JPS6060550A - Measuring method of transaminase activity - Google Patents

Measuring method of transaminase activity

Info

Publication number
JPS6060550A
JPS6060550A JP58169046A JP16904683A JPS6060550A JP S6060550 A JPS6060550 A JP S6060550A JP 58169046 A JP58169046 A JP 58169046A JP 16904683 A JP16904683 A JP 16904683A JP S6060550 A JPS6060550 A JP S6060550A
Authority
JP
Japan
Prior art keywords
acid
activity
gpt
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169046A
Other languages
Japanese (ja)
Inventor
Shigeki Yasukawa
栄起 安川
Kunio Kihara
木原 圀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58169046A priority Critical patent/JPS6060550A/en
Publication of JPS6060550A publication Critical patent/JPS6060550A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/52Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving transaminase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure quickly the respective transaminase activity of glutamic acid oxaloacetic acid and glutamic acid pyruvic acid by using a cell having an enzyme electrode provided with a film fixed with pyruvic acid oxidase and oxaloacetic acid decarboxylase. CONSTITUTION:A buffer soln. 15 for measuring pyruvic acid, a substrate soln. 14 for measuring glutamic acid oxaloacetic acid transaminase (GOT) contg. aspartic acid and alpha-ketoglutaric acid and a sample from a sample injector or a sample 2 for injecting sample are first fed into a cell 3 for reaction and detection provided with an enzyme electrode or hydrogen peroxide electrode 5 formed by fixing pyruvic acid oxidase (POP) and oxaloacetic acid decarboxylase (OAC) on a porous carrier and the GOT activity is measured. A solute soln. 16 for measuring glutamic acid pyruvic acid transaminase (GPT) contg. alanine and alpha-ketoglutaric acid is fed into the cell 3 in succession thereto. The GOT+GPT activity is measured and the GOT activity is subtracted therefore to determine the GPT activity. The measurement is thus performed quickly with high accuracy.

Description

【発明の詳細な説明】 本発明は、生体試料中のトランスアミナーゼ(グルタミ
ン酸オキザロ酢酸トランスアミナーゼ:GOTと略記す
る及びグルタミン酸ピルビン酸トランスアミナーゼ:G
OTと略記する)の活性を測定する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the use of transaminases (abbreviated as glutamate oxaloacetate transaminase: GOT and glutamate pyruvate transaminase: G
The present invention relates to a method for measuring the activity of OT (abbreviated as OT).

本発明を用いれば、同一反応セル中で同一試料中のGO
T及びGPTを試料を入れ替えることなく測定すること
ができる為、試料の測定を迅速に、精度よく行うことが
できる。
Using the present invention, GO in the same sample in the same reaction cell
Since T and GPT can be measured without replacing the sample, the sample can be measured quickly and accurately.

トランスアミナーゼは、アミノ酸のアミノ基転移を触媒
する酵素で、その内GOTは心筋、肝、骨格筋、腎に多
量に含まれ、GPTは肝、腎に多量に含まれている。従
ってGOT、GPTの測定は急性ウィルス性肝炎、慢性
肝炎、肝硬変、肝腫瘍、急性アルコール性肝炎等の肝疾
患、胆のう、胆管炎、胆石症等の肝外閉塞性黄痘、心筋
梗塞、進行性筋ジストロフィー、感染性疾患等の診断に
有用な役割を果しており、GOT、GPTを簡便に精度
よく迅速に測定することは臨床的に意義が大きい。
Transaminase is an enzyme that catalyzes the transamination of amino acids, and among them, GOT is contained in large amounts in cardiac muscle, liver, skeletal muscle, and kidney, and GPT is contained in large amount in liver and kidney. Therefore, GOT and GPT measurements are recommended for acute viral hepatitis, chronic hepatitis, liver cirrhosis, liver tumors, liver diseases such as acute alcoholic hepatitis, extrahepatic obstructive jaundice such as gallbladder, cholangitis, and cholelithiasis, myocardial infarction, and progressive disease. They play a useful role in diagnosing muscular dystrophy, infectious diseases, etc., and it is of great clinical significance to easily, accurately, and quickly measure GOT and GPT.

先行技術 従来、GOTの測定方法としては基質のアスパラギン酸
とα−ケトグルタル酸に試料を加え、生成したオキザロ
酢酸を、リンゴ酸脱水素酵素と補酵素N A D Hの
存在下で共役させ、このときのNADHの340顎の吸
光度の減少を初速度法で測定するカルメン法と、上記の
様に生成したオキザロ酢酸を2,4−ジニトロフェニル
ヒドラジント反応させヒドラゾンを生成させ、これをア
ルカリ性にしてキノイドを作り発色させるライトマン−
フランクル法がある。しかし、カルメン法では使用する
試薬が不安定で、また恒温セルを付属させた特殊な分元
元度計が必要である等の問題がある。
Prior Art Conventionally, GOT was measured by adding a sample to the substrates aspartic acid and α-ketoglutaric acid, and conjugating the generated oxaloacetate in the presence of malate dehydrogenase and coenzyme NADH. The Carmen method, which measures the decrease in the absorbance of 340 jaws of NADH using the initial velocity method, reacts the oxaloacetic acid produced above with 2,4-dinitrophenylhydrazine to produce hydrazone, which is then made alkaline. Reitman creates quinoids and develops color.
There is the Frankl method. However, the Carmen method has problems such as the instability of the reagents used and the need for a special fractional element meter equipped with a constant temperature cell.

