JPS59216586A - Immobilized enzyme and production thereof - Google Patents

Immobilized enzyme and production thereof

Info

Publication number
JPS59216586A
JPS59216586A JP58089940A JP8994083A JPS59216586A JP S59216586 A JPS59216586 A JP S59216586A JP 58089940 A JP58089940 A JP 58089940A JP 8994083 A JP8994083 A JP 8994083A JP S59216586 A JPS59216586 A JP S59216586A
Authority
JP
Japan
Prior art keywords
solution
immobilized enzyme
solvent
coenzyme
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58089940A
Other languages
Japanese (ja)
Inventor
Shigeki Yasukawa
栄起 安川
Kunio Kihara
木原 圀男
Mitsuhiro Hayashi
光洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58089940A priority Critical patent/JPS59216586A/en
Publication of JPS59216586A publication Critical patent/JPS59216586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable immobilized enzyme for determining pyruvic acid, by dipping a porous high polymer carrier in a solution containing pyruvic acid oxidase, coenzyme flavin adenine dinucleotide, coenzyme thiamine pyrophosphate and Mg<2+>, etc. CONSTITUTION:A vinyl chloride resin is dissolved in a solvent to give a solution in 2-35wt% resin concentration, which is then dipped in a solvent which is a poor solvent for the vinyl chloride resin and a good solvent for the solvent to prepare a porous high polymer carrier. The resultant carrier is then dipped in a solution containing pyruvic acid oxidase (POP), coenzyme flavin adenine dinucleotide (FAD), coenzyme thiamine pyrophosphate (TPP) and Mg<2+> and/or Mn<2+> ions to afford the aimed immobilized enzyme. The resultant immobilized enzyme membrane is used as an enzymic sensor to measure the pyruvic acid concentration in a standard lithium pyruvate solution from the produced oxidation current of H2O2, and a linear relationship between the concentration and the current value is observed.

Description

【発明の詳細な説明】 技術分野 本発明は、固定化酵素およびその製造方法に関本発明に
よると生体試料中のピルビン酸を定量するだめの極めて
高活性かつ安定性の優れた固定化酵素が得られる。
Detailed Description of the Invention Technical Field The present invention relates to an immobilized enzyme and a method for producing the same.According to the present invention, an immobilized enzyme with extremely high activity and excellent stability for quantifying pyruvate in biological samples can be obtained. It will be done.

本発明により得られる固定化酵素は、医療用分析計等の
酵素センサー等として有用である。
The immobilized enzyme obtained by the present invention is useful as an enzyme sensor for medical analyzers and the like.

従来、生体試料中の物質を選択性よく定量する方法とし
て、固定化酵素を用いた分析法が種々提案されている。
Conventionally, various analytical methods using immobilized enzymes have been proposed as methods for selectively quantifying substances in biological samples.

これらの方法は、酵素のもつ基質特異性と高い触媒活性
とを利用して、多成分液中の微量成分の検出に有効な手
段である。
These methods utilize the substrate specificity and high catalytic activity of enzymes and are effective means for detecting trace components in multicomponent solutions.

血中ピルビン酸の測定は重症肝硬変症、肝性昏睡等の症
患やグリコーゲンの先天性代謝異常である糖原病の診断
の一助として大きな有用性が示されている。
Measurement of blood pyruvate has been shown to be very useful in assisting in the diagnosis of diseases such as severe liver cirrhosis and hepatic coma, as well as glycogen storage disease, which is an inborn abnormality of glycogen metabolism.

またトランスアミナーゼは、アミノ酸のアミノ基転移を
触媒する酵素で、その内、グルタミン酸ピルビン酸トラ
ンスアミナーゼ(以丁GPTと略記する)は肝、腎に多
量に含まれている。このGPTの測定は、急性ウィルス
性肝炎、慢性肝炎、肝硬変、肝腫瘍、急性アルコール性
肝炎等の肝疾患、胆のう、胆管炎、胆石症等の肝外閉塞
性芦痘、心筋硬水、進行性筋ジストロフィー、感染性疾
患等の診断に有用な役割を果り、、GPTを簡便に精度
よく測定することは臨床的に意義が太きい。
Transaminase is an enzyme that catalyzes the transamination of amino acids, and among these, glutamate pyruvate transaminase (abbreviated as GPT) is contained in large amounts in the liver and kidneys. This GPT measurement is applicable to acute viral hepatitis, chronic hepatitis, liver cirrhosis, liver tumors, liver diseases such as acute alcoholic hepatitis, extrahepatic obstructive rhinopox such as gallbladder, cholangitis, and cholelithiasis, myocardial hard water, and progressive muscular dystrophy. It plays a useful role in diagnosing infectious diseases, etc., and the simple and accurate measurement of GPT has great clinical significance.

先行技術 従来、ピルビン酸の測定方法としては、ピルビン酸がα
−ケト酸であるのに注目し、このケトン基に2.4−ジ
ニトロフェニルヒドラジンを作用させてヒドラゾンを生
成し、アルカリで発色させる方法(Friedeman
n−1laugen法)がある。しかし血中にはピルビ
ン酸以外のα−ケト酸とくに、α−ケトグルタル酸が存
在し、正の誤差を与える等の問題がありピルビン酸を正
確に定置するにはクロマトグラフィーを用いる分1F定
量が必要となり、操作が繁雑である。
Prior Art Conventionally, the method for measuring pyruvate was that pyruvate was α
-Focusing on the fact that it is a keto acid, a method of reacting 2,4-dinitrophenylhydrazine with this ketone group to generate a hydrazone and developing color with an alkali (Friedeman
n-1laugen method). However, α-keto acids other than pyruvic acid, especially α-ketoglutaric acid, exist in the blood, and there are problems such as giving a positive error.To accurately determine pyruvate, it is necessary to quantify 1F using chromatography. It is necessary and the operation is complicated.

また生体試料中の酵素活性量の測定方法としては、一般
には測定すべき酵素の存在下に、酵素反応により生成さ
れる成分を分析定量するか、この生成物と他の酵素の酵
素反応との共役により、比色定量物質等に変換させる方
法が用いられている。
In addition, methods for measuring the amount of enzyme activity in biological samples generally involve analyzing and quantifying the components produced by the enzymatic reaction in the presence of the enzyme to be measured, or by combining this product with the enzymatic reaction of other enzymes. A method is used in which the substance is converted into a colorimetric substance through conjugation.

例えばGPTの測定方法には、基質のアラニンとα−ケ
トグルタル酸に試料を加え、生成しまたピルビン酸を乳
酸脱水素酵素と補酵素NADHの存在下で共役させ該N
ADIIの340mの吸光度の減少を測定するカルメン
法と、上記の様に生成したピルビン酸に2.4−ジニト
ロフェニルヒドラジンを作用させて発色させるライトマ
ン−フランケル法がある。
For example, to measure GPT, a sample is added to the substrates alanine and α-ketoglutarate, and pyruvate is conjugated in the presence of lactate dehydrogenase and coenzyme NADH to generate the N
There is the Carmen method, which measures the decrease in absorbance at 340 m of ADII, and the Reitman-Frankel method, which develops color by reacting 2,4-dinitrophenylhydrazine with the pyruvic acid produced as described above.

