JPS6179767A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPS6179767A
JPS6179767A JP20181484A JP20181484A JPS6179767A JP S6179767 A JPS6179767 A JP S6179767A JP 20181484 A JP20181484 A JP 20181484A JP 20181484 A JP20181484 A JP 20181484A JP S6179767 A JPS6179767 A JP S6179767A
Authority
JP
Japan
Prior art keywords
substrate
film
high frequency
frequency bias
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20181484A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
巧一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP20181484A priority Critical patent/JPS6179767A/en
Publication of JPS6179767A publication Critical patent/JPS6179767A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form easily a film deposited by evaporation with high quality in the stage of depositing the film of nitride or carbide by evaporation on the surface of a substrate by a high-frequency bias ion plating method, etc. by providing an electron emitter between the substrate and a vapor deposition source and adjusting plasma density by said emitter. CONSTITUTION:The substrate 1 to be subjected to vapor deposition such as glass or ceramics is held by a holder 8 provided with an electrode 2 in a vacuum vessel 9. Metallic Ti is put into a crucible 3 in the bottom of the vessel 9 and is heated and evaporated by an electron beam 5. The inside of the vessel 9 is evaporated through a discharge valve 11 and gaseous N2 is preliminarily introduced through a supply valve 10 into the vessel. A high-frequency voltage is impressed by a high-frequency power source 7 to the electrode 2 to generate electric discharge near the substrate 1 and to form N2 plasma, thereby forming Ti and TiN and depositing TiN on the surface of the substrate 1. The electron emitter 12 having a W filament 14 is disposed between the substrate 1 and the material 4 for vapor deposition to adjust the quantity of the thermoelectrons (e) directed toward an anode 13 and to control the plasma density so that the dense film having high hardness and high quality deposited by evaporation is formed on the substrate 1.

Description

【発明の詳細な説明】 [技術分野] 本発明は、改良された高周波バイアスイオンプレーティ
ング法、又は高周波バイアススパッタ法により被膜を形
成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method of forming a film by an improved high frequency bias ion plating method or high frequency bias sputtering method.

[従来技術及びその問題点] 1963年にMattoxが直流2極イオンブレーテイ
ング法を発表して以来、様々なイオンブレーティング法
が開発されてきた。高周波バイアス・イオンブレーティ
ング法もその中の1つであり、1969年回じMatt
oxによって発表された。絶縁膜をイオンブレーティン
グ法によって形成する場合、チャージアップのために直
流電圧印加による加速効果は期待できず、また膜の絶縁
破壊の生じることがある。この場合に、基板に高周波を
印加すると効果的なことが見い出された。この方法によ
ると、高周波プラズマ中のイオンと′電子の移動速度の
相違により、基板は負にバイアスされ、プラズマとの間
に電位差を生じ、イオンはその電界で加速されて基板に
入射する 本発明者はこの方法が、TiQ□や5iQ2などの酸化
膜形成に非常に有効であり、従来法よりも圧力の低い1
0−’Torr台で、硬くて、緻密な高品質の膜が得ら
れることを見出した。
[Prior Art and Problems Therewith] Since Mattox announced the DC bipolar ion brating method in 1963, various ion brating methods have been developed. The high-frequency bias ion brating method is one of them, and in 1969, Matt
Published by ox. When an insulating film is formed by an ion blating method, an acceleration effect due to the application of a DC voltage cannot be expected due to charge-up, and dielectric breakdown of the film may occur. In this case, it has been found that applying a high frequency to the substrate is effective. According to this method, the substrate is negatively biased due to the difference in moving speed between ions and electrons in the high-frequency plasma, creating a potential difference between the substrate and the plasma, and the ions are accelerated by the electric field and incident on the substrate. Researchers have found that this method is very effective for forming oxide films such as TiQ□ and 5iQ2, and uses a lower pressure than conventional methods.
It has been found that a hard, dense, and high-quality film can be obtained at a 0-' Torr level.

