenzyme pyrroloquinoline quinone (PQQ). Since PQQ strongly binds to ADH, it does not require special immobilization and has the excellent feature that it does not require the use of NAD. Conventionally, published patents related to sensors using membrane-bound ADH present in acetic acid bacteria include: Japanese Patent Application Laid-Open No. 61-265
No. 560, ■Japanese Patent Publication No. 61-281961, ■Japanese Patent Publication No. 6
2-277548, (1) Japanese Patent Application Publication No. 1-96552, and (2) Japanese Patent Application Publication No. 1-97851. Among these, ■, ■, and ■ do not use an electron acceptor in the measurement system. Therefore, when ethanol is oxidized by the enzyme, the system that returns PQQ, which has changed to the reduced form, to the oxidized form is weak, so it takes time to respond. It takes. (2) and (2) have an oxidized electron acceptor dissolved in the measurement solution. Therefore, during measurement, the electron acceptor is coupled to the enzymatic reaction,
It returns PQQ to its oxidized form and is itself reduced. Furthermore, since this is oxidized using an electrode, measurements can be made in a short time.
上記■、■においては、電子受容体としてフェリシアン
化カリウムやフェナジンメトサルフェート(P M S
)等を測定液もしくは電解液に溶解して使用している
。この測定液は、センサーを長時間使用した場合にはか
なりの量に達する。特に、フローセル方式の測定法では
液量が多くなる。その場き、電子受容体を測定液や電解
液に溶解して利用することは作業性が悪く、フェリシア
ン化カリウムを使用する場きは特にシアンイオンの廃液
処理の問題が生じる。また、PMS’&使用する場合は
、特にランニングコストが高くなる。
また、測定時間としては、■は数分、■は1〜2分を必
要としており、多くの試料を測定する場合にはさらに短
時間で測定可能であることが望ましい。In above ■ and ■, potassium ferricyanide and phenazine methosulfate (PMS) are used as electron acceptors.
) etc. are used by dissolving them in the measurement solution or electrolyte. This measurement liquid reaches a considerable amount when the sensor is used for a long time. In particular, the flow cell type measurement method requires a large amount of liquid. Utilizing the electron acceptor by dissolving it in the measurement solution or electrolyte at that time has poor workability, and when potassium ferricyanide is used, there arises the problem of cyanide ion waste solution treatment. Furthermore, when using PMS'&, the running cost becomes particularly high. Further, as for the measurement time, (1) requires several minutes, (2) requires 1 to 2 minutes, and when measuring many samples, it is desirable to be able to measure in an even shorter time.
本発明者らは上記の点に鑑みて鋭意研究の結果、電子受
容体を電解液中から排除し、また、短時間で測定が可能
なエタノールセンサーを開発した。
すなわち本発明は、水溶性フェリシアン酸塩と陽イオン
界面活性剤、両性界面活性剤又は非イオン界面活性剤か
ら合成される疎水性化合物を電子受容体として、酢酸菌
膜結合性アルコール脱水素酵素とともに電極剤として混
在せしめた酵素及び電極受容体修飾電極と参照電極とを
組み合わせてなるエタノールセンサーである。
上記に本発明において、水溶性フェリシアン酸塩として
は、フェリシアン化カリウム、フェリシアン化ナトリウ
ム、その池水溶性のフェリシアン化物が挙げられる。
また、陽イオン界面活性剤としては長鎖第4級アンモニ
ウム塩、長鎖アルキルピリジニウム塩等が、両性界面活
性剤としては例えばアルキルジアミノエチルグリシン形
のものが、そして非イオン界面活性剤としては例えばポ
リオキシエチレン系のもの等が挙げられる。
水溶性フェリシアン酸塩、例えばフェリシアン化カリウ
ムとこれらの界面活性剤とは、水溶液中で反応を起こし
黄色沈でんを生じる。この沈澱物質は本発明における電
子受容体として用いられる。
以下に反応式の一例を示す。
3[C+5H3)N(CI*)x]Br +KJe(
CN)a→[C+5t(zz(CHs)zlz[Fe(
CN)a]’ + 3KBr得られた化合物は疎水性
であるので、濾過、水洗して簡単に精製することができ
る。
過去にこのような化合物を電子受容体としてセンサーに
利用した例はない。
また、本発明において使用する細胞膜結合型ADHを産
生ずる酢酸菌としては、アセトバクター属(^ceto