しかしカルメン法では使用する試薬が不安定でありまだ
恒温セルを付属させた特殊な分光光度計が必要である等
の問題がある。一方、ライトマン−フランケル法では基
Fのα ケトグルタル酸も発色して生成物の発色を妨害
するため、基質瞼を極度に減らす必要があシ更に検遇、
腺が変曲することや測定可能範囲が狭い等の欠点がある
However, the Carmen method has problems such as the reagents used are unstable and a special spectrophotometer with a constant temperature cell is required. On the other hand, in the Reitman-Frankel method, the α-ketoglutaric acid of group F also develops color and interferes with the color development of the product, so it is necessary to drastically reduce the amount of substrate.
There are disadvantages such as the gland being curved and the measurable range being narrow.

これらの欠点を解決する目的で最近、ピルビン酸オキシ
ダーゼ(POPと略記する)を利用し7てGPTを分析
する方法が開発されている。たとえばGPTの測定方法
としては、基質のアラニンとα−ケトグルタル酸に試料
を加えピルビジ酸を生成する反応と、生成したピルビン
酸をPOPと所要基質の存在下に酸化するピルビン酸酸
化反応とを共役させ、ピルビン酸酸化反応に伴う過酸化
水素の発生量を発色剤を用いて、比色定量するものがあ
る。
In order to solve these drawbacks, a method for analyzing GPT using pyruvate oxidase (abbreviated as POP) has recently been developed. For example, a method for measuring GPT involves a reaction in which a sample is added to the substrates alanine and α-ketoglutarate to produce pyruvic acid, and a pyruvic acid oxidation reaction in which the produced pyruvic acid is oxidized in the presence of POP and the required substrate. There is a method in which the amount of hydrogen peroxide generated during the pyruvic acid oxidation reaction is determined colorimetrically using a coloring agent.

しかしながら上記POPを利用する測定法は、高価な酵
素の使い捨て、測定時間が長いこと、POP自身が溶液
中では不安定であるため測定時の再現性が悪い等の問題
点がある。更には生体中のGPTのような酵素活性量の
測定には、初速度の測定を原則と12、酵素反応開始時
から測定をモニターし得る特殊な記録装置が必要である
However, the above-mentioned measurement method using POP has problems such as disposable use of expensive enzymes, long measurement time, and poor reproducibility during measurement because POP itself is unstable in a solution. Furthermore, in order to measure the activity of an enzyme such as GPT in a living body, the initial velocity must be measured in principle12, and a special recording device that can monitor the measurement from the start of the enzyme reaction is required.

そこでPOPを固定化し、これを酸化電位測定用電極に
装着した酵素電極を使用してGPTを測定しようとする
研究が盛んに行なわれている。(特開昭55−1117
86号、同56−124396号各公報、Analyt
ica Chimica Acta、 118(198
G)65−71等参照) しかし、これら上記の固定化法では、固定化POPの活
性ならびに安定性は十分とはいえず、生体試料中の微量
成分の検出例えば血中ピルビン酸(30〜60 p m
ol /L )の測定等に利用することは困難と予想さ
れる。更にはGPT測定のように1生成ピルビン酸量は
測定すべき酵素の存在下における反応時間に密接な関係
があり、迅速に精度よくピルビン酸を定量するにおいて
は高活性で安定性の優れるPOP固定化酵素の提供が切
望されていた。
Therefore, many studies are being conducted to measure GPT using an enzyme electrode in which POP is immobilized and attached to an electrode for measuring oxidation potential. (Unexamined Japanese Patent Publication No. 55-1117
No. 86, No. 56-124396, Analyt
ica Chimica Acta, 118 (198
G) 65-71, etc.) However, in these immobilization methods, the activity and stability of immobilized POP cannot be said to be sufficient. p m
It is expected that it will be difficult to use it for measurements such as ol /L). Furthermore, as in GPT measurement, the amount of pyruvate produced is closely related to the reaction time in the presence of the enzyme to be measured, so POP immobilization, which has high activity and excellent stability, is necessary for quickly and accurately quantifying pyruvate. There was a great need for the provision of enzymes.

発明の和5要 本発明者らは、この要望に応えるべく鋭意検討を行つプ
ζ結果、POPの酵素活性及びその安定性に優れ、基質
拡11に性がよく、洗浄しやすい固定化酵素が製造でき
、更にこの固定化酵素の膜を酸化電位測定用の7に極に
装Zして酵素センサーとし利用することにより、従来の
測定方法の欠点を解消し7、生体試料中の微M:のピル
ビン酸を簡便な方法で、迅速に精度良く、定用、範囲も
広く測定し得ることを見出し本発明を完成した。
SUMMARY OF THE INVENTION 5 Summary of the Invention In order to meet this demand, the present inventors have conducted extensive research and have developed an immobilized enzyme that has excellent POP enzymatic activity and stability, has good substrate expansion properties, and is easy to wash. Furthermore, by mounting this immobilized enzyme membrane on a electrode for measuring oxidation potential and using it as an enzyme sensor, the drawbacks of conventional measurement methods can be overcome. We have completed the present invention by discovering that pyruvic acid can be measured quickly, accurately, regularly, and over a wide range using a simple method.

即ち、本発明の第一は、多孔性高分子担体を、ピルビン
酸オキシダーゼ(POP)、補酵素フラピンアデニンジ
ヌクレオチド(FAD)、補酵素チアミンピロホスフェ
−) (TPP)およびM22+及び/又はMn”+イ
オンを含む溶液に浸漬して得られる固定化酵素を提供す
るものであり、その第一は、多孔性高分子担体を、ピル
ビン酸オキシダーゼ(POP)、補酵素フラビアアデニ
ンジヌクレオチド(FAD)、補酵素チアミンピロホス
フェ−ト(TPP)および%Q 2+及び/又はMn2
+イオンを含む溶液に浸漬することをg徴とする固定化
酵素の製造法を提供するものである。
That is, the first aspect of the present invention is to combine a porous polymer carrier with pyruvate oxidase (POP), coenzyme frapin adenine dinucleotide (FAD), coenzyme thiamine pyrophosphate (TPP), and M22+ and/or The first method is to provide an immobilized enzyme obtained by immersing a porous polymer carrier in a solution containing Mn''+ ions. ), coenzyme thiamine pyrophosphate (TPP) and %Q 2+ and/or Mn2
The present invention provides a method for producing an immobilized enzyme, which involves immersing it in a solution containing + ions.

(多孔性高分子担体) 本発明に用いられる多孔性高分子担体は、公知の塩化ビ
ニル樹脂担体、アセチルセルロース、ポリカーボネート
、ナイロン、ポリプロピレン、ポリエチレン、テフロン
等を用いることができる。
(Porous polymer carrier) As the porous polymer carrier used in the present invention, known vinyl chloride resin carriers, acetyl cellulose, polycarbonate, nylon, polypropylene, polyethylene, Teflon, etc. can be used.