しかしながら、上記した様な酸化膜には、十分有効であ
るが、これをさらに窒化膜や炭化膜に応用しようとする
と、このままでは不十分であることが見出された。とい
うのは、反応性イオンブレーティング法により化合物薄
膜を合成する場合、必要とされるイオン化あるいは活性
化の度合とそのエネルギーは化合物の種類、出発物質、
導入ガス、X板などにより異なるが、高周波バイアスイ
オンプレーティング法ではイオン密度あるいはプラズマ
密度とその運動エネルギーを独立にコントロールするこ
とはできない0両方とも投入される高周波電力に依存す
るからである。又、従来より行なわれている高周波/<
イアススバッタ法についてもまったく同様のことがJえ
る。
However, although it is sufficiently effective for the above-mentioned oxide films, when it is applied to nitride films and carbide films, it has been found that it is insufficient as it is. This is because when synthesizing a compound thin film using the reactive ion blating method, the degree of ionization or activation required and its energy depend on the type of compound, starting materials,
This varies depending on the introduced gas, the X-plate, etc., but in the high-frequency bias ion plating method, the ion density or plasma density and its kinetic energy cannot be independently controlled because both depend on the input high-frequency power. In addition, the conventional high frequency /<
Exactly the same thing can be said about the Iasbatta method.

[発明の目的及び概要] 本発明は、上記した点に鑑み、高周波電力を変えずにプ
ラズマ密度をコントロールすることができる高周波バイ
アスイオンプレーティング法、又は高周波バイアススメ
ンタ法により被膜を形成する方法を提供することを目的
として研究の結果発明されたものであり、その要旨は真
空槽内で蒸発源を加熱して蒸発粒子を、又はターゲット
をスパッタしてスパッタ粒子を生成せしめるとともに、
基体に高周波電力を提供してガスプラズマを形成し、か
かるガスプラズマ申でイオン化された蒸発粒子又はスパ
ッタ粒子を基体上に被着せしめる高周波バイアスイオン
プレーティング法、又は高周波バイアススパッタ法によ
り被膜を形成する方法において、基板と膚発源、又はタ
ーゲットとの間に電子エミッターを設け、該゛電子エミ
ッターの電子電流量によりプラズマ密度をコントロール
することヲ特徴とする改良された高周波バイアスイオン
プレーティング法、又は高周波バイアススパッタ法によ
り被膜を形成する方法に関するものである。
[Objective and Summary of the Invention] In view of the above-mentioned points, the present invention provides a method of forming a film using a high frequency bias ion plating method or a high frequency bias smentor method that can control plasma density without changing high frequency power. It was invented as a result of research with the aim of providing a method, and its gist is to generate evaporated particles by heating an evaporation source in a vacuum chamber, or to generate sputtered particles by sputtering a target,
A film is formed by a high frequency bias ion plating method or a high frequency bias sputtering method in which gas plasma is formed by providing high frequency power to the substrate, and evaporated particles or sputtered particles ionized by the gas plasma are deposited on the substrate. An improved high frequency bias ion plating method characterized in that an electron emitter is provided between the substrate and the skin source or target, and the plasma density is controlled by the amount of electron current of the electron emitter. Alternatively, the present invention relates to a method of forming a film by high frequency bias sputtering.

〔発明の構成〕[Structure of the invention]

以下、本発明を図面に従って詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は、電子ビーム加熱ノに電源と組み合わせた高周
波バイアスイオンプレーティング装置の原理図を示し、
第1.2図は本発明の電子エミッター付き高周波バイア
スイオンプレーティング装置の原理図でを示す。
Figure 3 shows a principle diagram of a high frequency bias ion plating device that combines electron beam heating with a power supply.
FIG. 1.2 shows a principle diagram of the high frequency bias ion plating apparatus with an electron emitter of the present invention.

図において、lは基体、2は高周波放電を誘起せしめる
電極、3は蒸着源用ルツボ、4は蒸着源材料、5は電子
線ビーム、6はシャッター、7は高周波電源、8は基体
用ホルダー、9は真空槽、lOはメインバルブ、11は
リークバルブ、12は電子エミッター、13は7ノード
、14はフィラメントを示す。
In the figure, l is a substrate, 2 is an electrode for inducing high-frequency discharge, 3 is a crucible for a vapor deposition source, 4 is a vapor deposition source material, 5 is an electron beam, 6 is a shutter, 7 is a high-frequency power source, 8 is a holder for a substrate, 9 is a vacuum chamber, IO is a main valve, 11 is a leak valve, 12 is an electron emitter, 13 is a 7 node, and 14 is a filament.