bac ter)グルコノバクタ−属(G l ueo
nobaeter)に属するいずれの酢酸菌の菌体でも
よい。
酵素はフレンチプレス法や超音波法等の常法により細胞
膜画分を分離し、さらに界面活性剤で細胞膜画分から抽
出し、種々のクロマトグラフィーにより精製単離して得
ることができる。また、精製単離を行わなくとも酢酸菌
の菌体そのままあるいは細胞膜画分といった粗標品でも
酵素源として利用できる。
なお、本発明の場合も常法と同様に、電極剤にはグラフ
ァイト等の導電性材料粉末を混合して、エタノールセン
サー表面から得られる電流を容易に電極棒へ導くように
することが好ましい。
さらに、本発明のエタノールセンサーの電極剤には、有
機結合剤、例えば流動パラフィンを混合することが好ま
しい、その理由は、酵素と電子受容体が、測定時にエタ
ノール含有試料液と接触して、流出、崩壊するのを防止
するため、また電極表面への接着による上記電極剤修飾
を確実化するためである。
修飾電極を製作するには、まず上記のようにして得られ
たADH含有物と電子受容体とを導電性材料粉末(例え
ばグラファイト粉末)と有機結合剤(例えば流動パラフ
ィン)とよく混合してペースト状に練り上げる。次に、
第1図に示すごとく、該ペーストをグラファイト固結物
13の端面に塗布し、硬化させて電極剤10とすること
により、膜結合性ADHと電子受容体とを電極剤に含む
酵素及び電子受容体修飾電極1が製作できる。
修飾電極1の構成は、フランジ付きテフロン製筒体15
とそれに頭部が突出して螺入されている銅製ネジ付きボ
ルト12とその前方部に着設されたグラファイト固結物
13と、更にその前方端面に接合された前記電極剤10
とからなる。なお、銅製ネジ付きボルト12の中腹には
取付用ナツト14が螺合されている。
次に、第2図に示すごとく1、上記修飾電極1を反応セ
ル3に取り1寸ける。反応セル3内には、更に参照電極
2を検知響が位置するように取り付け、また、反応セル
3の中央には磁気撹拌子4を回転自由に枢支する。そし
て、上部には試料供給口33が、下方左端には電解液導
入口31が、また上方右端には測定排液導出口32が設
けられている。
試料中のエタノール濃度を測定するには、第3図に概要
図を例示するエタノール濃度測定装置を使用する。
すなわち、該測定装置の、電解液槽6内の測定用電解液
(例えばpH調整用バッファーと電解質(例えばKCI
)を含む)をポンプ8で反応セル3中に注入し、測定装
置の定電圧電源部より修飾電極1と参照電極2間に加電
する。その結果、両電極間に発生する酸化電流を電流電
圧変換回路を用いて、電流値を電圧値に変換した後増幅
し、レコーダーでチャートに記録する。なお、増幅され
た電圧値をA/D変換した後、コンピュータで処理する
こともできる1図中、7は測定済み廃液槽である。
電圧が安定した後、エタノールを含んだ試料水溶液の一
定量をマイクロシリンジで前記反応セル3中に注入供給
し、上記と同様にして酸化電流を電圧として測定し、電
圧の増加量を求める。
この増加量とエタノール濃度が比例することからエタノ
ール濃度が求められる。測定中において、スターラ5を
起動して、反応セル3中の磁気撹拌子45:回転させて
おけば、試料と電解液との混合が均一に行えるので、バ
ラつきのない正確な測定値が得られる。
ところで、電解液は酵素反応を円滑に進めるためにpH
を4から7の間に調製することが望ましく、また例えば
KCI等の強電解質を含んでいる必要がある。さらに、
電解液を反応セルの導入口31に一定流速で注入し、ま
たその導出口32がら排出させながら測定するフローイ
ンジェクション法によっても測定が可能である。
以上、述べてきたエタノールセンサーによれば、酢酸菌
の細胞膜結合性ADHによるエタノールの酸化反応及び
PQQ、電子受容体を介した電子伝達系によって生じる
酸化電流を直接アンペロメトリックに測定することがで
きるため、応答時開が速く直線性に優れている。
さらに、本発明に係る電子受容体は水溶液中て簡単に合
成、単離することができる。また、この電子受容体及び
酵素はいずれも疎水性であるので、特別な処理を行わな
くとも有機結合剤と混合するだけで電極剤として固定化
され、測定用電解液中に溶出することもないため、酵素
固定膜を有する他のバイオセンサー等に比較して、電極
の作成が容易である。そして、本発明に係る電子受容体
をも修飾しており、新規なものである。
本発明のエタノールセンサーを使用して測定する場合に
は、測定用電解液中にフェリシアン化カリウム等の電子
受容体を溶解する必要がないため、作業性が良くなり、
シアン等の廃水処理をする必要がない。
なお、種々の大きさの反応セルを使用したり、フローイ
ンジェクション方式を採ることにより定量範囲を広くす
ることも可能である。In view of the above points, the present inventors have conducted extensive research and have developed an ethanol sensor that eliminates electron acceptors from the electrolytic solution and can perform measurements in a short time. That is, the present invention utilizes a hydrophobic compound synthesized from a water-soluble ferricyanate and a cationic surfactant, an amphoteric surfactant, or a nonionic surfactant as an electron acceptor to produce acetic acid bacteria membrane-bound alcohol dehydrogenase. This is an ethanol sensor consisting of a reference electrode and an enzyme- and electrode-receptor-modified electrode mixed together as an electrode agent. In the present invention, water-soluble ferricyanates include potassium ferricyanide, sodium ferricyanide, and water-soluble ferricyanides thereof. Cationic surfactants include long-chain quaternary ammonium salts and long-chain alkylpyridinium salts, amphoteric surfactants include, for example, alkyldiaminoethylglycine types, and nonionic surfactants include, for example. Examples include polyoxyethylene-based ones. A water-soluble ferricyanate, such as potassium ferricyanide, and these surfactants react in an aqueous solution to produce a yellow precipitate. This precipitated material is used as an electron acceptor in the present invention. An example of the reaction formula is shown below. 3[C+5H3)N(CI*)x]Br +KJe(