この中でも塩化ビニル樹脂担体が行に好ましく用いられ
、該担体は、特開昭55−39719号公報記載のもの
を用いることができる。
Among these, a vinyl chloride resin carrier is preferably used, and the carrier described in JP-A-55-39719 can be used as the carrier.

特に好ましくは、塩化ビニル樹脂担体は以Fの様にして
製造される。
Particularly preferably, the vinyl chloride resin carrier is produced as follows.

先ず塩化ビニル樹脂をジメチルホルムアミドなどの溶媒
(5)に溶解し、これを所望の担体形状に形成した後溶
媒(J3)への浸漬処理を行なう。
First, a vinyl chloride resin is dissolved in a solvent (5) such as dimethylformamide, and this is formed into a desired carrier shape, and then immersed in a solvent (J3).

本発明の上記塩化ビニル樹脂(PVR)としては、ポリ
塩化ビニル(PVe)、塩化ビニル共重合体、これらと
他の樹脂とのブレンド物があり、塩化ビニル共重合体と
しては、例えば、塩化ビニルと酢酸ビニル、塩化ビニリ
デン、エチレン、アクリル酸、アクリロニトリルなどと
の二元または三元以上の共重合体がある。
Examples of the vinyl chloride resin (PVR) of the present invention include polyvinyl chloride (PVe), vinyl chloride copolymers, and blends of these and other resins. There are binary or ternary copolymers of vinyl acetate, vinylidene chloride, ethylene, acrylic acid, acrylonitrile, etc.

溶媒囚は、PVRを溶)〕1できる溶剤であって、ジメ
チルホルム・アミド(DMF)、ジメチルアセトアミド
(DMA)、n−メチルピロリドン(n−M P )、
ヘキザメチルホスフオアミド(IIMPA)、テトラヒ
ドロフラン(TflF)、アセトンとベンゼンの混合溶
媒などがある。PVR溶液の濃度とし7ては1〜30゛
重量係のものが用いられる。酵素等の固定ルAが侃れた
吸着活性を発揮して機能するためにはPvRの爪金)現
が約1000において6〜12重量%が好ましい。
The solvent used is dimethylformamide (DMF), dimethylacetamide (DMA), n-methylpyrrolidone (n-MP),
Examples include hexamethylphosphoramide (IIMPA), tetrahydrofuran (TflF), and a mixed solvent of acetone and benzene. The concentration of the PVR solution used is 1 to 30% by weight. In order for the immobilizer A, such as an enzyme, to exhibit poor adsorption activity and function, it is preferably 6 to 12% by weight when the PvR weight is about 1000.

次に、かくして得たPVR溶液を所望の担体形状に形成
した後、PvRの貧溶媒であり且つ溶媒囚の良溶媒とな
る溶1s伯)と接触させて411体層を形成する。この
際、溶媒(F3)との接触はP V R溶液層が白化す
る前に行なうことが好ましい。ここで白化する前とは、
PVRと溶媒囚の溶液が目視できる白濁を生じて不透明
となるまでの期間である。
Next, the PVR solution obtained in this way is formed into a desired carrier shape, and then brought into contact with a solution (1s), which is a poor solvent for PvR and a good solvent for solvent traps, to form a 411 body layer. At this time, the contact with the solvent (F3) is preferably carried out before the PVR solution layer becomes white. Before the bleaching,
This is the period during which the PVR and solvent solution becomes opaque with visible cloudiness.

溶媒の)としては水、アルコール系溶媒、エーテル系溶
媒などがある。
Examples of solvents include water, alcohol solvents, and ether solvents.

アルコール系溶媒としては、メチルアルコール、エチル
アルコール’、n−7”ロビルアルコール、1so−プ
ロピルアルコール、n−ブチルアルコール、8eC−ブ
チルアルコール、tert−ブチルアルコールナトのm
個アルコール類、エチレングリコール、ジエチレングリ
コール、グリセリンなどの多価アルコール帖、エチレン
グリコールモノメチルエーテル、エチレングリコールモ
ノエチルエーテルなどのグリコールモノエーテルカ1な
どが用いられる。浸漬する溶媒としてはこれらアルコー
ル系溶媒単独まだはアルコール系溶媒を50重量%以J
二含有して塩化ビニル樹脂不溶の混合溶媒であってもよ
い。
Examples of alcoholic solvents include methyl alcohol, ethyl alcohol, n-7'' lobil alcohol, 1so-propyl alcohol, n-butyl alcohol, 8eC-butyl alcohol, and tert-butyl alcohol.
Polyhydric alcohols such as ethylene glycol, diethylene glycol and glycerin, and glycol monoethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether are used. As the solvent for dipping, these alcoholic solvents may be used alone, or at least 50% by weight of alcoholic solvents.
A mixed solvent in which the vinyl chloride resin is insoluble may be used.

殊ニ、メチルアルコール、エチルアルコールを用いた場
合には、固定化酵素活性の大きい固定化物が得られ好ま
しい。
In particular, when methyl alcohol or ethyl alcohol is used, an immobilized product with high immobilized enzyme activity can be obtained, which is preferable.

なお、PVRと溶媒(4)の溶液には、担体の膨潤の度
合の調整すなわち担体の含水率の調節、孔径の調整等の
ために、ポリエチレングリコール等のP V Rに対し
非情カ1.性の化合物を添加することができる。
In addition, in the solution of PVR and solvent (4), 1.0% of PVR such as polyethylene glycol is added in order to adjust the degree of swelling of the carrier, that is, to adjust the water content of the carrier, adjust the pore size, etc. A chemical compound can be added.

相体形状としては片τ状、管状、試験管状、ビーズ状等
種々の形状をとることができる。酵素電極等の用途には
7時に膜状が好ましい。膜状担体はPVR溶液を流延し
、その後溶媒(+3)に接触し、管状担体は管状支持体
の内壁に溶液R膜層を形成(−1その後溶媒(+3)に
f団:1tシ、試験管状相体の場合には試p管の内壁に
溶液N IK’E層を形成し、その後溶媒(B)に接触
し、ビーズ状担体の場合にはPVR溶液を空気中に噴鋺
し7だ後溶IA色)に浸r&して形成する。
The shape of the phase body can be various shapes such as a tau shape, a tube shape, a test tube shape, and a bead shape. For applications such as enzyme electrodes, a membrane-like structure is preferable. The membrane carrier was casted with PVR solution, and then contacted with the solvent (+3), and the tubular carrier formed a solution R membrane layer on the inner wall of the tubular carrier (-1, then the solvent (+3) was coated with f groups: 1t, In the case of a test tube-like carrier, a solution NIK'E layer is formed on the inner wall of the test tube, which is then brought into contact with the solvent (B), and in the case of a bead-like carrier, the PVR solution is sprayed into the air. After that, it is immersed in molten IA color) and formed.

この際、担体の強度を向上させる為膜状担体の場合には
不織布等の、ビーズ状担体の場合には多孔性の球状体等
の補強材を用いてもよい。
At this time, in order to improve the strength of the carrier, a reinforcing material such as a non-woven fabric may be used in the case of a membrane-like carrier, and a reinforcing material such as a porous spherical body in the case of a bead-shaped carrier.

