JPS61247963A - Quantitatively determining method for vital material with ammonia as resulted product of reaction - Google Patents

Quantitatively determining method for vital material with ammonia as resulted product of reaction

Info

Publication number
JPS61247963A
JPS61247963A JP8885185A JP8885185A JPS61247963A JP S61247963 A JPS61247963 A JP S61247963A JP 8885185 A JP8885185 A JP 8885185A JP 8885185 A JP8885185 A JP 8885185A JP S61247963 A JPS61247963 A JP S61247963A
Authority
JP
Japan
Prior art keywords
ammonia
reaction
atp
urea
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8885185A
Other languages
Japanese (ja)
Other versions
JPH0675515B2 (en
Inventor
Yoji Marui
丸井 洋二
Taku Nakano
卓 中野
Chozo Hayashi
林 長蔵
Takeshi Fujita
剛 藤田
Isamu Kokawara
高河原 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
Original Assignee
Oriental Yeast Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd filed Critical Oriental Yeast Co Ltd
Priority to JP60088851A priority Critical patent/JPH0675515B2/en
Publication of JPS61247963A publication Critical patent/JPS61247963A/en
Publication of JPH0675515B2 publication Critical patent/JPH0675515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure exactly a vital material with ammonia or urea as the resulted product of reaction by consuming the ammonia which exists already in a specimen then adding ATP or/and chelate agent to stop iCDH reaction, adding enzyme to form ammonia to the specimen and measuring the formed ammonia. CONSTITUTION:GlDH, alpha-KG, NADH, isocitric acid, metallic ions such as magnesium ions or manganese ions and iCDH are added and mixed to and with the specimen to consume the ammonia which exists already in the specimen. The ATP or/and chelate agent are then added to the specimen to stop the iCD reaction. The enzyme to form ammonia as the resulted product of reaction is added simultaneously with or after said stop and the formed ammonia is measured. The change from the formula I the formula II is made by the addition of the ATP or/and chelate agent. The reaction of the enzyme to form ammonia is exemplified by the formula III.

Description

【発明の詳細な説明】 本発明はアンモニア又は尿素を反応生成物とする生体物
質の定量方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying biological substances using ammonia or urea as a reaction product.

更に詳細には、本発明は、検体中にすでに存在するアン
モニア又はアンモニアと尿素をあらかじめ消費させ、ア
ンモニア又は尿素を反応生成物とする生体物質を正確に
測定する方法に関するものである。
More specifically, the present invention relates to a method for accurately measuring a biological substance that uses ammonia or urea as a reaction product by consuming ammonia or ammonia and urea already present in a sample in advance.

一般に、尿、血液等の検体に存在する尿素、クレアチニ
ン、クレアチン、グアニン、アデノシンなどを検出した
り、これら物質にに関与する各種酵素の活性を測定する
ことは普通に行なわれている。
In general, it is common practice to detect urea, creatinine, creatine, guanine, adenosine, etc. present in samples such as urine and blood, and to measure the activities of various enzymes involved in these substances.

そして、これら物質の検出や酵素反応においては、アン
モニアを生成させ、生成したアンモニアをGQOH(グ
ルタミン酸脱水素酵素)によってグルタミン酸に変換し
、この際NADH(fi元型ニコチンアミドアデニンジ
ヌクレオチド)→NAD” にコチンアミドアデニンジ
ヌクレオチド)の共役反応によって減少するNADHの
量を340nmで測定して定量していた。
In detection of these substances and enzymatic reactions, ammonia is generated, and the generated ammonia is converted to glutamic acid by GQOH (glutamic acid dehydrogenase), and at this time, NADH (fi archetypal nicotinamide adenine dinucleotide) → NAD. The amount of NADH decreased by the conjugation reaction of cotinamide adenine dinucleotide) was quantified by measuring at 340 nm.

しかし、この反応系では必ずアンモ丹アを生成するため
に、そもそも検体中に存在するアンモニアが測定値に含
まれてしまって、正確な定量を困難にしていた。
However, since ammonia is always produced in this reaction system, the ammonia present in the sample is included in the measured value, making accurate quantification difficult.

