JPS6179760A - Formation of aluminum oxide film by activated reactive ion plating - Google Patents

Formation of aluminum oxide film by activated reactive ion plating

Info

Publication number
JPS6179760A
JPS6179760A JP20239984A JP20239984A JPS6179760A JP S6179760 A JPS6179760 A JP S6179760A JP 20239984 A JP20239984 A JP 20239984A JP 20239984 A JP20239984 A JP 20239984A JP S6179760 A JPS6179760 A JP S6179760A
Authority
JP
Japan
Prior art keywords
ion plating
aluminum oxide
substrate
oxide film
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20239984A
Other languages
Japanese (ja)
Other versions
JPS633021B2 (en
Inventor
Saburo Kuwano
桑野 三郎
Masahiro Sugiyama
杉山 匡宏
Yoshio Shibuya
渋谷 佳男
Terunori Ootake
大竹 輝徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKAKEN
Shizuoka Prefecture
Original Assignee
SHIZUOKAKEN
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKAKEN, Shizuoka Prefecture filed Critical SHIZUOKAKEN
Priority to JP20239984A priority Critical patent/JPS6179760A/en
Publication of JPS6179760A publication Critical patent/JPS6179760A/en
Publication of JPS633021B2 publication Critical patent/JPS633021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium

Abstract

PURPOSE:To form a hard Al2O3 film on a substrate of a metal or the like by reacting Al vapor from an evaporating source with gaseous O2 as a reactive gas in an arc discharge type high vacuum ion plating apparatus. CONSTITUTION:A hard Al2O3 film having >=2000 micro-Knoop hardness is formed on the surface of a substrate such as a steel plate preheated to 500 deg.C by an activated reactive ion plating method using high purity Al as an evaporating source and gaseous O2 as a reactive gas in an arc discharge type high vacuum ion plating apparatus. Conditions during the ion plating include 10kV-500-550mA output of an electron gun, 7-10X10<-5>Torr pressure of gaseous O2, 0.3-0.5kV voltage of the substrate, 40A thermoelectron current and 15-20A ionization current.

Description

【発明の詳細な説明】 本発明はイオンプレーティングによる硬質被膜形成法に
関するものである。近年、切削工具または金型などの表
面にCVD法あるいはPVD法によりTiN、TiCな
どの硬質被膜を形成させ、工具性能の向上あるいは工具
寿命の延伸化を図る研究が精力的に行われ、一部は既に
実用化され、市販されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a hard film by ion plating. In recent years, intensive research has been conducted to improve tool performance or extend tool life by forming hard coatings such as TiN or TiC on the surfaces of cutting tools or molds using CVD or PVD methods. has already been put into practical use and is commercially available.

このような硬質被膜の中で、アルミニウム酸化物被膜は
、耐摩耗性、耐熱性、耐食性および耐酸化性にすぐれ、
さらにTiN、t’tcなどに比べて原料価格が低置で
あるという実用化に際しての大きな利点がある。
Among these hard coatings, aluminum oxide coatings have excellent wear resistance, heat resistance, corrosion resistance, and oxidation resistance.
Furthermore, compared to TiN, t'tc, etc., raw material costs are low, which is a great advantage in practical application.

既にCVDにおいては、アルミニウム酸化物被膜を切削
工具にコーティングして好結果を得ており、実用化され
ている。
In CVD, good results have already been obtained by coating cutting tools with an aluminum oxide film, and this has been put into practical use.

しかしながら、CVD法においては、反応温度が100
0℃以上の高温であるため、コーティング基材としては
超硬工具に限られているのが実状である。これに対して
、イオンプレーティングの1種である活性化反応性イオ
ンプレーティングは基材温度600℃以下においてもT
IN、TiCなどの硬質被膜を容易に形成することがで
き、この方法によってアルミニウム酸化物被膜が形成で
きれば、その応用範囲は大きく拡がる。しかしながら、
活性化反応性イオンプレーティングにより硬質アルミニ
ウム酸化物被膜が得られたという報告は少く、これら少
い研究においても、得られたアルミニウム酸化物被膜は
マイクロビッカース硬さで800〜400であり、20
00以上という硬質アルミニウム酸化物被膜はこれまで
イオンプレーティング法では得られていない。
However, in the CVD method, the reaction temperature is 100
Due to the high temperature of 0° C. or higher, the coating base material is currently limited to carbide tools. On the other hand, activated reactive ion plating, which is a type of ion plating, has a T
Hard coatings such as IN and TiC can be easily formed, and if an aluminum oxide coating can be formed by this method, its range of applications will be greatly expanded. however,
There are few reports that hard aluminum oxide coatings have been obtained by activated reactive ion plating, and even in these few studies, the obtained aluminum oxide coatings have a micro-Vickers hardness of 800 to 400, with a micro-Vickers hardness of 20.
A hard aluminum oxide film with a hardness of 00 or higher has not been obtained by the ion plating method so far.