なお担体の形成後、担体を水中に浸漬して溶媒色)を水
と置換することが好ましい。
Note that after forming the carrier, it is preferable to immerse the carrier in water to replace the solvent color (solvent color) with water.

(固定化酵素の調整) 次に上記多孔性高分子掬体を酵素POPと共に補酵素フ
ラビンアデニンジヌクレオチド(FADと略記する)、
補酵素チアミンピロホスフェート(TPPと略記する)
およびMg2+イオン及び/又はMn”+イオンを含む
溶液に浸漬して本発明の固定化酵素を得る。
(Preparation of immobilized enzyme) Next, the porous polymer encapsulation was combined with the enzyme POP and the coenzyme flavin adenine dinucleotide (abbreviated as FAD).
Coenzyme thiamine pyrophosphate (abbreviated as TPP)
Then, the immobilized enzyme of the present invention is obtained by immersing it in a solution containing Mg2+ ions and/or Mn''+ ions.

との場合、上記酵素を含む溶液Vよ、I)OPの0度が
100〜100 omv/de、、好1しくけ200〜
s o o my/deであり、かつ該溶液のpHが6
〜8.5、好ましくは6.5〜7,0の範囲にある緩衝
溶液である。
In this case, the solution V containing the enzyme, I) 0 degree of OP is 100 to 100 omv/de, preferably 1 degree is 200 to
so o my/de and the pH of the solution is 6
-8.5, preferably in the range of 6.5-7.0.

本発明に使用する上記緩衝溶液は、Good  ら(B
iochemistry、5.467 (1966))
  によるPK&6〜8.5の公知の緩衝剤を用いるこ
とができる。例えばN「換型双極性アミノ酸、1− L
、、ては、N−(z−アセトアミド)−2−アミノエタ
ンスルポンflit、N−(z−アセトアミド)イミノ
ジ酢酸、N、N−ビス(2−ヒドロキシエチル)−2−
アミノエタンスルホンe、NlN−ビス(2−ヒドロキ
シエチル)グリシン、N−(2−ヒドロキシ〆 エチル)ピタラジンーN′−2−エタンスルホン酸、2
−(N−モルホリノ)エタンスルホン「li、3−(N
−モルホリノ)フロパンスルホン酸、ピペ2ジンーN、
N’−ビス(2−エタンスルホン酸)、N−+−リス(
ヒドロキシメチル)メチル−3−アミノプロパンスルポ
ン酸、N−トリス(ヒドロキシメチル)メチル−2−ア
ミノエタンスルホン酸、N−トリス(ヒドロキシメチル
)メチルグリシン等がある。゛また脂肪族アミンとして
は、2,2−ビス(ヒドロキシメチル) −2,2’、
2’−ニトリロトリエタノール、1.3−ビス〔トリス
(ヒドロキシメチル)メグルアミ7ノ〕プロパン、グリ
シンアミド等がある。またトリス(ヒドロキシメチル)
アミノメタン等を用いることもできる。
The above buffer solution used in the present invention is described by Good et al.
iochemistry, 5.467 (1966))
Known buffering agents having a PK&6 to 8.5 according to the US Pat. For example, N “substituted dipolar amino acids, 1-L
,, N-(z-acetamido)-2-aminoethanesulpone flit, N-(z-acetamido)iminodiacetic acid, N,N-bis(2-hydroxyethyl)-2-
Aminoethanesulfone e, NlN-bis(2-hydroxyethyl)glycine, N-(2-hydroxyethyl)pitarazine-N'-2-ethanesulfonic acid, 2
-(N-morpholino)ethanesulfone "li, 3-(N
-morpholino) furopanesulfonic acid, pipezine-N,
N'-bis(2-ethanesulfonic acid), N-+-lith(
Examples include hydroxymethyl)methyl-3-aminopropanesulfonic acid, N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid, and N-tris(hydroxymethyl)methylglycine.゛Also, examples of aliphatic amines include 2,2-bis(hydroxymethyl)-2,2',
Examples include 2'-nitrilotriethanol, 1,3-bis[tris(hydroxymethyl)meglutami7no]propane, and glycinamide. Also tris(hydroxymethyl)
Aminomethane and the like can also be used.

これらは単独で使用する他、2種以上を混合して使用す
ることができる。
These can be used alone or in combination of two or more.

また、M、 2+イオンおよびMn2+イオンは]’v
lyCt2およびMnC15の形態で使用することが好
ましい。
Also, M, 2+ ions and Mn2+ ions are ]'v
Preferably it is used in the form of lyCt2 and MnC15.

本発明の固定化酵素は、昭和57年12月1日出願の特
許(特願昭57−211.117号)の明細書に記載1
.た常温硬化性ブロックトイソシアネート化合物の水溶
液に接触させて該化合物で被覆することもできる。
The immobilized enzyme of the present invention is described in the specification of the patent filed on December 1, 1982 (Japanese Patent Application No. 1982-211.117).
.. It can also be coated with a cold-curable blocked isocyanate compound by contacting it with an aqueous solution of the compound.

(本発明の固定化酵素の用途) 本発明の固定化酵素の用途は、例えば次のとおりである
。膜状の固定化酵素は酵素電極、過酸化水素電極、二酸
化炭素電極などの電極に装着することにより酵素センサ
ーとして使用できる。管状体の固定化酵素は固定化酵素
反応装置として臨床検査分野での分析計への前処理反応
部として使用でき、ビーズ状の固定化酵素は充填型反応
装置として使用できる。
(Uses of the immobilized enzyme of the present invention) The uses of the immobilized enzyme of the present invention are, for example, as follows. A membrane-shaped immobilized enzyme can be used as an enzyme sensor by being attached to an electrode such as an enzyme electrode, a hydrogen peroxide electrode, or a carbon dioxide electrode. The immobilized enzyme in the form of a tube can be used as an immobilized enzyme reaction device as a pretreatment reaction section for an analyzer in the field of clinical testing, and the immobilized enzyme in the form of beads can be used as a packed reaction device.

また測定対象試料系としては、ピルビン酸そのもの、あ
るいはピルビン酸を直接または間接的に遊離する系を有
してなる試料系であればよく、例えば血清、尿中などに
存在するピルビン酸の分析あるいはトランスアミナーゼ
(GOT、GPT)の分析、乳酸と乳酸脱水素酵素(以
下L D Hと略記スる)、アゾンシンジホスフェート
(以下ADP ト略記する)とピルビン酸キナーゼ(以
下P Kと略記する)の分析、トリグリセライドの分析
等に適用することができる。
The sample system to be measured may be pyruvate itself or a sample system that has a system that directly or indirectly releases pyruvate, such as analysis of pyruvate present in serum, urine, etc. Analysis of transaminases (GOT, GPT), lactic acid and lactate dehydrogenase (hereinafter abbreviated as LDH), azone syndiphosphate (hereinafter abbreviated as ADP) and pyruvate kinase (hereinafter abbreviated as PK) , triglyceride analysis, etc.

」二記の利用例の代表的なものを挙げると次の通りであ
る。
The following are representative examples of the use of ``2.''