そこで、そもそも検体中に存在するアンモニアを前処理
でGΩDHによってα−KG (α−ケトグルタル酸)
と反応させてグルタミン酸に変換させてしまえば問題は
なくなるのである。そして、このアンモニア→グルタミ
ン酸の系にはNADH→NAD+の変化を伴なうために
、 NAD+→NADHの逆反応でNAD)Iに戻す必
要があり、この際イソクエン酸を基質として1CDH(
イソクエン酸脱水素酵素)とマグネシウムイオン又はマ
ンガンイオンなどの金属イオンによって共役反応を生起
させることができる。この反応系は、次の式(1)に示
される。
Therefore, in the first place, the ammonia present in the sample is converted into α-KG (α-ketoglutaric acid) by GΩDH in pretreatment.
The problem disappears if it is converted to glutamic acid by reacting with glutamic acid. Since this ammonia → glutamic acid system involves a change from NADH → NAD+, it is necessary to reverse the reaction of NAD+ → NADH to return it to NAD)I, using isocitrate as a substrate.
isocitrate dehydrogenase) and metal ions such as magnesium ions or manganese ions. This reaction system is shown in the following formula (1).

式(1)に示されるように、検体中のアンモニアの消費
と尿素を分解して得たアンモニアの測定は同じ共役反応
によって行うことができるのであるが、検体中のアンモ
ニアの消費が完了したらNAD”→NADHの反応が完
全に停止されてはじめて尿素を分解して得たアンモニア
の正確な定量が行なえるのである。
As shown in equation (1), the consumption of ammonia in the sample and the measurement of ammonia obtained by decomposing urea can be performed by the same coupled reaction, but once the consumption of ammonia in the sample is completed, the NAD ”→Accurate quantification of ammonia obtained by decomposing urea is only possible when the NADH reaction is completely stopped.

そこで、問題となるのは、式(1)におけるNADHd
NAD+においてNAD”→NADHの反応をいかして
完全に停止させるかであった。従来、NAD”→N A
 D Hの反応のを完全に停止させることは知られてい
なかった。
Therefore, the problem is that NADHd in equation (1)
The challenge was how to completely stop the reaction of NAD"→NADH in NAD+. Conventionally, NAD"→NADH reaction was completely stopped.
It has not been known to completely stop the DH reaction.

本発明者らは、上述の式(1)及び式(If)における
インクエン酸→ αKGの反応 を完全に停止さCDH せアンモニア又は尿素を反応生成物とする生体物質を正
確に測定する方法を求めて鋭意研究したところ、ATP
又は/及びキレート剤の添加によって、CDH の反応を完全に停止させることに成功したのである。
The present inventors sought a method to completely stop the reaction of incitric acid → αKG in the above-mentioned formulas (1) and (If), and to accurately measure biological substances whose reaction products are CDH, ammonia, or urea. After intensive research, I found that ATP
Or/and by adding a chelating agent, they succeeded in completely stopping the CDH reaction.

本発明は、検体にGQDH1α−KG、 NA[lH、
イソクエン酸、マグネシウムイオンまたはマンガンイオ
ンなどの金属イオンおよび1cDllを添加混合し、検
体中にすでに存在するアンモニアを消費せしめ、次いで
ATP又は/及びキレート剤を添加し、1cDH反応を
停止し、これと同時もしくはしかる後反応生成物として
アンモニアを生成せしめる酵素を添加して、生成するア
ンモニアを測定することを特徴とするアンモニアを反応
生成物とする生体物質の定量方法である。
In the present invention, the specimen contains GQDH1α-KG, NA[lH,
Isocitric acid, metal ions such as magnesium ions or manganese ions, and 1cDll are added and mixed to consume the ammonia already present in the sample, then ATP or/and chelating agent is added to stop the 1cDH reaction, and at the same time Alternatively, this is a method for quantifying a biological substance using ammonia as a reaction product, which is characterized by adding an enzyme that produces ammonia as a reaction product after that and measuring the produced ammonia.