一方、ライトマン−フランケル法では基質のα−ケトグ
ルタル酸も発色して生成物の発色を妨害するために基質
量を極度に減じる必要があり、検量線が変曲することや
測定可能範囲が狭い等の欠点がある。
On the other hand, in the Reitman-Frankel method, the substrate amount of α-ketoglutaric acid also develops color and interferes with the color development of the product, so it is necessary to reduce the amount of the substrate extremely, which may cause the calibration curve to curve and the measurable range to be narrow. There are drawbacks such as.

またGPTの測定方法には、基質のアラニンとα−ケト
グルタル酸に試料を加え、生成したピルビン酸を乳酸脱
水素酵素と前記N A、 D Hの存在下で共役させ該
NADHの減少を測定するカルメン法と、上記の様に生
成したピルビン酸に2,4−ジニトロフェニルヒドラジ
ンを作用させて発色させるライトマン−フランクル法が
ある。しかしこれらの方法にも上記GOTの測定方法と
同様の欠点がある。
In addition, a method for measuring GPT involves adding a sample to the substrates alanine and α-ketoglutarate, conjugating the generated pyruvate with lactate dehydrogenase in the presence of the above NA and DH, and measuring the decrease in NADH. There are the Carmen method and the Reitman-Frankl method, in which the pyruvic acid produced as described above is reacted with 2,4-dinitrophenylhydrazine to develop color. However, these methods also have the same drawbacks as the GOT measurement method described above.

これらの欠点を解決する目的で最近、ピルビン酸オキシ
ダーゼ<popと略記する)を利用してGPT、GOT
を分析する方法が開発されているうたとえばGPTの測
定方法としては、基質のアラニンとα−ケトグルタル酸
に試料を加えピルビン酸を生成する反応と、生成したピ
ルビン酸をPOPと所要基質の存在下に酸化するピルビ
ン酸酸化反応とを共役させ、ピルビン酸酸化反応に伴う
過酸化水素の発生量を発色剤を用いて比色定量するもの
がある。
In order to solve these drawbacks, we have recently developed GPT and GOT using pyruvate oxidase (abbreviated as pop).
For example, a method for measuring GPT involves a reaction in which a sample is added to the substrates alanine and α-ketoglutarate to generate pyruvate, and the generated pyruvate is reacted in the presence of POP and the required substrate. There is a method in which the amount of hydrogen peroxide generated in the pyruvic acid oxidation reaction is conjugated with the pyruvic acid oxidation reaction, and the amount of hydrogen peroxide generated in the pyruvic acid oxidation reaction is determined colorimetrically using a coloring agent.

またGOTの測定方法としては、基質のアスパラギン酸
とα−ケトグルタル酸に試料を加えオキザロ酢酸を生成
する反応と、生成したオキザロ酢酸ヲオキザロ酢酸デカ
ルボキシラーゼ(OAC,!:略記する)の存在下にピ
ルビン酸を生成する反応とを共役させピルビン酸を生成
させる。次にこの生成したピルビン酸をPOPと所要基
質の存在下にピルビン酸酸化反応を行わせ、ピルビン酸
酸化反応に伴う過酸化水素の発生量を発色剤を用いて比
色定量する。しかしながら上記POPを利用する測定法
は、高価な酵素の使い捨て、測定時間が長いこと、PO
P自身が溶液中では不安定であるため測定時の再現性が
悪い等の問題点がある。
In addition, the method for measuring GOT involves a reaction in which a sample is added to the substrates aspartic acid and α-ketoglutaric acid to produce oxaloacetate, and the produced oxaloacetate is reacted with pyruvin in the presence of oxaloacetate decarboxylase (OAC, !: abbreviated). Pyruvic acid is produced by conjugating with a reaction that produces acid. Next, the generated pyruvic acid is subjected to a pyruvic acid oxidation reaction in the presence of POP and a required substrate, and the amount of hydrogen peroxide generated due to the pyruvic acid oxidation reaction is determined colorimetrically using a coloring agent. However, the above measurement method using POP requires disposable, expensive enzymes, long measurement time, and disadvantages of POP.
Since P itself is unstable in a solution, there are problems such as poor reproducibility during measurement.