CN)a→[C+5t(zz(CHs)zlz[Fe(
CN)a]' + 3KBr Since the obtained compound is hydrophobic, it can be easily purified by filtration and washing with water. In the past, there have been no examples of using such a compound as an electron acceptor in a sensor. In addition, the acetic acid bacteria that produce cell membrane-bound ADH used in the present invention include Acetobacter spp.
bacter) Gluconobacter genus (Glueo
The bacterial cells of any acetic acid bacteria belonging to the genus P. nobaeter may be used. Enzymes can be obtained by separating a cell membrane fraction using a conventional method such as a French press method or an ultrasonic method, further extracting the cell membrane fraction from the cell membrane fraction using a surfactant, and purifying and isolating the enzyme using various types of chromatography. In addition, even crude specimens such as acetic acid bacterium cells as they are or cell membrane fractions can be used as an enzyme source without purification and isolation. In the case of the present invention, as in the conventional method, it is preferable to mix conductive material powder such as graphite with the electrode material so that the current obtained from the surface of the ethanol sensor can be easily guided to the electrode rod. Furthermore, it is preferable to mix an organic binder, such as liquid paraffin, into the electrode material of the ethanol sensor of the present invention, because the enzyme and electron acceptor come into contact with the ethanol-containing sample solution during measurement, and the ethanol-containing sample solution flows out. This is to prevent the electrode material from collapsing and to ensure that the electrode material is modified by adhesion to the electrode surface. To manufacture a modified electrode, first, the ADH-containing material and electron acceptor obtained as described above are thoroughly mixed with a conductive material powder (e.g., graphite powder) and an organic binder (e.g., liquid paraffin) to form a paste. Knead it into a shape. next,
As shown in FIG. 1, the paste is applied to the end face of the graphite solidified material 13 and cured to form the electrode material 10, so that the enzyme and electron acceptor containing the membrane-bound ADH and the electron acceptor in the electrode material are prepared. The body modification electrode 1 can be manufactured. The modified electrode 1 consists of a Teflon cylinder body 15 with a flange.
a copper threaded bolt 12 with a protruding head screwed into it, a graphite solidified material 13 attached to the front part thereof, and further the electrode material 10 joined to the front end surface thereof.