また、本発明は検体にGI20H1α−KG、 NAD
H、イソクエン酸、マグネシウムイオンまたはマンガン
イオンなどの金属イオン、ウレアーゼおよび1CDHを
添加混合し、検体中にすでに存在するアンモニア及び尿
素を消費せしめ、次いでATP又は/及びキレート剤を
添加し、1cDll反応を停止し、これと同時もしくは
しかる後反応生成物として尿素を生成せしめる酵素もし
くは酵素群を添加して、生成するアンモニアを測定する
ことを特徴とする尿素を反応生成物とする生体物質の定
量方法である。
In addition, the present invention includes GI20H1α-KG, NAD
H, isocitrate, metal ions such as magnesium or manganese ions, urease and 1CDH are added and mixed to consume the ammonia and urea already present in the sample, then ATP or/and chelating agent is added to initiate the 1cDll reaction. A method for quantifying biological substances with urea as a reaction product, characterized by adding an enzyme or a group of enzymes that produce urea as a reaction product at the same time or after that, and measuring the ammonia produced. be.

ここで、金属イオンとはマグネシウムイオン。Here, the metal ion is a magnesium ion.

マンガンイオン、鉄イオン、銅イオン、亜鉛イオン、ス
ズイオン、カルシウムイオンなどを云うが、これらのイ
オン種に制限されることはない。
Examples include manganese ions, iron ions, copper ions, zinc ions, tin ions, calcium ions, etc., but the ion species are not limited to these.

また、キレート剤とはEDTAおよびその塩、1,2−
ビス(0−アミノフェノキシ)エタン−N、 N、 N
’、 N’−四酢酸およびその塩、トランス−1,2−
シクロヘキサンジアミン−N、 N、 N’、 N’−
四酢酸およびその塩、ジヒドロキシエチルグリシンおよ
びその塩、1,3−ジアミノプロパノ−ルーN、 N、
 N’、 N−四酢酸およびその塩、ジエチレントリア
ミン五酢酸およびその塩、エチレンジアミンジオルトヒ
ドロキシフェニル酢酸およびその塩、エチレンジアミン
ニ酢酸およびその塩、エチレンジアミンニプロピオン酸
およびその塩、ヒドロキシエチルエチレンジアミン三酢
酸およびその塩、エチレンジアミンテトラキス(メチレ
ンホスホン酸)およびその塩、グリコールエーテルジア
ミン四酢酸およびその塩、ヒドロキシエチルイミノニ酢
酸°およびその塩、イミノ二酢酸およびその塩、ジアミ
ノプロパン四酢酸およびその塩、ニトリロ三酢酸および
その塩、ニトリロ三プロピオン酸およびその塩、ニトリ
ロトリス(メチレンホスホン酸)およびその塩、トリエ
チレンテトラミン六酢酸およびその塩などを云うが。
In addition, chelating agents include EDTA and its salts, 1,2-
Bis(0-aminophenoxy)ethane-N, N, N
', N'-tetraacetic acid and its salts, trans-1,2-
Cyclohexanediamine-N, N, N', N'-
Tetraacetic acid and its salts, dihydroxyethylglycine and its salts, 1,3-diaminopropanol-N, N,
N', N-tetraacetic acid and its salts, diethylenetriaminepentaacetic acid and its salts, ethylenediaminediorthohydroxyphenylacetic acid and its salts, ethylenediaminediacetic acid and its salts, ethylenediaminenipropionic acid and its salts, hydroxyethylethylenediaminetriacetic acid and its salts salt, ethylenediaminetetrakis (methylenephosphonic acid) and its salts, glycol ether diaminetetraacetic acid and its salts, hydroxyethyliminodiacetic acid ° and its salts, iminodiacetic acid and its salts, diaminopropanetetraacetic acid and its salts, nitrilotriacetic acid and its salts, nitrilotripropionic acid and its salts, nitrilotris (methylenephosphonic acid) and its salts, triethylenetetraminehexaacetic acid and its salts, etc.

これらのキレート剤に制限されることはない。There is no limitation to these chelating agents.

アンモニア又は アンモニア又は 本発明はATP又は/及びキレート剤の添加によって上
記式(II)→式(m)への変化を行わせるものである
。即ち、検体中のアンモニア又は/及び尿素の完全消費
を式(II)で行わせ、完全消費ののち反応系にATP
又はl及びキレート剤を添加し、LCDHの反応を停止
させた後は、 ATP又は/及びキレート剤の添加と同
時もしくはその後で検体中にアンモニアを生成せしめる
酵素、又は、尿素を生成せしめる酵素もしくは酵素群を
添加し、アンモニアからグルタミン酸への共役反応とし
てNADH→NAD+の反応にともなう340nm吸光
度の減少によってそれぞれの物質を定量するものである
Ammonia or ammonia or the present invention changes the formula (II) to formula (m) by adding ATP or/and a chelating agent. That is, complete consumption of ammonia and/or urea in the sample is performed according to formula (II), and after complete consumption, ATP is added to the reaction system.
Or, after adding ATP and/or a chelating agent to stop the LCDH reaction, an enzyme that generates ammonia in the sample or an enzyme that generates urea at the same time or after the addition of ATP and/or a chelating agent. The substance is quantified based on the decrease in absorbance at 340 nm accompanying the NADH→NAD+ reaction as a conjugate reaction from ammonia to glutamic acid.