そこでPOPを固定化し、これを酸化電位測定用電極に
装着した酵素電極を使用してGPT、GOTを測定しよ
うとする研究も盛んに行なわれている。(特開昭55−
111786号、同56−124396号各公報、An
alytica chimica Acta 。
Therefore, research is being actively conducted to measure GPT and GOT using an enzyme electrode in which POP is immobilized and attached to an electrode for measuring oxidation potential. (Unexamined Japanese Patent Publication No. 55-
No. 111786, No. 56-124396, An
alytica chimica Acta.

118(1980)65−71等参照)しかし、これら
上記の固定化法では、固定化POPの活性ならびに安定
性は十分とはいえず、またPOPのみの固定化ではGO
T測定時にOAC酵素を添加しなければならない欠点が
あるため、GOT及びGPT測定用の高活性で安定性の
優れるPOPおよびOAC固定化酵素を用いるG OT
及びGPTを測定する方法の提供が切望されていたO 発明の概要 本発明者らは、この要望に応えるべく鋭意検討を行った
結果、POP及びOACの酵素活性及びその安定性に優
れ、基質拡散性がよく、洗浄しやすい固定化酵素膜を酸
化電位測定用の電極に装着して酵素センサーとして利用
することにより、従来の測定方法の欠点を解消し、生体
試料中の微量のトランスアミナーゼを簡便な方法で、迅
速に精度良く、定量範囲も広く測定し得ることを見出し
本発明を完成した。
118 (1980) 65-71, etc.) However, in these immobilization methods, the activity and stability of immobilized POP cannot be said to be sufficient, and immobilization of POP alone does not improve GO
Since there is a drawback that OAC enzyme must be added during T measurement, GOT using POP and OAC immobilized enzymes with high activity and excellent stability for GOT and GPT measurement is recommended.
There has been a strong desire to provide a method for measuring OAC and GPT. SUMMARY OF THE INVENTION As a result of intensive studies to meet this demand, the present inventors found that POP and OAC have excellent enzymatic activity and stability, and are highly effective in substrate diffusion. By attaching a highly durable and easy-to-clean immobilized enzyme membrane to an electrode for oxidation potential measurement and using it as an enzyme sensor, the drawbacks of conventional measurement methods can be overcome, and trace amounts of transaminases in biological samples can be easily measured. The inventors have discovered that this method can be used to perform measurements quickly, accurately, and over a wide quantitative range, and have completed the present invention.

即ち、本発明は、ピルビン酸オキシダーゼ(POP)お
よびオキザロ酢酸デカルボキシラーゼ(OAC)を担体
上に固定した固定化酵素膜を装着した酵素電極を有する
セルにピルビン酸測定用緩衝溶液、試料液およびグルタ
ミン酸オキザロ酢酸トランスアミナーゼ(GOT)測定
用基質溶液またはグルタミン酸ピルビン酸トランスアミ
ナーゼ(GPT)測定用基質溶液を供給し該酵素電極の
出力によりGOT活性まだはGPT活性を測定し、次い
でこのセルに上記測定に用いなかったGPT測定用基質
溶液まだばGOT測定用基質溶液を供給してGPT活性
およびGOT活性の合計活性を測定するトランスアミナ
ーゼ活性の測定法を提供するものである。
That is, the present invention provides a cell having an enzyme electrode equipped with an immobilized enzyme membrane in which pyruvate oxidase (POP) and oxaloacetate decarboxylase (OAC) are immobilized on a carrier. A substrate solution for measuring oxaloacetate transaminase (GOT) or a substrate solution for measuring glutamate pyruvate transaminase (GPT) is supplied, GOT activity and GPT activity are measured by the output of the enzyme electrode, and then the cell is not used for the above measurement. The present invention provides a method for measuring transaminase activity in which the total activity of GPT activity and GOT activity is measured by supplying a substrate solution for GPT measurement and a substrate solution for GOT measurement.

3、発明の詳細な説明 本発明に用いられる固定化酵素膜は、多孔性高分子膜担
体を用いて製造できる。多孔性高分子担体としては、公
知の塩化ビニル樹脂担体、アセチルセルロース、ポリカ
ーボネート、ナイロン、ポリプロピレン、ポリエチレン
、テフロン等を用いることができる。この中でも塩化ビ
ニル樹脂担体が特に好ましく用いられ、該担体は、特開
昭55−39719号公報記載のものを用いることがで
きる。
3. Detailed Description of the Invention The immobilized enzyme membrane used in the present invention can be manufactured using a porous polymer membrane carrier. As the porous polymer carrier, known vinyl chloride resin carriers, acetyl cellulose, polycarbonate, nylon, polypropylene, polyethylene, Teflon, etc. can be used. Among these, a vinyl chloride resin carrier is particularly preferably used, and the carrier described in JP-A-55-39719 can be used as the carrier.

特に好ましくは、塩化ビニル樹脂担体は以下の様にして
製造される。
Particularly preferably, the vinyl chloride resin carrier is produced as follows.