第1図に示した本発明の一具体例の装置は。The apparatus according to one embodiment of the present invention is shown in FIG.

タングステンフィラメンからなる電子エミッター12と
銅製の77−ド13とを対向させて配置した3極タイプ
であり、第2図に示した本発明の他の具体例の装置は7
ノード13を備えた環状の電子エミッター12を用いた
場合である。いずれも、電子エミッター12から放出さ
れる電子を蔑発粒子と衝突させることにより、イオン化
It is a three-pole type device in which an electron emitter 12 made of a tungsten filament and a 77-dead 13 made of copper are arranged facing each other.
This is the case using an annular electron emitter 12 with nodes 13. In either case, the electrons emitted from the electron emitter 12 are ionized by colliding with the detonating particles.

活性化を行ない、その電子電流量によりイオン密度がコ
ントロールされる。電子電流量はフィラメントに流れる
電子量と、電圧によって決り、′電子のエネルギーは主
に7ノードとフィラメントの間の゛上位kによって決め
られる。
Activation is performed, and the ion density is controlled by the amount of electron current. The amount of electron current is determined by the amount of electrons flowing through the filament and the voltage, and the energy of the electrons is mainly determined by the upper k between the 7th node and the filament.

かかる高周波バイアスイオンプレーティング装置を用い
て被膜形成を行なう場合、まず、ガラス、プラスチック
、セラミンク等の各種材料から選ばれる所定の基体1を
真空槽9内の基体ホルダー8にセ・ントレ、真空槽9内
を減圧にした後、真空槽9内に所定のプラズマ発生ガス
(例えば、07.N7.Ar、etc)を所定早導込I
−1電極2に高周波電力を印加して基体lの近傍に高周
波放電を誘起せしめるとともに。
When forming a film using such a high-frequency bias ion plating apparatus, first, a predetermined substrate 1 selected from various materials such as glass, plastic, and ceramics is placed in a substrate holder 8 in a vacuum chamber 9 and placed in a vacuum chamber. After reducing the pressure inside the vacuum chamber 9, a predetermined plasma generating gas (for example, 07.N7.Ar, etc.) is introduced into the vacuum chamber 9 at a predetermined rate.
-1 High frequency power is applied to the electrode 2 to induce a high frequency discharge near the base 1.

所定の膜形成用のへ着源材料4を電子線ビーム5により
加熱する一力、電子エミンター12を作動させ、更に諸
条件を調整1−た後シャンク−6を開いて基体1面に蒸
着せしめる。
The source material 4 for forming a predetermined film is heated by the electron beam 5, the electron emitter 12 is activated, and after various conditions are adjusted 1-, the shank 6 is opened to deposit it on the substrate 1 surface. .

第1〜3図とも、蒸発源として電子ビーム加熱法を用い
た例について示しているが、これに限らず、他の熱的茂
発法、あるいは、マグネトロンスパッタ法、プラズマス
パンタ法、イオンヒームスパンタ法等のスパッタ法を用
い、高周波バイアス及び電子エミッターと組み合わせて
使うことができる。かかる高周波バイアススパッタ法の
場合の装置の概略は、基本的には第1.2図における茂
発源をターゲットに置き換えたものと考えればよい。
Although Figures 1 to 3 show examples in which electron beam heating is used as the evaporation source, other thermal evaporation methods, magnetron sputtering, plasma sputtering, and ion heating can also be used. A sputtering method such as the Muspanter method can be used in combination with a high frequency bias and an electron emitter. The outline of the apparatus for such a high frequency bias sputtering method can basically be considered to be that the Shigeru source in FIG. 1.2 is replaced with a target.