(イ)ピルビン酸を含有する試料中のピルビン酸の測定
を目的とするものニ アセチルリン酸−+ CO2+ HzO2測定すべき酢
床才だけ基質の存在下における酵素反応により、ピルビ
ン酸を直接遊1ζ[Lする系として、例えば、 ←)GPT活性の測定を目的とするもの:PT アラニン+α−ケトグルタルP −−−→ピルビン酸+
グルタミン酸 (ハ)乳酸またはL D H活性の測定を目的とするも
また、測定すべき酵素まだは基質の存在下における酵素
反応と、この反応の生成物と所要基質及び酵素からピル
ビン酸を生成する酵素反応との共役によりピルビン酸を
間接的に遊離する系として、例えば、 に)GOT活性の測定を目的とするもの:OT アスパラギン酸+α−ケトグルタル酸 −−−一−−−
−→オキザロ酢酸+グルタミン酸 AC オキザロ酢酸−−→ピルビン酸+CO20→ADPまた
はPK活性の測定を目的とするもの: I)K ADP+ホスフォエノールピルビン酸−−−一一−→ア
デノシントリポスフエー) (ATPと略記する)+ピ
ルビン酸 (へ)トリグリセライドの測定を目的とするもの:3−
リン酸+ADP ピルビン酸+ATP 実施例 次に実施例、比較例を誉げて本発明を更に詳細に説明す
る。同、例中に用いる「部」は重量基準である。又、例
中の固定化されだPOP酵稟の酵素活性の測定において
POP活性の測定は、L、P。
(b) For the purpose of measuring pyruvate in a sample containing pyruvate Niacetyl phosphate - + CO2 + HzO2 The enzyme reaction to be measured in the presence of a substrate directly converts pyruvate to 1ζ [L For example, ←) A system for measuring GPT activity: PT alanine + α-ketoglutar P --- → pyruvate +
Although the purpose is to measure glutamate(III) lactic acid or LDH activity, the enzyme to be measured also involves an enzymatic reaction in the presence of a substrate, and the production of pyruvate from the product of this reaction, the required substrate, and the enzyme. As a system that indirectly releases pyruvate by coupling with an enzyme reaction, for example, one for the purpose of measuring GOT activity: OT aspartic acid + α-ketoglutaric acid --- one ---
-→Oxaloacetate + Glutamic acid AC Oxaloacetate--→Pyruvate+CO20→Those aimed at measuring ADP or PK activity: I) K ADP+Phosphoenolpyruvate---11-→Adenosine triposphene) ( For the purpose of measuring ATP) + pyruvate triglyceride: 3-
Phosphoric acid + ADP Pyruvic acid + ATP Examples Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Similarly, "parts" used in the examples are based on weight. In addition, in the measurement of the enzyme activity of immobilized POP fermentation in the example, POP activity was measured using L and P.

Hager and li’、 Lipmann  ら
の方法(Methodsin gnzymology 
、  Vol 、  1.482 (1955))に従
い、1 unit(IJ)は37℃、pI(、6,7に
おいて、ピルビン酸、リン酸および酸素より1分間に1
7ztnolの過酸化水素を生ずる酵素活性量である。
Hager and Li', Lipmann et al.
, Vol. 1.482 (1955)), 1 unit (IJ) is 1 unit (IJ) of 1 min per minute from pyruvate, phosphoric acid and oxygen at 37°C and pI (, 6,7).
This is the amount of enzyme activity that produces 7ztnol of hydrogen peroxide.

実施例1〜8、比較例1 (1)相体の製造 PVC(鐘渕化学社製、重合度1000)10部、DM
F溶媒90部より均一な溶液を調製し、この溶液の一部
を15X15cr++のガラス板上に流延し、直ちにメ
タノール浴中にガラス板ごと浸漬し7た。30分後、こ
のガラス板を蒸留水中に浸漬してメタノールを水に置換
したPVC膜(II”すr740pm)担体を得だ。
Examples 1 to 8, Comparative Example 1 (1) Production of phase material PVC (manufactured by Kanebuchi Kagaku Co., Ltd., polymerization degree 1000) 10 parts, DM
A homogeneous solution was prepared from 90 parts of F solvent, a portion of this solution was cast onto a 15×15 cr++ glass plate, and the glass plate was immediately immersed in a methanol bath. After 30 minutes, this glass plate was immersed in distilled water to obtain a PVC membrane (II''r 740 pm) carrier in which methanol had been replaced with water.

(n)  固定化複合酵素膜の製造 上記PVC膜を直径8門の円形に打ち抜き、これをpo
p (東洋醸造社製、濃度500 rq/de )と共
に、補酵素FAD (牛丼化学社製、2ミリモル/1)
、補酵素TPP (牛丼化学社製、2ミリモル/1)、
MgCl2(20ミリモル//−)を含む緩衝液(牛丼
化学社製、50ミリモル/ t 、 pif7.0 )
の0.6m/中に4℃にて24時間浸漬し固定化f’i
7:素膜を得だ。この際使用した緩衝液の種頷による得
られた固定化酵素膜のPOP活性を測定した結果、活性
は表−1の通りであった。
(n) Production of immobilized composite enzyme membrane Punch out the above PVC membrane into a circle with a diameter of 8 gates, and insert it into a po
p (manufactured by Toyo Jozo Co., Ltd., concentration 500 rq/de) and coenzyme FAD (manufactured by Gyudon Kagaku Co., Ltd., 2 mmol/1).
, coenzyme TPP (manufactured by Gyudon Kagaku Co., Ltd., 2 mmol/1),
Buffer solution containing MgCl2 (20 mmol//-) (manufactured by Gyudon Kagaku Co., Ltd., 50 mmol/t, pif7.0)
Immobilized f'i by immersing it in 0.6m of
7: Get the raw film. The POP activity of the obtained immobilized enzyme membrane was measured depending on the buffer solution used at this time, and the activity was as shown in Table 1.

表−1 MES      :  2−(N−(、Iけリス)エ
タンスルホン酸))I))ES   :  ピペラジン
−N、N′−ビス(2−エタンスルホン酸)B、   
   、N、N−ビス(2−ヒドロキシエチル)−2−
アミノエタンスルホン酸) Tricine   : N−)リス(ヒドロキシメチ
ル)メザールグIJシン’l”ris     :  
)リス(ヒドロキシメチル)アミノメタンphosph
ate : KF12PO4−NaOH比較例2〜4 実施例1〜8の(i]で得たPVC膜を直径8簡の円形
に打ち抜き、固定化酵素膜の製造における補酵素TPP
および′MgC62を除いた他は実施例3゜6および比
較例1と同様の操作によ沙固定化酵素膜を得た。得られ
た固定化酵素膜のPOP活性は表−2の通りであった。
Table-1 MES: 2-(N-(,Ikeris)ethanesulfonic acid))I))ES: Piperazine-N, N'-bis(2-ethanesulfonic acid) B,
, N, N-bis(2-hydroxyethyl)-2-
Tricine (aminoethanesulfonic acid) Tricine:
) lis(hydroxymethyl)aminomethane phosph
ate: KF12PO4-NaOH Comparative Examples 2 to 4 The PVC membrane obtained in (i) of Examples 1 to 8 was punched out into a circle with a diameter of 8, and the coenzyme TPP in the production of the immobilized enzyme membrane was
A sand-immobilized enzyme membrane was obtained in the same manner as in Example 3.6 and Comparative Example 1, except that MgC62 and MgC62 were removed. The POP activity of the obtained immobilized enzyme membrane was as shown in Table 2.