It consists of. Note that a mounting nut 14 is screwed into the middle of the copper threaded bolt 12. Next, as shown in FIG. 2, the above-mentioned modified electrode 1 is placed in a reaction cell 3 and placed one inch in length. A reference electrode 2 is further installed in the reaction cell 3 so that a detection sensor is located therein, and a magnetic stirrer 4 is rotatably supported in the center of the reaction cell 3. A sample supply port 33 is provided at the top, an electrolyte inlet 31 is provided at the lower left end, and a measurement waste liquid outlet 32 is provided at the upper right end. To measure the ethanol concentration in a sample, an ethanol concentration measuring device whose schematic diagram is illustrated in FIG. 3 is used. That is, the measuring electrolyte (for example, pH adjustment buffer and electrolyte (for example, KCI) in the electrolyte tank 6 of the measuring device is
) is injected into the reaction cell 3 using the pump 8, and electricity is applied between the modified electrode 1 and the reference electrode 2 from the constant voltage power supply section of the measuring device. As a result, the oxidation current generated between the two electrodes is converted into a voltage value using a current-voltage conversion circuit, and then amplified and recorded on a chart using a recorder. Note that the amplified voltage value can be A/D converted and then processed by a computer. In Figure 1, 7 is a measured waste liquid tank. After the voltage is stabilized, a certain amount of the aqueous sample solution containing ethanol is injected into the reaction cell 3 using a microsyringe, and the oxidation current is measured as a voltage in the same manner as above to determine the amount of increase in voltage. The ethanol concentration can be determined from the fact that this increase is proportional to the ethanol concentration. During measurement, if the stirrer 5 is started and the magnetic stirrer 45 in the reaction cell 3 is rotated, the sample and electrolyte can be mixed uniformly, so accurate measurement values without variations can be obtained. . By the way, the pH of the electrolyte is adjusted to allow the enzymatic reaction to proceed smoothly.
It is desirable to prepare between 4 and 7, and it is necessary to contain a strong electrolyte such as KCI. moreover,
Measurement can also be performed by a flow injection method in which the electrolytic solution is injected at a constant flow rate into the inlet 31 of the reaction cell and measured while being discharged from the outlet 32. According to the ethanol sensor described above, it is possible to directly amperometrically measure the oxidation reaction of ethanol by the cell membrane-bound ADH of acetic acid bacteria and the oxidation current generated by the electron transport system via PQQ and electron acceptors. Therefore, it opens quickly during response and has excellent linearity. Furthermore, the electron acceptor according to the present invention can be easily synthesized and isolated in an aqueous solution. In addition, since both the electron acceptor and enzyme are hydrophobic, they can be immobilized as an electrode material simply by mixing with an organic binder without any special treatment, and will not be eluted into the electrolyte for measurement. Therefore, compared to other biosensors that have enzyme-immobilized membranes, electrodes are easier to create. The electron acceptor according to the present invention is also modified, which is novel. When performing measurements using the ethanol sensor of the present invention, there is no need to dissolve an electron acceptor such as potassium ferricyanide in the electrolyte for measurement, which improves workability.
There is no need to treat wastewater such as cyanide. Note that it is also possible to widen the quantification range by using reaction cells of various sizes or by adopting a flow injection method.