本発明によれば、電子のエミッター12を基体lと蒸発
[4との間に設け、エミッター12への電子電流量を調
整することにより、蒸発粒子の連動エネルギーを独立し
て、イオン化した蒸発粒子のプラズマ密度、あるいはイ
オン密度をコントロールすることができる。又、同様に
電子エミッターを基体とターゲットとの間に設け、′・
E子エミンター12への゛電子電流量を調整することに
よりスバンタ粒子の運動エネルギーを独立して、イオン
化したスパンタ粒子のプラズマ密度あるいはイオン密度
をコントロールスルコトができる。この本発明の方法に
より、高周波電力の印加による放電の放電圧力範囲を広
げること、特1こ放電圧力を下げることが可能となり。
According to the present invention, the electron emitter 12 is provided between the substrate l and the evaporator [4], and by adjusting the amount of electron current to the emitter 12, the interlocking energy of the evaporator particles can be independently adjusted to the ionized evaporator particles. The plasma density or ion density can be controlled. Similarly, an electron emitter is provided between the substrate and the target, and
By adjusting the amount of electron current to the E emitter 12, the kinetic energy of the Svanter particles can be independently controlled, and the plasma density or ion density of the ionized Svanter particles can be controlled. The method of the present invention makes it possible to widen the discharge pressure range of discharge by applying high-frequency power and, in particular, to lower the discharge pressure.

従来の高周波バイアスイオンプレーティング法、あるい
は高周波バイアススパッタ法に比へ、高品質の膜を得る
ことができる。更に、イオンブレーティング法を適用す
る場合、必要とされる最適のイオンの運動エネルギーと
イオン密度あるいはプラズマ密度は、膜材料、基体。
A film of higher quality can be obtained compared to conventional high frequency bias ion plating methods or high frequency bias sputtering methods. Furthermore, when applying the ion blating method, the optimum ion kinetic energy and ion density or plasma density required depend on the membrane material and substrate.

出発物質、導入ガス等によって異なるから、イオンの運
動エネルギーとイオン密度あるいはプラズマ密度を独立
にコントロールできることは、高品質膜を得るために有
効な手段となる。
Since they differ depending on the starting material, introduced gas, etc., being able to independently control the ion kinetic energy and ion density or plasma density is an effective means for obtaining a high-quality film.

特に、本発明は1m化膜、窒化膜、炭化膜などの膜を形
成する反応性高周波バイアスイオンプ・レーティング法
に有効である。
In particular, the present invention is effective for reactive high frequency bias ion plating methods for forming films such as 1m thick films, nitride films, and carbide films.

[実施例] 次に未発明の実施例について説明する。[Example] Next, an uninvented embodiment will be described.

実施例1 :iS1図に示した電子エミッター付高周波バイアスイ
オンプレーティング装置を用いて1次に示す方法により
基体上にTiN膜を形成した。まず1寸法30cmX 
30cmの正方形のソーダライムガラス基体(板厚;2
■)を中性洗剤で洗浄し、水で十分に濯いだ後、エタノ
ールで洗浄し、N2ガスで乾燥し1次いで、このカラス
基体iを真空槽9内の基体用ホルダー8にセフ)した、
へ着源材料として、板状の金属Tiをルツボ3の中に入
れて川、きした。次いで、真空槽9内を排気ポンプ(液
体N2 トラップ付拡散ポンプ)により2 X 10−
’ Torrまで排気した後、N2カス導入バルブより
N2ガスを5 X 10−’ Torrまで導入し、高
周波電源7によりガラス板lに電極2を的して 150
Wの高周波電力を印加して基板近傍に放Iしを開始させ
、N、プラズマを形成しマツチノグをJfiし、次いで
高周波入力を20hとする一方、蒸着源としての金属T
iを電子ビームにより加熱する一方、7ノード12に 
150mAの電流2加えて、電子エミッター12を作動
させ、真空槽9内の圧力を更に3 X 10−’ Ta
rtに調整した後、シャッター6を開けて所定の付着速
度でガラス基体(室温)上にTiN膜(1体m)を反応
蒸着した。
Example 1: A TiN film was formed on a substrate by the method shown below using a high frequency bias ion plating apparatus with an electron emitter shown in FIG. First, one dimension is 30cm
30cm square soda lime glass substrate (thickness: 2
(2) was washed with a neutral detergent, thoroughly rinsed with water, washed with ethanol, and dried with N2 gas.Then, this glass substrate i was placed in a substrate holder 8 in a vacuum chamber 9. ,
As a source material, a plate-shaped metal Ti was placed in the crucible 3 and ignited. Next, the inside of the vacuum chamber 9 was pumped 2×10− by an exhaust pump (diffusion pump with liquid N2 trap).
After exhausting to 150' Torr, N2 gas was introduced from the N2 gas introduction valve to 5 x 10-' Torr, and the electrode 2 was aimed at the glass plate 1 using the high frequency power source 7.
A high frequency power of W is applied to start discharging I near the substrate, a N plasma is formed and the matsunog is Jfi, and then the high frequency input is set to 20 h, while metal T as an evaporation source is applied.
i is heated by an electron beam, while 7 nodes 12
Applying a current 2 of 150 mA, the electron emitter 12 is activated, and the pressure in the vacuum chamber 9 is further increased to 3 X 10-' Ta
After adjusting the temperature to rt, the shutter 6 was opened and a TiN film (1 body m) was reactively deposited on the glass substrate (room temperature) at a predetermined deposition rate.