本発明は、アーク放電型高真空イオンプレーティング装
置を用いて、蒸発源としてAt(99゜99%)、反応
ガスとして02を選び、基板を約500℃に予備加熱し
て、電子銃出力10 KV −500〜550 mA 
、 02ガス圧7〜1OXlOTOrr1基板電圧0.
3〜0,5 KV、熱電子電流4OA、イオン化電流1
5〜2OAの条件で、基板表面上にマイクロヌープ硬さ
2000以上の硬質アルミニウム酸化物被膜を形成させ
るものである。本発明の特徴は、イオン化電流を15〜
2OAとじゅうぶん高くして、アルミニウムの蒸発粒子
および02ガス分子をじゅうぶんにイオン化して活性化
させ、アルミニウム酸化物被膜の形成反応を促進させる
ことにある。すなわち、イオン化電流が15 Aより低
い場合には、02ガス圧やその他の〜 条件が適正であ
っても、アルミニウムの蒸発粒子と02ガス分子との反
応がじゅうぶんに進行せず、形成された被膜の組成は、
未反応のアルミニウムとアルミニウム酸化物との混合と
なってじゅうぶんの硬さが得られない。
In the present invention, an arc discharge type high vacuum ion plating apparatus is used, At (99°99%) is selected as the evaporation source, 02 is selected as the reaction gas, the substrate is preheated to about 500°C, and the electron gun output is 10. KV -500~550mA
, 02 gas pressure 7~1OXlOTOrr1 substrate voltage 0.
3-0,5 KV, thermionic current 4OA, ionization current 1
A hard aluminum oxide film having a microknoop hardness of 2000 or more is formed on the substrate surface under conditions of 5 to 2 OA. The feature of the present invention is that the ionization current is
The purpose is to set the concentration sufficiently high to 2OA to sufficiently ionize and activate the vaporized aluminum particles and 02 gas molecules, thereby promoting the formation reaction of the aluminum oxide film. In other words, when the ionization current is lower than 15 A, even if the 02 gas pressure and other ~ conditions are appropriate, the reaction between the evaporated aluminum particles and the 02 gas molecules does not proceed sufficiently, and the formed film is The composition of
It is a mixture of unreacted aluminum and aluminum oxide, and sufficient hardness cannot be obtained.

次に実施例をあげて本発明の詳細な説明する0実施例1 冷間圧延鋼板(SPCC)を基板にして、これを鏡面に
研摩したのち、アセトン中で超音波洗浄して供試する。
Next, the present invention will be described in detail with reference to Examples.Example 1 A cold rolled steel plate (SPCC) was used as a substrate, polished to a mirror surface, and then ultrasonically cleaned in acetone for testing.

前処理として0,02Torrのアルゴンガス雰囲気中
で、0.8 〜0.4 KVの電圧下で80分間アルゴ
ンボンノく一ドを行ったあと、500℃に30分間基板
を予備加熱する。
As a pretreatment, argon pressure is applied for 80 minutes under a voltage of 0.8 to 0.4 KV in an argon gas atmosphere of 0.02 Torr, and then the substrate is preheated to 500° C. for 30 minutes.

その後、電子銃出力10 KV −500mA 、 O
zガス圧10 X 1O−5Torr、基板電圧0.4
2 KV、熱電子電流40 A s イオン化電流20
 Aで60分間イオンプレーティングを行い、膜厚1.
37μm1硬さHk (10gr ) 3619の硬質
アルミニウム酸化物被膜を得た。
After that, the electron gun output was 10 KV -500 mA, O
z gas pressure 10 x 1O-5Torr, substrate voltage 0.4
2 KV, thermionic current 40 A s ionization current 20
Ion plating was performed for 60 minutes at A, and the film thickness was 1.
A hard aluminum oxide coating of 37 μm/hardness Hk (10 gr) 3619 was obtained.

実施例2 基板および前処理、予備加熱は実施例1.と同様である
Example 2 The substrate, pretreatment, and preheating were as in Example 1. It is similar to

ソノ後、電子銃出力10 KV −500rnA s 
02ガス圧10 X 1O−5Torr、基板電圧0.
84KV、熱電子電流4OA、イオン化電流15 Aで
50分間イオンプレーティングを行い、膜厚2.62μ
m1硬さHk (10gr ) 2500の硬質アルミ
ニウム酸化物被膜を得た。
After sono, electron gun output 10 KV -500rnA s
02 gas pressure 10 x 1O-5Torr, substrate voltage 0.
Ion plating was performed for 50 minutes at 84KV, thermionic current 4OA, and ionization current 15A, resulting in a film thickness of 2.62μ.
A hard aluminum oxide coating with m1 hardness Hk (10 gr) 2500 was obtained.