次に本発明を実施例により具体的に説明する。
1 人 ADHの
培養したG Iuconobactor 5obox
ydans (IFO12528>の菌体を遠心分離
して集菌し、得られた菌体をフレンチプレスにより破砕
した。この破砕物を超遠心分離(100,0OOxε、
60分)して得られた沈でん(膜画分)をそのまま膜結
合性ADHとして用いた。
2)−罵六 の人
陽イオン界面活性剤の1種である臭化n−ヘキサデシル
トリメチルアンモニウムのO,1M水溶液に、0.05
Mフェリシアン化カリウム水浴液を同量添加する。する
と瞬時に反応が起こり、黄緑色の疎水性化き物が懸濁生
成された。
この化合物をろ紙てろ過し、充分水洗した後、減圧乾燥
し、電子受容体として使用した。この物質は水に不溶で
あり有機液相にわずかに溶解した。
3〉酵素 び 飾 の
上記(1)で得られたADH含有膜画分(A)、上記(
2〉で得られた電子受容体(B)、グラファイト粉末(
C)及び流動パラフィン(D>を、A :B :C:D
=10:1:12:10の比率(重量比)で混きし、ペ
ースト状に練り上げたものを第1図図示のごとく、を極
のグラファイト固結物13の先端部分に少量塗り込んで
固結させた後、その表面を硫酸紙でこすって平滑にし、
酵素及び電子受容体保有する修飾電極1を製作した。
4エ ノール゛ の
(a)エタノール濃度検量線図の作成:上記(3)で製
作された修飾電極1を、第3図に図示するごとく、反応
セル3に取り付け、0. 1Mリン酸バッファー(pH
6,0)にO,1M塩化カリウム、20饋M塩化マグネ
シウムを含有した電解液をポンプ8で反応セル3中に導
入口31がら注入し、スターラー5を起動して磁気撹拌
子4を回転させて攪拌した。
次いで定電圧電源部より修飾電極1と参照電極(塩化銀
電極)2に+0.6V加;し、両;極1゜2間に発生す
る電流を電圧電流変換回路により電圧に変換した後、こ
れを増幅し、レコーダーでチャートに記録した。
電圧が安定したところで電圧値■。を測定し、次に既知
の濃度のエタノール試料水溶′fL5μmを反応セル3
内にマイクロシリンジて注入した。
エタノール試料水溶液の添加とともに直ちに電圧が変化
し30〜60秒で出力が安定するので、この時の電圧値
■、を測定しV。とV、との差ΔVを算出した。
さらに、反応セル3にポンプ8て電解液をセル容量の5
倍量程度注入しセル3内を洗浄した後、再びV。を測定
した。電解液で洗浄した場きのベースライン復帰も30
〜60秒てあった。このようにセルの洗浄、電圧測定、
試料の注入、電圧測定の操作を繰り返し、種々の濃度の
エタノールに対する。■を測定し、第4図に示す検量線
を作成した。
(b)試料のエタノール濃度測定:
アルコール発酵の発酵液やビールについて、(a)と全
く同じ方法でム■を測定し、先に作成した検量線と比較
してエタノール濃度を算出した。
この値は、ガスクロマトグラフで測定した値とよく一致
していた。Next, the present invention will be specifically explained using examples. 1 person ADH cultured G Iuconobacter 5obox
ydans (IFO12528>) were collected by centrifugation, and the obtained cells were crushed using a French press.
The precipitate (membrane fraction) obtained by 60 minutes) was used as it was as membrane-bound ADH. 2) - Add 0.05% of n-hexadecyltrimethylammonium bromide, a type of cationic surfactant, to an O, 1M aqueous solution.
Add the same amount of M potassium ferricyanide water bath solution. A reaction occurred instantly, and a yellow-green hydrophobic substance was produced in suspension. This compound was filtered through filter paper, thoroughly washed with water, dried under reduced pressure, and used as an electron acceptor. This material was insoluble in water and slightly soluble in the organic liquid phase. 3> ADH-containing membrane fraction (A) obtained in (1) above of Enzyme Bidecoration, above (
Electron acceptor (B) obtained in 2>, graphite powder (
C) and liquid paraffin (D>, A:B:C:D
= 10:1:12:10 ratio (weight ratio), knead it into a paste, and apply a small amount of it to the tip of the graphite solidified material 13 on the pole as shown in Figure 1 to solidify it. After drying, rub the surface with parchment paper to make it smooth.