この様に、3〜5 X 10−’ 丁orr窒素雰囲気
中でt子エミンターを併用して作成したTiNll5J
は。
In this way, TiNll5J was prepared in combination with a t-emitter in a 3 to 5 x 10-' nitrogen atmosphere.
teeth.

金色で十分な付看力と硬さを有するものであった。一方
2実施例1の方法に従って、しかし電子工E =tター
先先出用ないで高周波バイアス・イオンブレーティング
法のみで作成したTiN膜はTiNff!2特有な金色
ではない赤味がかった色で、硬さも十分ではなかった。
It was golden in color and had sufficient adhesion and hardness. On the other hand, a TiN film produced using only the high-frequency bias ion blating method according to the method of Example 2, but without prior use of electronic engineering E = t, is TiNff! The color was reddish, not the golden color typical of 2, and the hardness was not sufficient.

実施例2 第2図に示した高周波バイアス、イオンブレーティング
法置な用いて1次に示す方法により基体上にSiJ、1
膜を形成した。まず、寸法30cllX30cmの正方
形のソータライムカラス基体(板厚; 2zm)を中性
、洗剤で洗浄し、水で十分に濯いだ後、エタノールで洗
浄し、N2ガスで乾燥し、次いで、このガラス基体lを
真空槽9内の基体用ホルタ−8にセットした。蒸着源材
料として、粒状の81をルツボ3の中に入れて用意した
。次いで、真空槽9内を排気ポンプ(液体N2 トラン
プ付拡散ポンプ)により2XIO−GTorrまで排気
した後、N2ガス導入バルブよりN2ガスを5 X 1
0−’ Torrまで導入し、高周波電源7によりガラ
ス板1に電極8を通じて150賛の高周波電力を印加し
て基板近傍に放電を開始させ N2プラズマを形成しマ
ツチングを調整し、次いで高周波入力を200wとする
一方、ハ、ffJとしての金属Siを′電子ビームによ
り加熱した。真空槽9内の圧力を更に3〜5 X 10
−’ Tarrに調整した後、シャンター6を開けて所
定のけ着速度でガラス基体(室温)上に513N4膜(
100OA )を反応蒸着した。
Example 2 SiJ, 1
A film was formed. First, a square sortalime glass substrate (thickness: 2 zm) with dimensions of 30 cll x 30 cm was washed with a neutral detergent, thoroughly rinsed with water, washed with ethanol, and dried with N2 gas. The substrate 1 was set in a substrate holder 8 in a vacuum chamber 9. As a vapor deposition source material, granular 81 was placed in the crucible 3 and prepared. Next, after evacuating the inside of the vacuum chamber 9 to 2XIO-GTorr with an exhaust pump (diffusion pump with liquid N2 tramp), N2 gas is introduced into the tank 5X1 from the N2 gas introduction valve.
A high frequency power of 150 W is applied to the glass plate 1 through the electrode 8 by the high frequency power source 7 to start a discharge near the substrate to form N2 plasma and adjust the matching, and then the high frequency input is increased to 200 W. Meanwhile, metal Si as ffJ was heated with an electron beam. The pressure inside the vacuum chamber 9 is further increased by 3 to 5 x 10
-' Tarr, open the shunter 6 and deposit the 513N4 film (at room temperature) on the glass substrate (room temperature) at the prescribed deposition rate.
100OA) was reactively deposited.