表−2 比較例5〜7 実施例1〜8 t7)(1)f得たp v CI+!、
を直径8B(7)円形に打ち抜き、固定化酵素膜の製造
における補酵素FAD、補酵素T P PおよびMyC
f1!を除いた他は実施例3.6および比較例1と同様
の操作により固定化酵素膜を得た。得られた固定化酵素
膜のPOP活性は表−3の通りであった。
Table-2 Comparative Examples 5 to 7 Examples 1 to 8 t7) (1) f obtained p v CI+! ,
Coenzyme FAD, coenzyme T P P and MyC in the production of immobilized enzyme membrane.
f1! Immobilized enzyme membranes were obtained by the same operations as in Example 3.6 and Comparative Example 1 except for the following. The POP activity of the obtained immobilized enzyme membrane was as shown in Table 3.

表−3 実施例9 (1)  常温硬化性ブロックトイソシアネート化合物
の製造 分子吟1000のポリエチレングリコール70部とトリ
レンジイソシアネート30部を反応させ未反応のトリレ
ンジイソシアネートを5.6チ含むウレタンプレポリマ
ーを得た。このウレタンプレポリマー中の遊離のNCO
基は8.6%であった。
Table 3 Example 9 (1) Production of room temperature curable blocked isocyanate compound Urethane prepolymer containing 5.6 parts of unreacted tolylene diisocyanate by reacting 70 parts of polyethylene glycol with molecular weight 1000 and 30 parts of tolylene diisocyanate. I got it. Free NCO in this urethane prepolymer
The base content was 8.6%.

次いでこのウレタンプレポリマー87部にイミダゾール
を13部添加し、攪拌下90℃、3時間反応させて常温
硬化性ブロックトイソシアネート化合物を得た。
Next, 13 parts of imidazole was added to 87 parts of this urethane prepolymer, and the mixture was reacted with stirring at 90° C. for 3 hours to obtain a room temperature curable blocked isocyanate compound.

[11)  固定化酵素膜の製造 PVC(鐘渕化学社製、重合1i1000)10部、D
MF溶媒90部より均一な溶液をP]%し、この溶液の
一部をポリエステル製不織布(日本バイリーン■製、厚
み約38 p m )をおいだ15X15crnのガラ
ス板上に流延し、直ちにメタノール浴中ヘガラス板ごと
30分間浸漬後、水中に入れ水置換を行ない多孔性高分
子膜を得た。
[11) Production of immobilized enzyme membrane 10 parts of PVC (manufactured by Kanebuchi Kagaku Co., Ltd., Polymerization 1i1000), D
A homogeneous solution was made from 90 parts of MF solvent to P]%, a portion of this solution was cast onto a 15 x 15 crn glass plate covered with a polyester nonwoven fabric (manufactured by Nippon Vilene ■, thickness approximately 38 pm), and immediately poured with methanol. After immersing the glass plate together in a bath for 30 minutes, it was placed in water for water replacement to obtain a porous polymer membrane.

次にこの膜を直径8Wmの円形に打ち抜き(膜厚70 
p m ) 、実施例6と同様にして固定化酵素膜30
チ水溶液(50ミリモル/1MES緩衝液、pH7,0
)に1分間浸漬した後、室Fl下30分間放置してウレ
タンプレポリマーで被覆された固定化酵素膜を得だ。得
られた固定化酵素膜の活性はpop活性活性2用0 実施例10 ミリボア社製アセチルセルロース膜(タイプ毘、孔径0
.45 p m、厚さt4opm)を直径8WrRの円
形に打ち抜き、実施例6と同様にして固定化酵素膜を得
た。更にこの直を実施例9の(1)で得た常温硬化性ブ
ロックトイソシアネート化合物の30係水溶液(50ミ
リモル、MES緩術液、pH7,0)を塗布した後、室
温下30分間放置してウレタンプレポリマーで被覆され
た固定化酵素膜を得だ。
Next, punch out this film into a circle with a diameter of 8 Wm (film thickness: 70 mm).
p m ), immobilized enzyme membrane 30 in the same manner as in Example 6.
aqueous solution (50 mmol/1 MES buffer, pH 7.0
) for 1 minute, and then left for 30 minutes under room Fl to obtain an immobilized enzyme membrane coated with the urethane prepolymer. The activity of the obtained immobilized enzyme membrane was 0 for pop activity 2.
.. 45 pm, thickness t4opm) was punched out into a circle with a diameter of 8WrR to obtain an immobilized enzyme membrane in the same manner as in Example 6. Further, a 30% aqueous solution (50 mmol, MES laxative solution, pH 7.0) of the cold-curable blocked isocyanate compound obtained in Example 9 (1) was applied to this layer, and the mixture was allowed to stand at room temperature for 30 minutes. An immobilized enzyme membrane coated with urethane prepolymer was obtained.

得られた固定化酵素膜の活性は、POP活性75m[J
/cJ  であった。
The activity of the obtained immobilized enzyme membrane was POP activity 75m[J
/cJ.

参考例1 m  複合酵素センサーの作製 アセチルセルロース6部、シクロヘキサノン87部、イ
ソプロパツール7部より均一な溶液を調製し1、この溶
液の一部を15X15cmのガラス板上に流延し、室温
で48時間風乾して、厚さ10/1mの透明なアセチル
セルロース膜を得た。次いでこのアセチルセルロース膜
を実施例9の【旧で得らオLだ固定化r4? ’P= 
R’、′Sと貼り合せ、アセチルセルロース膜を電極側
、該固定化酵素膜を試料液に接する様に過酸化水素電極
に装着し、酵素センサーを作製した。
Reference Example 1m Preparation of a composite enzyme sensor A homogeneous solution was prepared from 6 parts of acetylcellulose, 87 parts of cyclohexanone, and 7 parts of isopropanol 1. A part of this solution was cast onto a 15 x 15 cm glass plate, and the mixture was heated at room temperature. After air drying for 48 hours, a transparent acetylcellulose film with a thickness of 10/1 m was obtained. This acetylcellulose membrane was then immobilized in Example 9. 'P=
R' and 'S were bonded together, and the acetylcellulose membrane was attached to the electrode side, and the immobilized enzyme membrane was attached to the hydrogen peroxide electrode so as to be in contact with the sample solution, to produce an enzyme sensor.