アンモニアを生成せしめる酵素の反応としては次の式(
IV)が示される。
The enzyme reaction that produces ammonia is expressed by the following formula (
IV) is shown.

即ち、ウレアーゼによって尿素が定量され、デアミナー
ゼによってクレアチニンが定量され、グアナーゼによっ
てグアニンが定量され、アデノシンデアミナーゼによっ
てアデノシンが定量されるのである。また1本発明のこ
れらの反応は、これら酵素の活性の測定をも包合するも
のである。
That is, urea is quantified by urease, creatinine is quantified by deaminase, guanine is quantified by guanase, and adenosine is quantified by adenosine deaminase. These reactions of the present invention also include measurement of the activities of these enzymes.

また、尿素を生成せしめる酵素もしくは酵素群の反応と
しては次の式(V)が示される。
Further, the following formula (V) is shown as a reaction of an enzyme or enzyme group that produces urea.

即ち、すでに尿素が消費させた系において、クレアチナ
ーゼによってクレアチンが定量され、アルギナーゼによ
ってアルギニンが定量され、クレアチナーゼとクレアチ
ニナーゼによってクレアチニンが定量される。また、本
発明のこれら反応は、これら酵素の活性の測定をも包含
するものである。
That is, in a system in which urea has already been consumed, creatine is determined by creatinase, arginine is determined by arginase, and creatinine is determined by creatinase and creatininase. Furthermore, these reactions of the present invention also include measurement of the activities of these enzymes.

本発明においては、検体中の被検物を分解し。In the present invention, the analyte in the specimen is decomposed.

NADH→NAD”の反応によってNADHを消費して
正確な被検物の定量を行うものである。
NADH is consumed through the reaction of "NADH→NAD" to accurately quantify the analyte.

本発明において用いる、ATP又は/及びキレート剤に
よるLCDH反応の停止は1反応を停止したそのままの
媒質でNADH−+NAD+の反応を用い各種反応が行
える点できわめて有用である。
Termination of the LCDH reaction using ATP or/and a chelating agent used in the present invention is extremely useful in that various reactions can be carried out using the NADH-+NAD+ reaction in the same medium in which one reaction was terminated.

反応系に対するATPの添加量は15d以上であればよ
い。第1図は1CDH活性におよぼすATPの濃度の影
響をみた図であるが、ATP濃度が15mM以上で1C
DHは完全に活性を失っているのが分る。
The amount of ATP added to the reaction system may be 15d or more. Figure 1 shows the effect of ATP concentration on 1CDH activity.
It can be seen that DH has completely lost its activity.

また、反応系に対するキレート剤、例えばEDTAの添
加量は10mM以上であればよい。第2図は1cDH活
性におよぼすEDTA濃度の影響をみた図であるが。
Further, the amount of the chelating agent, such as EDTA, added to the reaction system may be 10 mM or more. Figure 2 shows the influence of EDTA concentration on 1cDH activity.

EDTA濃度が10mM以上で1CDHは完全に活性を
失っているのが分る。
It can be seen that 1CDH completely loses its activity when the EDTA concentration is 10 mM or higher.