この様に、SiとHの反応性を向上させ、より高品質の
Si3N4膜を得るために′電子エミッターを併用した
実施例2の方法により、ガラス基体上に形成された5i
3Na膜は透明で、又付着力、硬さとも十分なSi3N
4膜であった。一方、実施例2の方法に従って、しかし
電子エミッターを使用しないで高周波バイアスイオンプ
レーティング法のみでガラス基体上に形成した5i3N
o膜は透明であったが、硬さ及び密度は不十分であった
。又、Siを出発原料として、通常の蒸着法により、室
温の基板に窒素雰囲気中で蒸着しても、透明なS!3+
1o膜が得られず、赤褐色のSiとSiQ□膜の混合膜
しか得られなかった。
In this way, in order to improve the reactivity of Si and H and obtain a higher quality Si3N4 film, the 5i
3Na film is transparent, and Si3N has sufficient adhesion and hardness.
There were 4 films. On the other hand, 5i3N was formed on a glass substrate according to the method of Example 2, but only by high frequency bias ion plating method without using an electron emitter.
The o film was transparent, but had insufficient hardness and density. Moreover, even if Si is used as a starting material and deposited on a substrate at room temperature in a nitrogen atmosphere using a normal vapor deposition method, transparent S! 3+
A 10 film was not obtained, and only a reddish-brown mixed film of Si and SiQ□ films was obtained.

[本発明の効果] 以上の様に、本発明によれば、電子エミッターを基体と
蒸着源との間に設けることにより、茂発粒子のイオンの
運動エネルギーとは独立にイオン密度、又はプラズマ密
度をコントコールすることができ、放電圧力範囲を広げ
ることが可能となり高品質の膜を得ることができる。
[Effects of the present invention] As described above, according to the present invention, by providing an electron emitter between the substrate and the evaporation source, the ion density or plasma density can be adjusted independently of the kinetic energy of the ions of the Moba particles. This makes it possible to expand the discharge pressure range and obtain high-quality membranes.

特に、基体としてガラス又はセラミ7クスなど絶縁基板
を用いる場合1通常のイオンブレーティングのようなり
C加速を用いると、蒸着開始直前基板表面は帯電し、第
1層を形成する蒸発粒子に加速効果は期待できないか、
この場合、高周波バイアスが有効であり、かつ、本発明
の様に電子エミッターにより、イオン化又は活性化度を
増すことができ、これにより付着力 憲度、硬さの高い
膜を得ることができる。
In particular, when an insulating substrate such as glass or ceramics is used as the base, 1 When C acceleration, such as in normal ion blating, is used, the surface of the substrate is charged just before the start of evaporation, which has an accelerating effect on the evaporated particles forming the first layer. Can't you expect that?
In this case, a high frequency bias is effective, and the degree of ionization or activation can be increased by using an electron emitter as in the present invention, thereby making it possible to obtain a film with high adhesive strength and hardness.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は、本発明の電子エミンター付き高周波バイ
アスイオンプレーティング装置の概略図、第3図は従来
の高周波バイアスイオンプレーティング装置の概略図を
示す。 1 基体、   2;電極、  3ニルツボ。 4、ノに前原材料、  5.電子線ビーム。 6 シャンター、  7:高周波電源。 8:基体用ホルター、  9:真空槽。
FIG. 1.2 is a schematic diagram of a high frequency bias ion plating device with an electron emitter according to the present invention, and FIG. 3 is a schematic diagram of a conventional high frequency bias ion plating device. 1: Substrate, 2: Electrode, 3: Nil acupuncture point. 4. Raw materials in advance, 5. electron beam. 6 shunter, 7: high frequency power supply. 8: Holter for substrate, 9: Vacuum chamber.