(II)  ピルビン酸の定量 上記酵素センサーを37℃に調整し7だセルに取付は補
酵素FAD (0,1ミリモル//、)、補酵素TPP
(1,0ミリモル/l)、八〜C/−11(10ミリモ
ル//、)、KH2PO4(1,0ミリモル//、)を
含むTricine緩衝液(50ミリモル/ LXpH
7,0)0.68 m/をセルに注入し、次に0〜20
ミリモル/lのピルビン酸リチウム標準液の1aptを
押押しながら、マイクロディスペンサーを用いてセル中
にそれぞれ投入し、酵素反応を15秒間行なわせて発生
し7た過酸化水素の酸化電流をポーラログラフ法により
測セした。
(II) Determination of pyruvate Adjust the above enzyme sensor to 37℃ and attach it to the cell: coenzyme FAD (0.1 mmol//), coenzyme TPP
(1,0 mmol/l), 8~C/-11 (10 mmol//,), Tricine buffer (50 mmol/LXpH
7,0) 0.68 m/ into the cell, then 0-20
While pressing 1 apt of mmol/l lithium pyruvate standard solution, each was injected into the cell using a microdispenser, the enzyme reaction was performed for 15 seconds, and the oxidation current of hydrogen peroxide generated was measured by polarographic method. I measured it.

この測定に使用した測定載置を図1に示す。また測定の
結果を図2に示す。図2から明らかな様にピルビン酸濃
度と電流値との間には、良好な直線関係が認められ、本
発明の固定化酵素膜を使用すれば、少量の試料でθ〜2
0ミリモル/lの機成のピルビン酸カリ青匹よくR現定
できる。
The measurement mounting used for this measurement is shown in Figure 1. Further, the measurement results are shown in FIG. 2. As is clear from FIG. 2, there is a good linear relationship between the pyruvate concentration and the current value, and if the immobilized enzyme membrane of the present invention is used, θ ~ 2
Potassium pyruvate with a composition of 0 mmol/l can be easily expressed.

次に、この酵素センサーを37℃で、上記ピルビン酸の
定m・と同様の測定を1500回繰り返して行ったとこ
ろ電極活性の低下は認められず、使用安定性は良好であ
った。
Next, this enzyme sensor was subjected to 1500 repeated measurements at 37° C. in the same manner as the above-mentioned pyruvic acid constant m·, and no decrease in electrode activity was observed, indicating good stability in use.

参考例2 (1)GPTの定量 参考例1の(1)で得た酵素センサーを、37℃に調整
したセルに増刊はアラニン(300ミリモル//=)、
α−ケトグルタルF2(10ミリモル/l)、補酵素F
AD(o、tミリモル/′t)、補酵素TPp (1,
0ミリモル/l )、MgC12(16ミリモル/l)
、およびI(I(zPO4(1,0ミリモル/l)をJ
むTricine 1lFj液(soミリモルフ t、
1pIL7.0 )0.68m/をセルに注入17、次
に0〜850国際単位(1,U)/lの既知の活性のG
PT (ベーリンガー・マンノ・イム山之内面製)を含
む試料をそれぞれ50ptづつマイクロディスペンサー
を用いて攪拌下のセル中に投入し、酵素反応を1分間行
なわせた。この反応により発生した過酸化水素の酸化電
流をポーラログラフ法により測定した。
Reference Example 2 (1) Quantification of GPT The enzyme sensor obtained in (1) of Reference Example 1 was placed in a cell adjusted to 37°C.
α-ketoglutal F2 (10 mmol/l), coenzyme F
AD (o, t mmol/'t), coenzyme TPp (1,
0 mmol/l), MgC12 (16 mmol/l)
, and I(I(zPO4(1,0 mmol/l) J
Tricine 1lFj solution (so millimorph t,
1pIL7.0) 0.68 m/l into the cell17, then a G of known activity between 0 and 850 international units (1,U)/l.
50 pt of each sample containing PT (manufactured by Boehringer Manno Im Yamanouchi Co., Ltd.) was placed into a cell under stirring using a microdispenser, and an enzyme reaction was allowed to occur for 1 minute. The oxidation current of hydrogen peroxide generated by this reaction was measured by polarographic method.

測定の結果を図3に示す。図3から明らかな様KGPT
活性と電流値変化速度との間には、良好な直線関係が認
められ、本発明の固定化酵素膜を使用すれば少量の試料
でθ〜8501.U/lの広範囲の濃度のGPTが簡便
な方法で、迅速に積置よく測定可能である。なお1国際
年位(1,U)は、pH7,5,30℃において、α−
ケトグルタル酸より、1分間に1マイクロモルのL−グ
ルタミン酸を生成する酵素活性量である。
The measurement results are shown in Figure 3. As is clear from Figure 3, KGPT
A good linear relationship was observed between the activity and the rate of change in current value, and when the immobilized enzyme membrane of the present invention is used, a small amount of sample can be adjusted to θ~8501. GPT in a wide range of concentrations (U/l) can be measured quickly and with good accuracy using a simple method. Note that 1 international year (1, U) is α- at pH 7, 5, and 30℃.
This is the amount of enzyme activity that produces 1 micromole of L-glutamic acid per minute from ketoglutaric acid.

参考例3〜9 比較例1〜7で得た固定化酵素膜を参考例1と同様な操
作により過酸化水素電極に装着し、参考例1.2と同様
にしてピルビン酸、GPTの定量を試みた結果、酵素反
応による酸化電流打1:小さく、生体試料中のGPTの
測定は困難であった。
Reference Examples 3 to 9 The immobilized enzyme membranes obtained in Comparative Examples 1 to 7 were attached to a hydrogen peroxide electrode in the same manner as in Reference Example 1, and pyruvic acid and GPT were quantified in the same manner as in Reference Example 1.2. As a result of our attempts, the oxidation current caused by the enzymatic reaction was small, making it difficult to measure GPT in biological samples.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明の固定化酵素膜を過酸化水素電極に装着
した酵素センサーを用いたピルビン酸およびGPT測定
等のだめの装置の一例を示す概念図である。 図2および図3は、本発明の固定化酵素膜を過酸化水素
電極に装着し九〇7素センサーを用いてそれぞれ測定し
たピルビン酸リチウム濃度−電流値の、およびGPT活
性活性流電流値変化速度れぞれの関係を示す相関図であ
る。 1、・・・試料注入口 2、・・・反応および検出セル 3、・・・固定酵素膜 4、・・・過酸化水素電極 5、・・・増幅器 6・・・記録計 7、・・・ディジタルマルチメーター 8、S)、10.・・・ポンフ“ 11、・・・基質および緩衝液給 12、・・・廃液槽 特許出願人  三菱油化株式会社 代理人 弁理士  古 川 秀 利 代理人 弁理士  長 谷 正 入 園 1 図 2 ピルビシ酸リチウム)農産(rrll−q/ユ)図3 0   200  400   EiOO800+00
0GPT活′I件値 (川/す
FIG. 1 is a conceptual diagram showing an example of an apparatus for measuring pyruvic acid and GPT using an enzyme sensor in which the immobilized enzyme membrane of the present invention is attached to a hydrogen peroxide electrode. Figures 2 and 3 show changes in lithium pyruvate concentration-current value and GPT activity current value, respectively, measured using a 907 element sensor with the immobilized enzyme membrane of the present invention attached to a hydrogen peroxide electrode. FIG. 3 is a correlation diagram showing the relationship between speeds. 1. Sample injection port 2, Reaction and detection cell 3, Immobilized enzyme membrane 4, Hydrogen peroxide electrode 5, Amplifier 6, Recorder 7,...・Digital multimeter 8, S), 10. ... Ponfu" 11, ... Substrate and buffer supply 12, ... Waste liquid tank Patent applicant Mitsubishi Yuka Co., Ltd. Patent attorney Hidetoshi Furukawa Agent Patent attorney Tadashi Hase Admission 1 Figure 2 Pirubishi Lithium oxide) Agricultural products (rrll-q/yu) Figure 3 0 200 400 EiOO800+00
0GPT activity'I case value (river/su