次に、本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 α−KG       10mM NADHO,16mに イソクエン酸   5mM ADP        0 、5mM MgCQ2      1mM GQDH100u/m 41 iCDH2u/m 0 以上を含有する0、1Mリン酸緩衝液(pH7,5)2
.4mQに16On+Mアンモニアを含む様々な濃度に
調整した尿素含有検体(尿索態−窒素としてθ〜100
0mg/dρ)30μg添加した。それぞれ37℃で5
分間保温したのちATP、ウレアーゼ濃度がそれぞれ2
0mM、0.1u/mMになるようにATP、アレアー
ゼ混液を0.6taQ加え分光光度計により25℃での
340nmの1分間における吸収の減少から検体中の尿
素層−窒素を測定した測定結果を下に示す。
Example 1 α-KG 10mM NADHO, 16m isocitrate 5mM ADP 0 , 5mM MgCQ2 1mM GQDH 100u/m 41 iCDH 2u/m 0 or more containing 0, 1M phosphate buffer (pH 7,5) 2
.. Urea-containing samples adjusted to various concentrations containing 16On+M ammonia in 4mQ (θ ~ 100 as urinary nitrogen)
0 mg/dρ) 30 μg was added. 5 at 37℃ each
After incubating for minutes, the ATP and urease concentrations were each 2.
Add 0.6 taQ of ATP and arease mixture to 0mM and 0.1u/mM, and measure the urea layer-nitrogen in the sample from the decrease in absorption at 340nm for 1 minute at 25°C using a spectrophotometer. Shown below.

検体番号  1  2  3  4  5  6  7
  8  9  10 11実施例2 α−KG             10dNAD)I
        O,16mMインクエン酸   5m
M ADP                0.5履にM
gCO21mM (JDH100u/mQ iCDH2u/an 以上を含有する0、1Mリン酸緩衝液(pH7,5)2
.4mΩに1601アンモニアを含む様々な濃度に調整
した尿素含有検体(尿素層−窒素としてO〜1000m
g/dfl)30μQ添加した。それぞれ37℃で5分
間保温したのちEDTA、ウレアーゼ濃度がそれぞれ1
0mM、0.1u/mQになるようにEDTA、ウレア
ーゼ混液を0.6+o12加え分光光度計により25℃
での340nmの1分間における吸収の減少から検体中
の尿素層−窒素を測定した測定結果を下に示す。
Sample number 1 2 3 4 5 6 7
8 9 10 11 Example 2 α-KG 10dNAD)I
O, 16mM inc citric acid 5m
M ADP 0.5 shoes M
gCO21mM (JDH100u/mQ iCDH2u/an 0, 1M phosphate buffer (pH 7,5) 2
.. Urea-containing specimens adjusted to various concentrations including 1601 ammonia at 4 mΩ (urea layer - O ~ 1000 m as nitrogen)
g/dfl) 30 μQ was added. After incubating each at 37°C for 5 minutes, the EDTA and urease concentrations were adjusted to 1.
Add 0.6+o12 EDTA and urease mixture to 0mM and 0.1u/mQ and measure at 25℃ using a spectrophotometer.
The measurement results of the urea layer-nitrogen in the sample were measured from the decrease in absorption at 340 nm for 1 minute are shown below.

検体番号  1  2  3  4  5  6  7
  8  9  10 11実施例3 α−にG       10mM NADH0、2mM イソクエン酸  10IIIM ADP              1++MMg(j
h           O,4raMGlDH、00
u/+Q iCDH4u/mf1 以上を含有する0、1M トリス塩酸(pH7,5)2
.88m12に100mMアンモニアを含む様々な濃度
に調整したクレアチニン含有検体(A =12mg/d
L B =24mg/dQ、C=48mg/dfl、D
 = 96IIg/dQ) 20μQ添加した。それぞ
れ37℃で10分間保温した後、ATP、クレアチニン
デイミナーゼ濃度がそれぞれ20mM、3u/mflに
なるようにATP、クレアチニナーゼ混液を100μΩ
加え。
Sample number 1 2 3 4 5 6 7
8 9 10 11 Example 3 α-G 10mM NADH0, 2mM Isocitric acid 10IIIM ADP 1++MMg(j
h O,4raMGlDH,00
u/+Q iCDH4u/mf1 containing 0,1M Tris-HCl (pH7,5)2
.. Creatinine-containing specimens (A = 12 mg/d) adjusted to various concentrations containing 100 mM ammonia in 88 m12
L B =24mg/dQ, C=48mg/dfl, D
= 96IIg/dQ) 20μQ was added. After incubating each at 37°C for 10 minutes, add a mixture of ATP and creatininase to 100μΩ so that the ATP and creatinine deiminase concentrations are 20mM and 3u/mfl, respectively.
Addition.