先ス塩化ビニル樹脂をジメチルボルムアミドなどの溶媒
(4)に溶解し、これを所望の担体形状に形成した後溶
媒(B)への浸漬処理を行なう。
The pre-prepared vinyl chloride resin is dissolved in a solvent (4) such as dimethylbormamide, formed into a desired carrier shape, and then immersed in the solvent (B).

本発明の上記塩化ビニル樹脂(PVR)としては、ポリ
塩化ビニル(PVC)、塩化ビニル共重合体、これらと
他の樹脂とのブレンド物があり、塩化ビニル共重合体と
しては、例えば、塩化ビニルと酢酸ビニル、塩化ビニリ
デン、エチレン、アクリル酸、アクリロニトリルなどと
の二元または三元以上の共重合体がある。
Examples of the vinyl chloride resin (PVR) of the present invention include polyvinyl chloride (PVC), vinyl chloride copolymers, and blends of these and other resins. There are binary or ternary copolymers of vinyl acetate, vinylidene chloride, ethylene, acrylic acid, acrylonitrile, etc.

溶媒(4)は、PVRを溶解できる溶剤であって、ジメ
チルホルムアミド(DMR) 、ジメチルアセトアミド
(DMA )、n−メチルピロリドン(n−MP)、ヘ
キサメチルホス7オアミド(HIvIPA)、テトラヒ
ドロフラン(THF)、アセトンとベンゼンの混合溶媒
などがある。PVR溶液の濃度としては1〜30重量%
のものが用いられる。
Solvent (4) is a solvent that can dissolve PVR, and includes dimethylformamide (DMR), dimethylacetamide (DMA), n-methylpyrrolidone (n-MP), hexamethylphos-7-oamide (HIvIPA), and tetrahydrofuran (THF). , a mixed solvent of acetone and benzene, etc. The concentration of PVR solution is 1 to 30% by weight.
are used.

酵素等の固定膜が優れた吸着活性を発揮して機能するた
めにはPVRの重合度が約1000において6〜12重
量%が好ましい。
In order for the enzyme-immobilized membrane to exhibit excellent adsorption activity and function, the polymerization degree of PVR is preferably about 1000 and 6 to 12% by weight.

次に、か<t、−c得たPVR溶液を所望の担体形状に
形成した後、PVRの貧溶媒であり且つ溶媒(4)の良
溶媒となる溶媒()3)と接触させて担体層を形成する
。この際、溶媒(B)との接触はPVR溶液層か白化す
る前に行なうことが好ましい。ここで白化する前とは、
PVRと溶媒(4)の溶液が目視できる白濁を生じて不
透明となるまでの期間である。
Next, after forming the obtained PVR solution into a desired carrier shape, it is brought into contact with solvent (3), which is a poor solvent for PVR and a good solvent for solvent (4), to form a carrier layer. form. At this time, the contact with the solvent (B) is preferably carried out before the PVR solution layer becomes white. Before the bleaching,
This is the period until the solution of PVR and solvent (4) becomes opaque with visible cloudiness.

溶媒(B)としては水、アルコール系溶媒、エーテル系
溶媒などがある。
Examples of the solvent (B) include water, alcohol solvents, and ether solvents.

アルコール系溶媒としては、メチルアルコール、エチル
アルコール、n−プロピルアルコール、1so−7’口
ビルアルコール、n−7”fルアルコール、5ee−メ
チルアルコール、tert −メチルアルコールナトF
) −価フルコール類、エチレンクリコール、ジエチレ
ングリコール、グリセリンなどの多価アルコール類、エ
チレングリコールモノメチルエーテル、エチレンクリコ
ールモノエチルエーテルなどのグリコールモノエーテル
類などが用いられる。浸漬する溶媒としてはこれらアル
コール系溶媒単独また(はアルコール系溶媒を50重量
%以上含有して塩化ビニル樹脂不溶の混合溶媒であって
もよい。
Examples of alcoholic solvents include methyl alcohol, ethyl alcohol, n-propyl alcohol, 1so-7' alcohol, n-7'' alcohol, 5ee-methyl alcohol, and tert-methyl alcohol.
) -hydric alcohols, polyhydric alcohols such as ethylene glycol, diethylene glycol, and glycerin, and glycol monoethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether. The solvent for dipping may be one of these alcoholic solvents alone or a mixed solvent containing 50% by weight or more of an alcoholic solvent in which the vinyl chloride resin is insoluble.

殊ニ、メチルアルコール、エチルアルコールを用いた場
合には、固定化酵素活性の大きい固定化物が得られ好ま
しい。
In particular, when methyl alcohol or ethyl alcohol is used, an immobilized product with high immobilized enzyme activity can be obtained, which is preferable.