実施例8 基板および前処理、予備加熱は実施例1と同様である。Example 8 The substrate, pretreatment, and preheating are the same as in Example 1.

ソノ後、電子銃出力10 KV −500mA 、 0
2ガス圧7 X 1O−5Torr1基板電圧0.35
 KV 、熱電子電流40A1イオン化電流20 Aで
52分間イオンプレーティングを行い、膜厚1.82μ
m1硬さHk (10gr ) 2772の硬質アルミ
ニウム酸化物被膜を得た。
After sono, electron gun output 10 KV -500mA, 0
2 Gas pressure 7 X 1O-5Torr 1 Substrate voltage 0.35
KV, ion plating was performed for 52 minutes at a thermionic current of 40A and an ionization current of 20A, resulting in a film thickness of 1.82μ.
A hard aluminum oxide coating with m1 hardness Hk (10 gr) 2772 was obtained.

実施例4 基板および前処理、予備加熱は実施例1と同様である。Example 4 The substrate, pretreatment, and preheating are the same as in Example 1.

その後、電子銃出力10 KV −550mA、 02
ガス圧10 X 10 ”l’orr、基板電圧0.4
 KV、熱電子電流40A1イオン化電流20Aで48
分間イオンプレーティングを行い、膜厚2.15μm1
硬さHk (10gr ) 8592 ノ硬質アルミニ
ウム酸化物被膜を得た。
After that, electron gun output 10 KV -550mA, 02
Gas pressure 10 x 10"l'orr, substrate voltage 0.4
KV, thermionic current 40A1 ionization current 20A 48
Perform ion plating for minutes, film thickness 2.15μm1
A hard aluminum oxide coating with a hardness of Hk (10 gr) 8592 was obtained.

本発明のアルミニウム酸化物被膜形成法は以上説明した
ように、o2ガス圧その他の条件を適正に選択すれば、
イオン化電流を15 A〜20 Aとすることにより、
マイクロヌープ硬さ2000以上の硬質アルミニウム酸
化物被膜の形成が可能となる効果を有するものである。
As explained above, the aluminum oxide film forming method of the present invention can be performed by appropriately selecting O2 gas pressure and other conditions.
By setting the ionization current to 15 A to 20 A,
This has the effect of making it possible to form a hard aluminum oxide film with a Microknoop hardness of 2000 or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアーク放電型高真空イオンプレーティング装置
(神港精機製)の原理図である。図の番号■はカーボン
ヒーターで、基板保持具■に取り付けられた試料を背面
から加熱する。シャノター■は電子銃電源が作動すると
自動的に開くようになっている。■はイオン化電極で、
■の蒸発源に対して正の電圧が印加され、プラズマ放電
が誘起される。アルミニウムのような低融点金属が蒸発
源となる場合は、プラズマ放電に必要な熱電子が不足す
るので、熱電子放射電源■により熱電子を補給する。こ
の補給される熱電子の量は熱電子電流としてコントロー
ルされる。プラズマ中の電子は正に印加されたイオン化
電極にひきつけられ、その量はイオン化電流としてコン
トロールされる。 第     1     図
FIG. 1 is a diagram showing the principle of an arc discharge type high vacuum ion plating apparatus (manufactured by Shinko Seiki). The number ■ in the figure is a carbon heater that heats the sample attached to the substrate holder ■ from the back side. Shanotar ■ is designed to open automatically when the electron gun power source is activated. ■ is an ionization electrode,
A positive voltage is applied to the evaporation source (2) to induce plasma discharge. When a low melting point metal such as aluminum is used as the evaporation source, thermionic electrons necessary for plasma discharge are insufficient, so thermionic electrons are supplied by the thermionic emission power source (2). The amount of thermionic electrons supplied is controlled as thermionic current. Electrons in the plasma are attracted to the positively applied ionization electrode, and their amount is controlled by the ionization current. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 活性化反応性イオンプレーティングにより、蒸発金属を
アルミニウム、反応ガスをO_2として、電子銃出力1
0KV−500〜550mA、O_2ガス圧7〜10×
10^−^5Torr、基板予備熱500℃、基板電圧
0.3〜0.5KV、熱電子放射電流40A、イオン化
電流15〜20Aの条件で、基板上にマイクロヌープ硬
さ2000以上の硬質アルミニウム酸化物被膜を形成さ
せることを特長とするアルミニウム酸化物被膜形成法。
By activated reactive ion plating, the evaporated metal is aluminum, the reactive gas is O_2, and the electron gun output is 1.
0KV-500~550mA, O_2 gas pressure 7~10x
Hard aluminum oxide with a microknoop hardness of 2000 or more was deposited on the substrate under the conditions of 10^-^5 Torr, substrate preheating of 500°C, substrate voltage of 0.3 to 0.5 KV, thermionic emission current of 40 A, and ionization current of 15 to 20 A. An aluminum oxide film forming method characterized by forming an aluminum oxide film.
JP20239984A 1984-09-27 1984-09-27 Formation of aluminum oxide film by activated reactive ion plating Granted JPS6179760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20239984A JPS6179760A (en) 1984-09-27 1984-09-27 Formation of aluminum oxide film by activated reactive ion plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20239984A JPS6179760A (en) 1984-09-27 1984-09-27 Formation of aluminum oxide film by activated reactive ion plating