Claims (5)

【特許請求の範囲】[Claims] (1)多孔性高分子担体を、ピルビン酸オキシダーゼ(
POP)、補酵素フラビンアデニンジヌクレオチド(F
AD)、補酵素チアミンピロホスフェ−) (TPP)
およびMグ2+及ヒ/又はMn2+イオンを含む溶液に
浸漬して得られる固定化酵素。
(1) Pyruvate oxidase (
POP), coenzyme flavin adenine dinucleotide (F
AD), coenzyme thiamine pyrophosphate) (TPP)
and an immobilized enzyme obtained by immersion in a solution containing Mn2+ and/or Mn2+ ions.
(2)多孔性1シカ分子411体が、塩化ビニル樹脂を
一種まだは二種以上の溶媒囚に溶解して該樹脂Y小穴2
〜25壬霜チの溶液とし、該溶液を塩化ビニル樹脂の貧
溶媒でかつ溶媒(5)の良溶媒となる一種まだを」二種
以上の溶I&Q3)中に浸漬して得られゾ辷ものである
/l!j旧請求の範囲第1項記載の固定化酵素。
(2) 411 porous 1-silica molecules dissolve vinyl chloride resin in one or more solvents, and the resin Y small holes 2
A solution obtained by making a solution of ~25 sinter and immersing the solution in two or more types of molten I & Q 3) which is a poor solvent for vinyl chloride resin and a good solvent for solvent (5). It is/l! j. The immobilized enzyme according to claim 1.
(3)多孔性高分子担体を、ピルビン酸オキシダーゼ(
POP)、補酵素フラビンアデニンシロホスフェート(
TPP)およびRh2+ 及U/又はMn2+イオンを
含む溶液に浸漬することを特徴とする固定化薄赤の製造
法。
(3) Pyruvate oxidase (
POP), coenzyme flavin adenine cylophosphate (
A method for producing immobilized light red, which comprises immersing it in a solution containing TPP) and Rh2+ and U/or Mn2+ ions.
(4)多孔性高分子担体が、塩化ビニル樹脂を一種また
は二種以上の溶媒(5)に溶解して該樹脂濃度2〜25
重量%の溶液とし、該溶液を塩化ビニル樹脂の貧溶媒で
かつ溶ff(A)の良溶媒となる一種または二種以上の
溶媒…)中に浸漬して得られたものである特許請求の範
囲第3項記載の固定化酵素の製造法。
(4) A porous polymer carrier is prepared by dissolving vinyl chloride resin in one or more solvents (5) to obtain a resin concentration of 2 to 25%.
weight% solution, and the solution is immersed in one or more solvents that are a poor solvent for vinyl chloride resin and a good solvent for the solution ff(A)... A method for producing the immobilized enzyme according to scope 3.
(5)酵素、補酵素およびΔ号2+及び/又はMn2+
イオンを含む溶液がPKa 6〜8.5のN置換型双極
性アミノ酸、脂肪族アミンおよびトリス(ヒドロキシメ
チル)アミノメタンの一種以上を含む緩衝溶液である特
許請求の範囲第3項または第4項記載の固定化酵素の製
造法。
(5) Enzyme, coenzyme and Δ2+ and/or Mn2+
Claim 3 or 4, wherein the ion-containing solution is a buffer solution containing one or more of N-substituted dipolar amino acids with a PKa of 6 to 8.5, aliphatic amines, and tris(hydroxymethyl)aminomethane. Method for producing the described immobilized enzyme.
JP58089940A 1983-05-24 1983-05-24 Immobilized enzyme and production thereof Pending JPS59216586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089940A JPS59216586A (en) 1983-05-24 1983-05-24 Immobilized enzyme and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089940A JPS59216586A (en) 1983-05-24 1983-05-24 Immobilized enzyme and production thereof

Publications (1)

Publication Number Publication Date
JPS59216586A true JPS59216586A (en) 1984-12-06

Family

ID=13984694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089940A Pending JPS59216586A (en) 1983-05-24 1983-05-24 Immobilized enzyme and production thereof

Country Status (1)

Country Link
JP (1) JPS59216586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249390A (en) * 1985-04-27 1986-11-06 レ−ム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fixing of soluble protein
JPH04168355A (en) * 1990-10-31 1992-06-16 Dam Suigenchi Kankyo Seibi Center Phosphoric acid sensor
JP2012050387A (en) * 2010-09-01 2012-03-15 Kaneka Corp Method for immobilizing two or more kinds of molecule in porous carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249390A (en) * 1985-04-27 1986-11-06 レ−ム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Fixing of soluble protein
JPH04168355A (en) * 1990-10-31 1992-06-16 Dam Suigenchi Kankyo Seibi Center Phosphoric acid sensor
JP2012050387A (en) * 2010-09-01 2012-03-15 Kaneka Corp Method for immobilizing two or more kinds of molecule in porous carrier

Similar Documents

Publication Publication Date Title
Schaffar Thick film biosensors for metabolites in undiluted whole blood and plasma samples
US5705045A (en) Multi-biosensor for GPT and got activity
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Guilbault [41] Enzyme electrodes and solid surface fluorescence methods
US20030178998A1 (en) Enzyme electrode
Bicak et al. Poly (o-aminophenol) prepared by Cu (II) catalyzed air oxidation and its use as a bio-sensing architecture
Kihara et al. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase
Mizutani et al. L-Malate-sensing electrode based on malate dehydrogenase and NADH oxidase
Laurinavicius et al. Amperometric glyceride biosensor
Guilbault et al. A creatinine specific enzyme electrode
JPS59216586A (en) Immobilized enzyme and production thereof
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
Mieliauskiene et al. Amperometric determination of acetate with a tri-enzyme based sensor
KR102480669B1 (en) Outer membrane composition for creatinine/creatine sensor
CN104749122A (en) Serum monoamine oxidase detection kit
GB2265718A (en) Assay system employing enzymes and electrochemical detection
Girotti et al. Bioluminescent flow sensor for the determination of L-(+)-lactate
JPS59109175A (en) Immobilized enzyme and its preparation
JPS63101743A (en) Functional electrode
JPS59109170A (en) Apparatus for determination of transaminase activity
JP2000262297A (en) Measurement of substance using enzyme-immobilized electrode
JPS61247963A (en) Quantitatively determining method for vital material with ammonia as resulted product of reaction
JPS6095344A (en) Method for measuring activity of transaminase
Guilbault Biosensors
JPS63309848A (en) Production of enzyme electrode