なお、PVRと溶媒囚の溶液には、担体の膨潤の度合の
調整すなわち担体の含水率の調節、孔径の調整等のため
に、ポリエチレングリコール等のPVRに対し非溶媒性
の化合物を添加することができる。
In addition, a non-solvent compound for PVR such as polyethylene glycol may be added to the solution of PVR and solvent in order to adjust the degree of swelling of the carrier, that is, to adjust the water content of the carrier, adjust the pore size, etc. Can be done.

担体形状としては膜状、管状、試験管状、ビーズ状等種
々の形状をとることができる。酵素電極等の用途には特
に膜状が好ましい。膜状担体はPVR溶液を流延し、そ
の後溶媒CB)に浸漬して形成する。
The carrier can take various shapes such as a membrane, a tube, a test tube, and a bead. Membrane-like materials are particularly preferred for applications such as enzyme electrodes. The membrane carrier is formed by casting a PVR solution and then dipping it into solvent CB).

この際、担体の強度を向上させる為不織布等の補強材を
用いてもよい。
At this time, a reinforcing material such as a nonwoven fabric may be used to improve the strength of the carrier.

なお担体の形成後、担体を水中に浸漬して溶媒(ト)を
水と置換することが好ましい。
After forming the carrier, it is preferable to immerse the carrier in water to replace the solvent (g) with water.

次に上記担体を酵素POP及びOACを含有する溶液と
接触させる。この時好ましくはこれらの酵素と共に補酵
素フラビンアデニンジヌクレオチド(F’ADと略記す
る)、補酵素チアミンピロホスフェート(TPPと略記
する)およびMg2+イオン及び/又はMn 2+イオ
ンを含む溶液に浸漬して本発明に用いられる固定化酵素
を得る。
The carrier is then brought into contact with a solution containing the enzymes POP and OAC. At this time, preferably, these enzymes are immersed in a solution containing coenzyme flavin adenine dinucleotide (abbreviated as F'AD), coenzyme thiamine pyrophosphate (abbreviated as TPP), and Mg2+ ion and/or Mn2+ ion. An immobilized enzyme used in the present invention is obtained.

この場合、上記酵素を含む溶液は、POPとOACの合
計の濃度は100〜1oooη/d11好ましくはzo
 o−a o omg/asであり、popとOACと
の重量組成比が5015o〜99/1、好ましくは70
/30〜98/2、特に好ましくは 85/15〜97
/3の間にあり、かつ該浴液のpHが6〜8.5、好ま
しくは6.5〜7.0の範囲にある緩衝溶液である。
In this case, the solution containing the enzyme has a total concentration of POP and OAC of 100 to 1oooη/d11, preferably zo
o-a o omg/as, and the weight composition ratio of pop and OAC is 5015o to 99/1, preferably 70
/30-98/2, particularly preferably 85/15-97
/3 and the pH of the bath solution is in the range of 6 to 8.5, preferably 6.5 to 7.0.

本発明に使用する上記緩衝溶液は、Goodら(Bio
chemistry、 5.467(1966))によ
る公知の緩衝剤を用いることができる。たとえばN置換
型双極性アミノ酸としては、N−(2−アセトアミド)
−2−アミノエタンスルホン酸、N−(2−アセトアミ
ド)イミノジ酢酸、N、N−ビス(2−ヒドロキシエチ
ル)−2−アミノエタンスルホンL N、N−ビス(2
−ヒドロキシエチル)グリシン、N−(2−ヒドロキシ
エチル)ピペラジン−N−2−エタンスルホン酸、2−
(N−モルホリノ)エタンスルホン酸、3−(N−モル
ホリノ)プロパンスルホン酸、ピペラジン−N、N−ビ
ス(2−エタンスルホン酸)、N−4リス(ヒドロキシ
メチル)メチル−3−アミノプロパンスルボッ酸、N−
)リス(ヒドロキシメチル)メチル−2−アミノエタン
スルホン酸、N−トリス(ヒドロキシメチル)メチルグ
リシン等がある。また脂肪族アミンとしては、2.2−
ビス(ヒドロキシメチル) −2,2’、2’−ニトリ
ロトリエタノール、1.3−ビス〔トリス(ヒドロキシ
メチル)メチルアミンクプロパン、グリシンアミド等が
ある。またトリス(ヒドロキシメチル)アミノメタン等
を用いることができる。
The above buffer solution used in the present invention is described by Good et al.
Chemistry, 5.467 (1966)) can be used. For example, N-(2-acetamide) is an N-substituted dipolar amino acid.
-2-aminoethanesulfonic acid, N-(2-acetamido)iminodiacetic acid, N,N-bis(2-hydroxyethyl)-2-aminoethanesulfone L N,N-bis(2
-hydroxyethyl)glycine, N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid, 2-
(N-morpholino)ethanesulfonic acid, 3-(N-morpholino)propanesulfonic acid, piperazine-N, N-bis(2-ethanesulfonic acid), N-4 lis(hydroxymethyl)methyl-3-aminopropanesulfonic acid boric acid, N-
) Lis(hydroxymethyl)methyl-2-aminoethanesulfonic acid, N-tris(hydroxymethyl)methylglycine, and the like. In addition, as the aliphatic amine, 2.2-
Examples include bis(hydroxymethyl)-2,2',2'-nitrilotriethanol, 1,3-bis[tris(hydroxymethyl)methylamine cupropane, glycinamide and the like. Additionally, tris(hydroxymethyl)aminomethane and the like can be used.