A modified electrode 1 containing an enzyme and an electron acceptor was manufactured. (a) Preparation of ethanol concentration calibration curve for 4-enol: The modified electrode 1 manufactured in (3) above was attached to the reaction cell 3 as shown in FIG. 1M phosphate buffer (pH
An electrolytic solution containing O, 1M potassium chloride, and 20M magnesium chloride is injected into the reaction cell 3 through the inlet 31 using the pump 8, and the stirrer 5 is started to rotate the magnetic stirrer 4. and stirred. Next, +0.6 V is applied to the modified electrode 1 and the reference electrode (silver chloride electrode) 2 from the constant voltage power supply, and the current generated between the two electrodes is converted into voltage by the voltage-current conversion circuit. was amplified and recorded on a chart using a recorder. When the voltage becomes stable, the voltage value ■. Next, add a known concentration of an aqueous ethanol sample 'fL5μm to reaction cell 3.
I injected it with a microsyringe. The voltage changes immediately with the addition of the ethanol sample aqueous solution, and the output stabilizes in 30 to 60 seconds, so measure the voltage value (2) at this time and read it as V. The difference ΔV between and V was calculated. Furthermore, the pump 8 pumps the electrolyte into the reaction cell 3 to the cell capacity of 5
After injecting about double the amount and cleaning the inside of the cell 3, the V was applied again. was measured. Baseline return after washing with electrolyte is also 30
It was ~60 seconds. In this way, cell cleaning, voltage measurement,
Repeat the operations of sample injection and voltage measurement for various concentrations of ethanol. (2) was measured and a calibration curve shown in FIG. 4 was created. (b) Measuring the ethanol concentration of the sample: For the fermented liquid of alcoholic fermentation and beer, the MU was measured in exactly the same manner as in (a), and the ethanol concentration was calculated by comparing it with the previously prepared calibration curve. This value was in good agreement with the value measured by gas chromatography.
以上のとおり、本発明のエタノールセンサーによれば、
酢酸菌の細胞膜結合性ADHによるエタノールの酸化反
応及びPQQ、電子受容体を介した電子伝達系によって
生じる酸化電流を直接アンペロメトリックに測定するこ
とができるため、反応時間が速く直線性に優れている。
また、本発明に係る電子受容体は水溶液中で簡単に合成
・単離することができ、そしてこの電子受容体及び酵素
はいずれも疎水性であるので、特別な処理を行わなくと
も有機結合剤と混合するたけて電極剤として固定化され
、測定用電解液中に溶出することもない。このため、酵
素固定膜を有する従来のエタノールセンサーに比較して
、電極の作成が容易である。
さらに、本発明のエタノールセンサーを使用して測定す
る場合には、測定用電解液中にフェリシアン化カリウム
等の電子受容体を溶解する必要がないため、作業性が良
くなり、シアン等の廃水処理をする必要がない。As described above, according to the ethanol sensor of the present invention,
The oxidation reaction of ethanol by cell membrane-bound ADH of acetic acid bacteria and the oxidation current generated by the electron transport chain via PQQ and electron acceptors can be directly measured amperometrically, so the reaction time is fast and linearity is excellent. There is. Further, the electron acceptor according to the present invention can be easily synthesized and isolated in an aqueous solution, and since both the electron acceptor and the enzyme are hydrophobic, an organic binder can be used without any special treatment. As soon as it is mixed with the electrolyte, it is immobilized as an electrode agent and will not be eluted into the electrolyte for measurement. Therefore, it is easier to create an electrode than a conventional ethanol sensor having an enzyme-immobilized membrane. Furthermore, when measuring using the ethanol sensor of the present invention, there is no need to dissolve electron acceptors such as potassium ferricyanide in the electrolyte for measurement, which improves workability and makes it easier to treat wastewater such as cyanide. There's no need to.