Publications (2)

Publication Number Publication Date
JPS6179760A true JPS6179760A (en) 1986-04-23
JPS633021B2 JPS633021B2 (en) 1988-01-21

Family

ID=16456852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20239984A Granted JPS6179760A (en) 1984-09-27 1984-09-27 Formation of aluminum oxide film by activated reactive ion plating

Country Status (1)

Country Link
JP (1) JPS6179760A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021839A1 (en) * 1993-03-15 1994-09-29 Kabushiki Kaisha Kobeseikosho Apparatus and system for arc ion plating
US5879823A (en) * 1995-12-12 1999-03-09 Kennametal Inc. Coated cutting tool
KR100430410B1 (en) * 2000-08-24 2004-05-04 재단법인 포항산업과학연구원 Manufacturing method of Aluminum films by ion plating
US20230227646A1 (en) * 2022-01-17 2023-07-20 National Technology & Engineering Solutions Of Sandia, Llc Method of tuning physical properties of thermosets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322168A (en) * 1976-08-12 1978-03-01 Tsuneo Nishida Apparatus and process for ionic plating of hottcathode discharge type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322168A (en) * 1976-08-12 1978-03-01 Tsuneo Nishida Apparatus and process for ionic plating of hottcathode discharge type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021839A1 (en) * 1993-03-15 1994-09-29 Kabushiki Kaisha Kobeseikosho Apparatus and system for arc ion plating
US5879823A (en) * 1995-12-12 1999-03-09 Kennametal Inc. Coated cutting tool
KR100430410B1 (en) * 2000-08-24 2004-05-04 재단법인 포항산업과학연구원 Manufacturing method of Aluminum films by ion plating
US20230227646A1 (en) * 2022-01-17 2023-07-20 National Technology & Engineering Solutions Of Sandia, Llc Method of tuning physical properties of thermosets

Also Published As

Publication number Publication date
JPS633021B2 (en) 1988-01-21

Similar Documents

Publication Publication Date Title
Nakamura et al. Applications of wear-resistant thick films formed by physical vapor deposition processes
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JPS60195094A (en) Production of diamond thin film
CN109082647B (en) Preparation method of DLC protective film on aluminum alloy surface
JP3026425B2 (en) Method for producing hard thin film and hard thin film
JP2003147508A (en) Carbon film, method of depositing carbon film, and carbon film-coated member
RU2759458C1 (en) Method for obtaining a multilayer thermodynamically stable wear-resistant coating (options)
JPS6179760A (en) Formation of aluminum oxide film by activated reactive ion plating
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
JPH04103754A (en) Ceramic-coated material and its production
JPS5841351B2 (en) Katsuseikahannoujiyouchiyakuuchi
JP3199395B2 (en) Ceramic coating and its manufacturing method
JPS63195260A (en) Coating material and its production
JPH0331469A (en) Coated tool steel and production thereof
KR100193365B1 (en) How to Form Titanium Nitride Film on Metal Surface
JP2004010741A (en) Method of forming water repellent film and water repellent film formed by the method
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH07259770A (en) Vane for compressor
JP2000054114A (en) Film structure excellent in heat and wear resistance
Kiryukhantsev-Korneev et al. Effect of a Gas Medium on the Mechanical, Tribological, and Anticorrosion Properties of Cr–Ni–Al–C–N Coatings Deposited by the Pulsed Cathodic Arc Evaporation Method
JPH06116711A (en) Formation of alumina film
JPH0733569B2 (en) Ni-TiC composite coating method
TWI248475B (en) Hard coating and method for producing the same
JP2008106361A (en) Carbon film
JPH01165763A (en) Crucible for electron-beam vaporization source