マタ、Mg2+イオンおよびMn2+イオンはMgC&
およびMnCtzの形態で使用することが好ましい・本
発明に用いられる固定化酵素は、昭和57年12月1日
出願の特許の明細書に記載した常温硬化、性ブロックト
イソシアネート化合物の水溶液に接触させて該化合物で
被覆することもできる。
Mata, Mg2+ ions and Mn2+ ions are MgC&
and MnCtz. The immobilized enzyme used in the present invention is preferably used in the form of a room-temperature curing, blocked isocyanate compound described in the specification of the patent filed on December 1, 1982. It can also be coated with the compound.

上記の様にして得られた固定化酵素膜を公知の多孔性の
高分子膜、例えばアセチルセルロース膜、ポリカーボネ
ート膜、ナイロン膜、ポリプロピレン膜、ポリエチレン
膜、テフロン膜等と貼り合せ、固定化酵素膜が試料液に
接する様に公知の例えば過酸化水素電極等に装着し酵素
電極を製作し、使用する。
The immobilized enzyme membrane obtained as described above is laminated with a known porous polymer membrane, such as an acetyl cellulose membrane, a polycarbonate membrane, a nylon membrane, a polypropylene membrane, a polyethylene membrane, a Teflon membrane, etc., to form an immobilized enzyme membrane. An enzyme electrode is manufactured and used by attaching it to a known, for example, hydrogen peroxide electrode so that it is in contact with the sample solution.

第1図は、この酵素電極を用いた本発明の一例を示すト
ランスアミナーゼ活性分析装置の系統図である。
FIG. 1 is a system diagram of a transaminase activity analyzer using this enzyme electrode and showing an example of the present invention.

以下、第1図を用いて本発明のトランスアミナーゼ活性
を測定する方法によるGOT及びGPT測定方法を説明
する。
Hereinafter, a method for measuring GOT and GPT using the method for measuring transaminase activity of the present invention will be explained using FIG.

、J1図に於て先にGOT活性を測定する場合は測定セ
ル3にピルビン酸測定用緩衝溶液(FAD、TPP及び
Mg 2+及び/又はMn2+イオン等を含む)15と
少なくともアスパラギン酸とα−ケトグルタル酸を含有
するGOT測定用基質溶液14を各々ポンプ11.1o
にて注入する。次に試料を注射器1又はサンプラー2に
より測定セル3に注入する。セル3中にてアスパラギン
酸、α−ケトグルタル酸及び生体試料中のGOTとの反
応により生成したオキザロ酢酸は、上述の固定化酵素ル
゛x4中のオキザロ酢酸デカルボキシラーゼに、しりピ
ルビン酸となり、次いで固定化酵素膜4中のピルビン酸
オキシダーゼと反応する。この際、発生する過酸化水素
量又は減少する酸素量を過酸化水素11℃極又は酸素電
極5にて検出し記録計7また(rまデジタルマルチメー
タ8により読み取る。
, J1, when GOT activity is measured first, a buffer solution for pyruvate measurement (containing FAD, TPP, Mg 2+ and/or Mn 2+ ions, etc.) 15 and at least aspartic acid and α-ketoglutar are added to the measurement cell 3. A substrate solution 14 for GOT measurement containing an acid is pumped into each pump 11.1o.
Inject at Next, a sample is injected into the measurement cell 3 using the syringe 1 or the sampler 2. The oxaloacetate produced in cell 3 by the reaction with aspartic acid, α-ketoglutarate, and GOT in the biological sample is converted into pyruvic acid by the oxaloacetate decarboxylase in the immobilized enzyme Lux4 described above, and then converted into pyruvic acid. It reacts with pyruvate oxidase in the immobilized enzyme membrane 4. At this time, the amount of hydrogen peroxide generated or the amount of oxygen that decreases is detected by the hydrogen peroxide 11° C. pole or the oxygen electrode 5, and read by the recorder 7 or the digital multimeter 8.