分光光度計により37℃での340nmにおける吸光度
変化を測定した。
The absorbance change at 340 nm at 37° C. was measured using a spectrophotometer.

ΔE ; A=0.044、B=0.087、C=0.
175、D=0.352であった。
ΔE; A=0.044, B=0.087, C=0.
175, D=0.352.

これを次式により計算した結果、検体中にすでに存在し
ていたアンモニアは完全に消去され、引き続き測定され
るクレアチニンの定量に影響なく、検体中のクレアチニ
ン含量が定量された。
As a result of calculating this using the following formula, the ammonia already present in the sample was completely eliminated, and the creatinine content in the sample was determined without affecting the quantification of creatinine that was subsequently measured.

クレアチニン量 ΔE =NADHの減少による吸光度変化6.2 =N
ADHの1mMの吸光度 3、OO=全反応液量(an) o、o!= 検体量(mfl) l!3=クレアチニンの分子量
Creatinine amount ΔE = Absorbance change due to decrease in NADH 6.2 = N
Absorbance of 1mM of ADH 3, OO = total reaction volume (an) o, o! = Sample amount (mfl) l! 3 = Molecular weight of creatinine

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1CDH活性におよぼすATP′a度の影響を
みた図で、第2図は1cDH活性におよぼすEDTA濃
度の影響をみた図である。 代理人 弁理士 戸 1)親 男 EDTAJJI  mM
FIG. 1 shows the effect of ATP'a concentration on 1CDH activity, and FIG. 2 shows the effect of EDTA concentration on 1cDH activity. Agent Patent Attorney 1) Parent Male EDTAJJI mm

Claims (2)

【特許請求の範囲】[Claims] (1)検体にGlDH、α−KG、NADH、イソクエ
ン酸、マグネシウムイオンまたはマンガンイオンなどの
金属イオンおよびiCDHを添加混合し、検体中にすで
に存在するアンモニアを消費せしめ、次いでATP又は
/及びキレート剤を添加し、iCDH反応を停止し、こ
れと同時もしくはしかる後反応生成物としてアンモニア
を生成せしめる酵素を添加して、生成するアンモニアを
測定することを特徴とするアンモニアを反応生成物とす
る生体物質の定量方法。
(1) GlDH, α-KG, NADH, isocitrate, metal ions such as magnesium ion or manganese ion, and iCDH are added and mixed to the sample to consume ammonia already present in the sample, and then ATP or/and chelating agent A biological material containing ammonia as a reaction product, characterized in that the iCDH reaction is stopped, and at the same time or after that, an enzyme that produces ammonia is added as a reaction product, and the produced ammonia is measured. Quantification method.
(2)検体にGlDH、α−KG、NADH、イソクエ
ン酸、マグネシウムイオンまたはマンガンイオンなどの
金属イオン、ウレアーゼおよびiCDHを添加混合し、
検体中にすでに存在するアンモニア及び尿素を消費せし
め、次いでATP又は/及びキレート剤を添加し、iC
DH反応を停止し、これと同時もしくはしかる後反応生
成物として尿素を生成せしめる酵素もしくは酵素群を添
加して、生成するアンモニアを測定することを特徴とす
る尿素を反応生成物とする生体物質の定量方法。
(2) Adding and mixing GlDH, α-KG, NADH, isocitrate, metal ions such as magnesium ions or manganese ions, urease and iCDH to the sample,
Ammonia and urea already present in the sample are consumed, then ATP or/and chelating agent is added and iC
A biological material that uses urea as a reaction product, which is characterized by stopping the DH reaction, adding an enzyme or enzyme group that produces urea as a reaction product at the same time or after that, and measuring the produced ammonia. Quantification method.
JP60088851A 1985-04-26 1985-04-26 Method for quantifying biological substances using ammonia as reaction product Expired - Lifetime JPH0675515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088851A JPH0675515B2 (en) 1985-04-26 1985-04-26 Method for quantifying biological substances using ammonia as reaction product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088851A JPH0675515B2 (en) 1985-04-26 1985-04-26 Method for quantifying biological substances using ammonia as reaction product

Publications (2)

Publication Number Publication Date
JPS61247963A true JPS61247963A (en) 1986-11-05
JPH0675515B2 JPH0675515B2 (en) 1994-09-28