第1図は本発明実施例の酵素及び電子受容体修飾電極の
構造図、第2図は反応セルの構造図、第3図はエタノー
ル濃度測定装置の概要図、第4図はエタノールセンサー
を用いた検量線図をそれぞれ示す。
図中
1:修飾電極、2:参照電極、3・反応セル4:磁気撹
拌子25:スターラ、6:電解槽。
7:排液槽、8:ボンブ、10:電極剤。
11:7ランジ付きテフロン製筒体。
12:銅製ネジ付きボルト。
13・グラファイト固結物、14:ナツト。
31・電解液導入口、32:測定液排出口33・試料供
給口Figure 1 is a structural diagram of an enzyme- and electron acceptor-modified electrode according to an example of the present invention, Figure 2 is a structural diagram of a reaction cell, Figure 3 is a schematic diagram of an ethanol concentration measuring device, and Figure 4 is a diagram using an ethanol sensor. The calibration curves for each are shown. In the figure, 1: modified electrode, 2: reference electrode, 3. reaction cell 4: magnetic stirrer 25: stirrer, 6: electrolytic cell. 7: Drainage tank, 8: Bomb, 10: Electrode material. Teflon cylinder with 11:7 langes. 12: Copper threaded bolt. 13. Graphite solids, 14: Nuts. 31・Electrolyte inlet, 32: Measurement solution outlet 33・Sample supply port
Claims (4)
両性界面活性剤又は非イオン界面活性剤から合成される
疎水性化合物を電子受容体として、酢酸菌膜結合性アル
コール脱水素酵素とともに電極剤として混在せしめた酵
素及び電極受容体修飾電極と、参照電極とを組み合わせ
てなることを特徴とするエタノールセンサー。(1) Water-soluble ferricyanate and cationic surfactant,
An enzyme and electrode acceptor-modified electrode in which a hydrophobic compound synthesized from an amphoteric surfactant or a nonionic surfactant is used as an electron acceptor and is mixed with acetic acid bacteria membrane-bound alcohol dehydrogenase as an electrode agent, and a reference electrode. An ethanol sensor characterized by a combination of.
あることを特徴とする請求項1記載のエタノールセンサ
ー。(2) The ethanol sensor according to claim 1, wherein the electrode material is a mixture of conductive material powder.
ウムであることを特徴とする請求項1又は2記載のエタ
ノールセンサー。(3) The ethanol sensor according to claim 1 or 2, wherein the water-soluble ferricyanate is potassium ferricyanide.
合物からなるものであることを特徴とする請求項1ない
し3のいずれかに記載のエタノールセンサー。(4) The ethanol sensor according to any one of claims 1 to 3, wherein the electrode material is made of a mixture of an enzyme, an electron acceptor, and an organic binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2181583A JPH0752177B2 (en) | 1990-07-11 | 1990-07-11 | Ethanol sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2181583A JPH0752177B2 (en) | 1990-07-11 | 1990-07-11 | Ethanol sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0470558A true JPH0470558A (en) | 1992-03-05 |
JPH0752177B2 JPH0752177B2 (en) | 1995-06-05 |
Family
ID=16103347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2181583A Expired - Lifetime JPH0752177B2 (en) | 1990-07-11 | 1990-07-11 | Ethanol sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0752177B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07198668A (en) * | 1993-11-04 | 1995-08-01 | Lg Electron Inc | Biosensor for measuring concentration of alcohol, manufacture thereof and drinking measuring instrument using biosensor thereof |
WO1998020332A1 (en) * | 1996-11-07 | 1998-05-14 | Sensalyse Holdings Limited | Biosensor incorporating a surfactant |
WO2001000865A3 (en) * | 1999-06-29 | 2001-09-13 | Drew Scient Ltd | Amperometric sensor |
WO2001022957A3 (en) * | 1999-09-29 | 2002-06-27 | Max Planck Gesellschaft | Use of gangliosides and other substances for modulating sphingolipid-cholesterol microdomains |
JP2008013150A (en) * | 2006-07-10 | 2008-01-24 | Autoliv Development Ab | Buckle device for seat belt |
JP2009006776A (en) * | 2007-06-27 | 2009-01-15 | Autoliv Development Ab | Seat belt buckle device |
JP2010043978A (en) * | 2008-08-13 | 2010-02-25 | Toyota Motor Corp | Enzyme electrode and manufacturing method thereof |
US10479233B2 (en) | 2017-02-10 | 2019-11-19 | Honda Motor Co., Ltd. | Seat apparatus for vehicle |
-
1990
- 1990-07-11 JP JP2181583A patent/JPH0752177B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07198668A (en) * | 1993-11-04 | 1995-08-01 | Lg Electron Inc | Biosensor for measuring concentration of alcohol, manufacture thereof and drinking measuring instrument using biosensor thereof |