引!続き少なくともアラニンとα−ケトグルタル酸を含
有するGPT測定用基質溶液16をポンプ9にて測定セ
ル3に注入する。この際発生する過酸化水素量又は減少
する酸素量は前記GOTとオキザロ酢酸デカルボキシラ
ーゼ反応より生成するピルビン酸と新たに7ラニンとα
−ケトグルタル酸を注入したことにょるGPT反応より
生成するピルビン酸が同時に固定化酵素膜4中のビルビ
ン酸オキシダーゼと反応して生じたものであり、上記同
様、発生する過酸化水素量又は減少する酸素量を過酸化
水素電極又は酸素電極5にて検出し記録計7またはデジ
タルマルチメータ8により読み取る。従って最初にG 
OT反応による出力のみを測定し、次にGOT反応およ
びGPT反応の二成分反応の出力を測定し、先に測定の
GOT反応による出力を補正することによりGPT反応
による出力をめることができる。測定終了後、ポンプ1
3によりセル内の液は廃棄される。
Pull! Subsequently, a GPT measurement substrate solution 16 containing at least alanine and α-ketoglutaric acid is injected into the measurement cell 3 using the pump 9. At this time, the amount of hydrogen peroxide generated or the amount of oxygen decreased is the amount of pyruvic acid generated from the GOT and oxaloacetate decarboxylase reaction, and newly added 7-lanine and α
- Pyruvate generated by the GPT reaction caused by injecting ketoglutarate simultaneously reacts with pyruvate oxidase in the immobilized enzyme membrane 4, and as above, the amount of hydrogen peroxide generated or decreases. The amount of oxygen is detected by a hydrogen peroxide electrode or an oxygen electrode 5 and read by a recorder 7 or a digital multimeter 8. Therefore, first G
The output due to the GPT reaction can be calculated by measuring only the output due to the OT reaction, then measuring the output from the two-component reaction of the GOT reaction and the GPT reaction, and first correcting the output due to the measured GOT reaction. After measurement, pump 1
3, the liquid in the cell is discarded.

この様にして既知のGOT活性値およびG、P T活性
値を有する試料を用いて測定すると、第2図に示す該酵
素電極出力の反応曲線が得られ、GOT活性値およびG
PT活性値と電流値変化速度との間には第3図に示す良
好な直線関係が認められた。
When measured in this way using a sample having known GOT activity values and G, PT activity values, a reaction curve of the enzyme electrode output shown in FIG. 2 is obtained, and the GOT activity value and G
A good linear relationship as shown in FIG. 3 was observed between the PT activity value and the rate of change in current value.

またGOT活性の測定に於て、ピルビン酸緩衝沼液15
を測定セル3に供給した後、試料を注入し、次にGOT
測定用基質溶液14を測定セル3に注入しても同様に測
定できる。
In addition, in measuring GOT activity, pyruvate buffer solution 15
is supplied to the measurement cell 3, the sample is injected, and then the GOT
The measurement can be performed in the same manner even if the measurement substrate solution 14 is injected into the measurement cell 3.

一方、GPT活性を最初に測定し、次に二成分活性を測
定する場合は、少なくともアスパラギン酸とα−ケトグ
ルタル酸を含有するGOT測定用基質溶液から少なくと
もアラニンとα−ケトグルタル酸を含有するGPT測定
用基質溶液に変え、ざらにGPT測定用基質溶液16を
少なくともアスパラギン酸とα−ケトグルタル酸を含有
スるGOT測定用基質溶液とすることにより前記同様に
測定することができる。
On the other hand, when GPT activity is first measured and then two-component activity is measured, GPT measurement containing at least alanine and α-ketoglutaric acid is performed using a GOT measurement substrate solution containing at least aspartic acid and α-ketoglutaric acid. The measurement can be carried out in the same manner as described above by changing the GPT measurement substrate solution 16 to a GOT measurement substrate solution containing at least aspartic acid and α-ketoglutaric acid.