Family

ID=13954486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088851A Expired - Lifetime JPH0675515B2 (en) 1985-04-26 1985-04-26 Method for quantifying biological substances using ammonia as reaction product

Country Status (1)

Country Link
JP (1) JPH0675515B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234061A (en) * 1985-08-08 1987-02-14 Oriental Yeast Co Ltd Method for quantifying creatinine
JPS6234060A (en) * 1985-08-08 1987-02-14 Oriental Yeast Co Ltd Method for quantifying urea
US5369219A (en) * 1991-06-18 1994-11-29 Multimedia Design, Inc. Multi-layer printed circuit board apparatus and method for making same
US5618684A (en) * 1992-02-07 1997-04-08 Oriental Yeast Co., Ltd. Method of determination of calcium
CN109085160A (en) * 2018-05-09 2018-12-25 天津市宝坻区人民医院 The measuring method of guanine in serum
CN110511976A (en) * 2019-09-09 2019-11-29 天津市宝坻区人民医院 The measuring method of L-arginine in serum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931697A (en) * 1982-08-14 1984-02-20 Oriental Yeast Co Ltd Pretreatment of specimen
JPS5931700A (en) * 1982-08-14 1984-02-20 Oriental Yeast Co Ltd Determination of organism substance producing ammonia as reaction product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931697A (en) * 1982-08-14 1984-02-20 Oriental Yeast Co Ltd Pretreatment of specimen
JPS5931700A (en) * 1982-08-14 1984-02-20 Oriental Yeast Co Ltd Determination of organism substance producing ammonia as reaction product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234061A (en) * 1985-08-08 1987-02-14 Oriental Yeast Co Ltd Method for quantifying creatinine
JPS6234060A (en) * 1985-08-08 1987-02-14 Oriental Yeast Co Ltd Method for quantifying urea
US5369219A (en) * 1991-06-18 1994-11-29 Multimedia Design, Inc. Multi-layer printed circuit board apparatus and method for making same
US5618684A (en) * 1992-02-07 1997-04-08 Oriental Yeast Co., Ltd. Method of determination of calcium
CN109085160A (en) * 2018-05-09 2018-12-25 天津市宝坻区人民医院 The measuring method of guanine in serum
CN110511976A (en) * 2019-09-09 2019-11-29 天津市宝坻区人民医院 The measuring method of L-arginine in serum

Also Published As

Publication number Publication date
JPH0675515B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
Ishihara et al. Enzymatic determination of ammonia in blood plasma
EP0199363B1 (en) Method of terminating isocitrate dehydrogenase reaction
JPS61247963A (en) Quantitatively determining method for vital material with ammonia as resulted product of reaction
EP0207493B1 (en) Method of terminating isocitrate dehydrogenase reaction
US5258286A (en) Method of terminating isocitrate dehydrogenase reaction
JP4044702B2 (en) Quantitative determination of hydrogen sulfide or sulfide ions and determination of specific substances using the same
JPS626700A (en) Measurement of biological substance using ammonia as reaction product
JP2000253898A (en) Quantitative determination of substance or enzyme, and quantitative determining reagent
JPS63214199A (en) Enzyme assay of biological substance
JPS5931696A (en) Determination of creatinine
JPS6234061A (en) Method for quantifying creatinine
JPS61247968A (en) Quantitatively determining method for vital material with pyruvic acid as resulted product of reaction
JPS6234060A (en) Method for quantifying urea
JPH02255098A (en) Method for determining guanidinoacetic acid
JPS5931698A (en) Determination of creatinine
JPS6279797A (en) Quantitative determination of creatine
JP3614967B2 (en) Method for eliminating ammonium ions and method for quantifying specific components in a sample
KR20210122258A (en) Stabilization of NADPH or NADH in Ammonia Detection Assay
JPS626699A (en) Termination of isocitric dehydrogenase reaction
JPS5931700A (en) Determination of organism substance producing ammonia as reaction product
JPS6066993A (en) Method for measuring component in living body fluid
JPH02145196A (en) Method for determining magnesium
JPH05219991A (en) Method for determination using enzyme reaction
JPH04346796A (en) Highly sensitive quantitative analysis of lactic acid or pyruvic acid and composition used for the same analysis
JPH02200200A (en) Determining method of nadh and determination of bile acid using the same method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term