WO1998020332A1 (en) * | 1996-11-07 | 1998-05-14 | Sensalyse Holdings Limited | Biosensor incorporating a surfactant |
AU720663B2 (en) * | 1996-11-07 | 2000-06-08 | Sensalyse Holdings Limited | Biosensor incorporating a surfactant |
WO2001000865A3 (en) * | 1999-06-29 | 2001-09-13 | Drew Scient Ltd | Amperometric sensor |
US7135100B1 (en) | 1999-06-29 | 2006-11-14 | Drew Scientific Ventures Llc | Amperometric sensor |
US7608180B2 (en) | 1999-06-29 | 2009-10-27 | Drew Scientific Holdings, Inc. | Amperometric sensor |
WO2001022957A3 (en) * | 1999-09-29 | 2002-06-27 | Max Planck Gesellschaft | Use of gangliosides and other substances for modulating sphingolipid-cholesterol microdomains |
JP2008013150A (en) * | 2006-07-10 | 2008-01-24 | Autoliv Development Ab | Buckle device for seat belt |
JP2009006776A (en) * | 2007-06-27 | 2009-01-15 | Autoliv Development Ab | Seat belt buckle device |
JP2010043978A (en) * | 2008-08-13 | 2010-02-25 | Toyota Motor Corp | Enzyme electrode and manufacturing method thereof |
US10479233B2 (en) | 2017-02-10 | 2019-11-19 | Honda Motor Co., Ltd. | Seat apparatus for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPH0752177B2 (en) | 1995-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ikeda et al. | Amperometric fructose sensor based on direct bioelectrocatalysis | |
Karyakin et al. | A high-sensitive glucose amperometric biosensor based on Prussian Blue modified electrodes | |
Tkac et al. | Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation | |
EP0400918A1 (en) | Enzyme sensor | |
Malinauskas et al. | Alcohol, lactate and glutamate sensors based on oxidoreductases with regeneration of nicotinamide adenine dinucleotide | |
Xuejiang et al. | Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes | |
Matsumoto et al. | Amperometric flow injection determination of fructose with an immobilized fructose 5-dehydrogenase reactor | |
Castilho et al. | Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples | |
Bu et al. | NAD (P) H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels | |
Moore et al. | Enzymically amplified voltammetric sensor for microliter sample volumes of salicylate | |
Schubert et al. | Enzyme electrodes for L-glutamate using chemical redox mediators and enzymatic substrate amplification | |
Tag et al. | Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3 | |
Omidinia et al. | Electrochemical nanobiosensing of phenylalanine using phenylalanine dehydrogenase incorporated on amino-functionalized mobile crystalline material-41 | |
JPH0470558A (en) | Ethanol sensor | |
Zhuang et al. | Rapid determination of sucrose and glucose in microbial fermentation and fruit juice samples using engineered multi-enzyme biosensing microchip | |
Kulys et al. | Electrocatalytic oxidation of ascorbic acid at chemically modified electrodes | |
US5306413A (en) | Assay apparatus and assay method | |
Haemmerli et al. | Amperometric determination of phosphate by use of a nucleoside phosphorylase-xanthine oxidase enzyme sensor based on a Clark-type hydrogen peroxide or oxygen electrode | |
Connor et al. | Tissue-and microbe-based electrochemical detectors for liquid chromatography | |
Schuhmann et al. | Evaluation of polypyrrole/glucose oxidase electrodes in flow-injection systems for sucrose determination | |
Girotti et al. | Bioluminescent flow sensor for the determination of L-(+)-lactate | |
Tang et al. | Enzyme electrode for amplification of NAD+/NADH using glycerol dehydrogenase and diaphorase with amperometric detection | |
Matuszewski et al. | Simultaneous enzymatic determination of glucose and ascorbic acid using flow‐injection amperometry | |
Shi et al. | On‐line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system | |
Ivison et al. | Development of a redox mediated amperometric detection system for immunoassay. Application to urinary amphetamine screening |