Claims (1)

【特許請求の範囲】 真空槽内で、蒸発源を加熱して蒸発粒子 を、又はターゲットをスパッタしてスパッタ粒子を生成
せしめるとともに、基体に高周波電力を供給してガスプ
ラズマを形成し、かかるガスプラズマ中でイオン化され
た蒸発粒 子、又はスパッタ粒子を基体上に被着せしめる高周波バ
イアスイオンプレーティング法、又は高周波バイアスス
パッタ法により被膜を形成する方法において、基板と蒸
発源、又はターゲットとの間に電子エミッターを設け、
該電子エミッターの電子電流量によりプラズマ密度をコ
ントロールすることを特徴とする改良された高周波バイ
アスイオンプレーティング法、又は高周波バイアススパ
ッタ法により被膜を形成する方法。
[Claims] In a vacuum chamber, an evaporation source is heated to generate evaporated particles, or a target is sputtered to generate sputtered particles, and high-frequency power is supplied to a substrate to form a gas plasma. In a method of forming a film by high-frequency bias ion plating or high-frequency bias sputtering, in which evaporated particles or sputtered particles ionized in plasma are deposited on a substrate, there is a gap between the substrate and the evaporation source or target. Equipped with an electron emitter,
A method of forming a film by an improved high frequency bias ion plating method or a high frequency bias sputtering method, characterized in that the plasma density is controlled by the amount of electron current of the electron emitter.
JP20181484A 1984-09-28 1984-09-28 Formation of film Pending JPS6179767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20181484A JPS6179767A (en) 1984-09-28 1984-09-28 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20181484A JPS6179767A (en) 1984-09-28 1984-09-28 Formation of film

Publications (1)

Publication Number Publication Date
JPS6179767A true JPS6179767A (en) 1986-04-23

Family

ID=16447345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20181484A Pending JPS6179767A (en) 1984-09-28 1984-09-28 Formation of film

Country Status (1)

Country Link
JP (1) JPS6179767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140097A1 (en) * 2022-09-27 2024-03-29 Neyco Deposition of layers of material by evaporation and double activation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111483A (en) * 1975-03-28 1976-10-01 Matsushita Electric Ind Co Ltd Method of preparing thin layer of compound
JPS52149277A (en) * 1976-06-07 1977-12-12 Tsuneo Nishida Golden colored decorative casing parts
JPS58215013A (en) * 1982-06-08 1983-12-14 Yoshifumi Sakurai Manufacture of vertical magnetization film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111483A (en) * 1975-03-28 1976-10-01 Matsushita Electric Ind Co Ltd Method of preparing thin layer of compound
JPS52149277A (en) * 1976-06-07 1977-12-12 Tsuneo Nishida Golden colored decorative casing parts
JPS58215013A (en) * 1982-06-08 1983-12-14 Yoshifumi Sakurai Manufacture of vertical magnetization film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140097A1 (en) * 2022-09-27 2024-03-29 Neyco Deposition of layers of material by evaporation and double activation
WO2024068143A1 (en) * 2022-09-27 2024-04-04 Neyco Deposition of material layers by evaporation and dual activation

Similar Documents

Publication Publication Date Title
US4657774A (en) Method for thin film formation
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPS58221271A (en) Formation of film by ion plating method
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
JP3836184B2 (en) Method for manufacturing magnesium oxide film
JPH0122729B2 (en)
JPS627852A (en) Formation of thin film
EP1239056A1 (en) Improvement of a method and apparatus for thin film deposition, especially in reactive conditions
JPS6179767A (en) Formation of film
JPS6147645A (en) Formation of thin film
JPS6372875A (en) Sputtering device
JPS63238270A (en) Production of thin compound film
US20220364221A1 (en) Method for forming coating layer having plasma resistance
JPS60251269A (en) Method and apparatus for ionic plating
JPH0582467B2 (en)
JPS63206464A (en) Inline type composite surface treatment device
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPH04346651A (en) Metallizing method
JPS63213664A (en) Ion plating device
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS58100672A (en) Method and device for formation of thin film
JPS63262457A (en) Preparation of boron nitride film
JP2560451B2 (en) Cu metallization method for Al ceramic material by O ion mixing
JPS59226176A (en) Ion plating device
JPS6260857A (en) Formation of boride film of high-melting point, high-boiling point and high-hardness substance