以上詳述した通り、本発明のトランスアミナーゼ活性を
測定する方法を用いることによって、生体試料中の微量
のGOT及びGPTを簡便な方法で、迅速に精度良く、
定量範囲も広く測定することができる。
As detailed above, by using the method for measuring transaminase activity of the present invention, trace amounts of GOT and GPT in biological samples can be measured quickly and accurately using a simple method.
The quantitative range can also be measured over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の測定方法を用いるトランスアミナー
ゼ活性分析装置の系統図の−し1jである。 第2図は、本発明の測定方法を用いて得られた酵素電極
の出力特性図である。 第3図は、本発明の測定方法を用いて測定して得たGO
T活性値およびGPT活性値と電流値変化速度との相関
図である。 1・・・試料注入器、2・・・試料注入用サンプラー、
3・・・反応及び検出セル、4・・・固定化酵素瞑、5
・・・酸素電極または過酸化水素電極、6・・・増幅器
、7・・・レコーダー、8・・・テシタルマルチメータ
ー、9、】0.11.12.13・・・ポンプ、14.
16・・・基質溶液槽、15・・・ピルビン酸測定用緩
衝液槽、17・−・廃液槽。 特許出願人 三菱油化株式会社 代理人 弁理士 古 川 秀 利 代理人 弁理士 長 谷 正 久 第1図 第2図
FIG. 1 is a system diagram of a transaminase activity analyzer using the measuring method of the present invention. FIG. 2 is an output characteristic diagram of an enzyme electrode obtained using the measurement method of the present invention. FIG. 3 shows the GO obtained by measuring using the measuring method of the present invention.
FIG. 3 is a correlation diagram between T activity value, GPT activity value, and current value change rate. 1... Sample injector, 2... Sampler for sample injection,
3... Reaction and detection cell, 4... Immobilized enzyme cell, 5
. . . Oxygen electrode or hydrogen peroxide electrode, 6. Amplifier, 7. Recorder, 8. Testital multimeter, 9. ]0.11.12.13. Pump, 14.
16... Substrate solution tank, 15... Buffer solution tank for pyruvate measurement, 17... Waste liquid tank. Patent Applicant Mitsubishi Yuka Co., Ltd. Agent Patent Attorney Hidetoshi Furukawa Agent Patent Attorney Masahisa Hase Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) ピルビン酸オキシダーゼ(pop>およびオキ
ザロ酢酸デカルボキシラーゼ(OAC)を担体上に固定
化した固定化酵素膜を装着した酵素電極を有するセルに
ピルビン酸測定用緩衝溶液、試料液およびグルタミン酸
オキザロ酢酸トランスアミナーゼ(GOT)測定用基質
溶液まだはグルタミン酸ピルビン酸トランスアミナーゼ
(GPT)測定用基質溶液を供給し該酵素電極の出力に
よりGOT活性またはGPT活性を測定し、次いでこの
セルに上記測定に用いなかったGPT測定用基質溶液ま
たはGOT測定用基質溶液を供給してGPT活性および
GOT活性の合計活性を測定するトランスアミナーゼ活
性の測定法0
(1) Pyruvate measurement buffer solution, sample solution, and glutamic acid oxaloacetic acid were placed in a cell equipped with an enzyme electrode equipped with an immobilized enzyme membrane in which pyruvate oxidase (POP> and oxaloacetate decarboxylase (OAC) were immobilized on a carrier). Substrate solution for measuring transaminase (GOT) A substrate solution for measuring glutamate pyruvate transaminase (GPT) is supplied, GOT activity or GPT activity is measured by the output of the enzyme electrode, and then GPT, which was not used in the above measurement, is added to this cell. Transaminase activity measurement method 0 that measures the total activity of GPT activity and GOT activity by supplying a substrate solution for measurement or a substrate solution for GOT measurement
JP58169046A 1983-09-13 1983-09-13 Measuring method of transaminase activity Pending JPS6060550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169046A JPS6060550A (en) 1983-09-13 1983-09-13 Measuring method of transaminase activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169046A JPS6060550A (en) 1983-09-13 1983-09-13 Measuring method of transaminase activity

Publications (1)

Publication Number Publication Date
JPS6060550A true JPS6060550A (en) 1985-04-08

Family

ID=15879314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169046A Pending JPS6060550A (en) 1983-09-13 1983-09-13 Measuring method of transaminase activity

Country Status (1)

Country Link
JP (1) JPS6060550A (en)

Similar Documents

Publication Publication Date Title
Schubert et al. Enzyme electrodes with substrate and co-enzyme amplification
Geise et al. Electropolymerized 1, 3-diaminobenzene for the construction of a 1, 1′-dimethylferrocene mediated glucose biosensor
US4224125A (en) Enzyme electrode
Chen et al. Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin
US5804047A (en) Enzyme-immobilized electrode, composition for preparation of the same and electrically conductive enzyme
Palleschi et al. Amperometric tetrathiafulvalene-mediated lactate electrode using lactate oxidase absorbed on carbon foil
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Tatsuma et al. Enzyme electrodes mediated by a thermoshrinking redox polymer
Schubert et al. Enzyme electrodes for L-glutamate using chemical redox mediators and enzymatic substrate amplification
Mizutani et al. L-Malate-sensing electrode based on malate dehydrogenase and NADH oxidase
Kihara et al. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase
CN206339517U (en) A kind of glucose sensor
JPS6060550A (en) Measuring method of transaminase activity
Wang et al. Lactate biosensor based on a lactate dehydrogenase/nicotinamide adenine dinucleotide biocomposite
JPS6095344A (en) Method for measuring activity of transaminase
Girotti et al. Bioluminescent flow sensor for the determination of L-(+)-lactate
JPS59216586A (en) Immobilized enzyme and production thereof
JPS6181799A (en) Method of measuring transminase activity
JPS5849821B2 (en) enzyme electrode
JPS59109170A (en) Apparatus for determination of transaminase activity
JP4000708B2 (en) Method for measuring substances using enzyme-immobilized electrode
JPH0470558A (en) Ethanol sensor
Sagara et al. Heterogeneous electron-transfer rate measurements of cytochrome c3 at mercury electrodes
JPS59109175A (en) Immobilized enzyme and its preparation
JP3717529B2 (en) Composition for enzyme electrode and enzyme-immobilized electrode